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ABSTRACT
Motivation: Despite advances in high throughput methods
for discovering protein-protein interactions, the interaction
networks of even well-studied model organisms are sketchy
at best, highlighting the continued need for computational
methods to help direct experimentalists in the search for novel
interactions.
Results: We present a kernel method for predicting protein-
protein interactions using a combination of data sources, inclu-
ding protein sequences, Gene Ontology annotations, local
properties of the network, and homologous interactions in
other species. Whereas protein kernels proposed in the litera-
ture provide a similarity between single proteins, prediction
of interactions requires a kernel between pairs of proteins.
We propose a pairwise kernel that converts a kernel bet-
ween single proteins into a kernel between pairs of proteins,
and we illustrate the kernel’s effectiveness in conjunction with
a support vector machine classifier. Furthermore, we obtain
improved performance by combining several sequence-based
kernels based on k-mer frequency, motif and domain content
and by further augmenting the pairwise sequence kernel with
features that are based on other sources of data.

We apply our method to predict physical interactions in yeast
using data from the BIND database. At a false positive rate of
1% the classifier retrieves close to 80% of a set of trusted
interactions. We thus demonstrate the ability of our method
to make accurate predictions despite the sizeable fraction of
false positives that are known to exist in interaction databases.
Availability: The classification experiments were performed
using PyML available at http://pyml.sourceforge.net. Data is
available at: http://noble.gs.washington.edu/proj/sppi.
Contact: Asa Ben-Hur, asa@gs.washington.edu

1 INTRODUCTION
Most proteins perform their functions by interacting with
other proteins. Therefore, information about the network of
interactions that occur in a cell can greatly increase our under-
standing of protein function. Several experimental assays that
probe interactions in a high throughput manner are now availa-
ble. These methods include the yeast two hybrid screen and
methods based on mass spectrometry (see von Mering et al.

(2002) and references therein). The data obtained by these
methods is partial: each experimental assay can identify only
a subset of the interactions, and it has been estimated that
for the organism with the most complete interaction network,
namely yeast, only about half of the complete “interactome”
has been discovered (von Mering et al., 2002). In view of
the very small overlap between interactions discovered by
various high throughput studies, some of them using the
same method, the actual number of interactions is likely to be
much higher. Computational methods are therefore required
for discovering interactions that are not accessible to high-
throughput methods. These computational predictions can
then be verified by more labor-intensive methods.

A number of methods have been proposed for predic-
ting protein-protein interactions from sequence. Sprinzak
and Margalit (2001) have noted that many pairs of struc-
tural domains are over-represented in interacting proteins,
and that this information can be used to predict interacti-
ons. Several authors have proposed Bayesian network models
that use the domain or motif content of a sequence to pre-
dict interactions (Deng et al., 2002; Gomez et al., 2003;
Wang et al., 2004). The pairwise sequence kernel was inde-
pendently proposed in a recent paper (Martin et al., 2005)
with a sequence representation by 3-mers. Other sequence-
based methods use co-evolution of interacting proteins by
comparing phylogenetic trees (Ramani and Marcotte, 2003),
correlated mutations (Pazos and Valencia, 2002), or gene
fusion which works at the genome level (Marcotte et al.,
1999). An alternative approach is to combine multiple sources
of genomic information—gene expression, Gene Ontology
annotations, transcriptional regulation, etc.—to predict co-
membership in a complex (Zhang et al., 2004; Lin et al.,
2004).

One can consider two variants of the interaction prediction
problem: predicting co-membership in a complex or predic-
ting direct physical interaction. In this work, we focus on
the latter task, and use interactions that are derived from the
BIND database (Bader et al., 2001), which makes a distinc-
tion between experimental results that yield co-membership
in a complex and interactions that are more likely to be direct
ones.
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Kernel methods, and in particular support vector machi-
nes (SVMs) (Schölkopf and Smola, 2002), have proven
useful in many difficult classification problems in bioinfor-
matics (Noble, 2004). The learning task we are addressing
involves a relationship betweenpairs of protein sequences:
whether two pairs of sequences are interacting or not. The
standard sequence kernels1 described in the literature mea-
sure similarity between single proteins. We propose a method
for converting a kernel defined on single proteins into apair-
wisekernel, and we describe the feature space produced by
that kernel.

Our basic method uses motif, domain and k-mer compo-
sition to form a pairwise kernel, and achieves better perfor-
mance than simple methods based on BLAST or PSI-BLAST.
However, because it is difficult to predict interactions from
sequence alone, we incorporate additional sources of data.
These include kernels based on similarity of Gene Ontology
annotations, a similarity score to interacting homologs in other
species, and the mutual-clustering coefficient (Goldberg and
Roth, 2003) that measures the tendency of neighbors of inter-
acting proteins to interact as well. Adding these additional
data sources significantly improves our method’s performance
relative to a method trained using only the pairwise sequence
kernel. Using kernel methods for combining data from hete-
rogenous sources of data allows us to use high dimensional
sequence data, whereas other studies on predicting protein-
protein interactions (see e.g. Zhang et al. (2004); Lin et al.
(2004)) use a low dimensional representations which are
appropriate for any type of classifier.

2 KERNELS FOR PROTEIN-PROTEIN
INTERACTIONS

SVMs and other kernel methods derive much of their power
from their ability to incorporate prior knowledge via the ker-
nel function. Furthermore, the kernel approach offers the
ability to easily apply kernels to diverse types of data, inclu-
ding fixed-length vectors (e.g., microarray expression data),
variable-length strings (DNA and protein sequences), graphs
and trees. In this work, we employ a diverse collection of
kernels described in this section.

2.1 Pairwise kernels
The kernels proposed in the literature for handling geno-
mic information, e.g., sequence kernels such as the motif
and Pfam kernels presented later in the section, provide a
similarity between pairs of sequences, or more generally, a
similarity between a representation of a pair of proteins. The-
refore, such kernels are not directly applicable to the task of
predicting protein-protein interactions, which requires a simi-
larity between two pairs of proteins. Thus, we want a function

1 A kernel is a measure of similarity that satisfies the additional condition of
being a dot product in some feature space; see (Schölkopf and Smola, 2002)
for details.

K((X1, X2), (X ′
1, X

′
2)) that returns the similarity between

proteinsX1 andX2 compared to proteinsX ′
1 andX ′

2. We
call a kernel that operates on individual genes or proteins a
genomic kernel, and a kernel that compares pairs of genes or
proteins apairwise kernel. Pairwise kernels can be computed
either indirectly, by way of an intermediate genomic kernel,
or directly using features that characterize pairs of proteins.

The most straightforward way to construct a pairwise kernel
is to express the similarity between pairs of proteins in terms
of similarities between individual proteins. In this approach,
we consider two pairs to be similar to one another when each
protein of one pair is similar to one protein of the other pair.
For example, if proteinX1 is similar to proteinX ′

1, andX2

is similar toX ′
2, then we can say that the pairs(X1, X2) and

(X ′
1, X

′
2) are similar. We can translate these intuitions into

the following pairwise kernel:

K((X1, X2), (X ′
1, X

′
2)) = K ′(X1, X

′
1)K

′(X2, X
′
2) +

K ′(X1, X
′
2)K

′(X2, X
′
1),

whereK ′(·, ·) is any genomic kernel. This kernel takes into
account the fact thatX1 can be similar to eitherX ′

1 or X ′
2.

An alternative to the above approach is to represent a pair
of sequences(X1, X2) explicitly in terms of the domain or
motif pairs that appear in it. This representation is motivated
by the observation that some domains are significantly over-
represented in interacting proteins (Sprinzak and Margalit,
2001). A similar observation holds for sequence motifs as
well. Given a pair of sequencesX1, X2 represented by vectors
x1,x2, with componentsx(1)

i , x
(2)
i we form the vectorx12

with componentsx(1)
i x

(2)
j + x

(2)
i x

(1)
j . We can now define the

explicit pairwise kernel:

K((X1, X2), (X ′
1, X

′
2)) = K ′(x12,x′12) , (1)

wherex12 is the pairwise representation of the pair(X1, X2),
andK ′(·, ·) is any kernel that operates on vector data. It is
straightforward to check that for a linear kernel function, the
pairwise and explicit pairwise kernels are identical. The expli-
cit representation can be used in order to rank the relevance of
motif pairs with respect to the classification task. This ranking
is accomplished by sorting the motif pairs according to the
magnitude of the corresponding weight vector components.

2.2 Sequence kernels
We use three sequence kernels in this work: the spectrum ker-
nel (Leslie et al., 2002), the motif kernel (Ben-hur and Brutlag,
2003) and the Pfam kernel (Gomez et al., 2003). The feature
space of these kernels is a set of sequence models, and each
component of the feature space representation measures the
extent to which a given sequence fits the model. The spectrum
kernel models a sequence in the space of all k-mers, and its
features count the number of times each k-mer appears in the
sequence.
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The sequence models for our motif kernel are discrete
sequence motifs, providing a count of how many times a dis-
crete sequence motif matches a sequence. To compute the
motif kernel we used discrete sequence motifs from the eMo-
tif database (Nevill-Manning et al., 1997). Yeast ORFs contain
occurrences of 17,768 motifs out of a set of 42,718 motifs.

Finally, the Pfam kernel uses a set of hidden Markov
models (HMMs) to represent the domain structure of a pro-
tein, and is computed by comparing each protein sequence
to every HMM in the Pfam database (Sonnhammer et al.,
1997). Each such protein-HMM comparison yields an E-value
statistic. Pfam version 10.0 contains 6190 domain HMMs;
therefore, each protein is represented by a vector of 6190 log
E-values. This Pfam kernel has been used previously to pre-
dict protein-protein interactions (Gomez et al., 2003), though
not in conjunction with the pairwise kernel described above.

For all three sequence kernels we use a a normalized linear
kernel,K(x, y)/

√
K(x, x)K(y, y); in the case of the Pfam

kernel we first performed an initial step of centering the kernel.

2.3 Non-sequence kernels
An alternative to using the pairwise kernel is the following:

K((X1, X2), (X ′
1, X

′
2)) = K ′(X1, X2)K ′(X ′

1, X
′
2) . (2)

This kernel is appropriate when similaritywithin the pair is
directly related to the likelihood that a pair of proteins interact.
In fact, this is a valid kernel even ifK ′ is not a kernel, because
in this formulationK ′ is simply a feature of the pair of prote-
ins. Consider Gene Ontology (GO) annotations for example:
a pair of proteins is more likely to interact if the two prote-
ins share similar annotations. In addition to GO annotation
we also consider local properties of the interaction network,
and homologous interactions in other species. We summarize
these properties as a vector of scoress(X1, X2), so that the
kernel for the non-sequence data can be any kernel appropriate
for vector data:

Knon-seq((X1, X2)), (X ′
1, X

′
2)) = K ′(s(X1, X2), s(X ′

1, X
′
2)) ,
(3)

where here we chose to use a Gaussian kernel forK ′.

2.3.1 A Gene Ontology kernel.Proteins that are not present
in the same cellular component or that participate in different
biological processes are less likely to interact. We represent
this prior knowledge using a kernel that measures the simila-
rity of the Gene Ontology (GO) (Gene Ontology Consortium,
2000) annotations of a pair of proteins, one kernel for each of
the three GO hierarchies. The feature space for the GO kernel
is a vector space with one component for each node in the
directed acyclic graph in which GO annotations are represen-
ted. Denote byAp the annotations (nodes in the GO graph)
assigned to proteinp. Note that, in GO, a single protein can
be assigned several annotations. A component of the vector
corresponding to nodea is nonzero ifa or a parent ofa is in
Ap.

We consider two ways in which to define the dot product
in this space. When the nonzero components are set equal
to 1, then when each protein has a single annotation, and
the annotatinos are on a tree, the dot product between two
proteins is the height of the lowest common ancestor of the
two nodes. An alternative approach assigns annotationa a
score of− log p(a), wherep(a) is the fraction of proteins that
have annotationa. We then score the similarity of annotations
a, a′ asmaxa′′∈ancestors(a)∩ancestors(a′)− log p(a′′). In a
tree topology, this score is the similarity between the deepest
common ancestor ofa anda′, because the node frequencies
are decreasing along a path from the root to any node. The
score is a dot product with respect to the infinity norm on the
annotation vector space. This also holds when the proteins
have more than one annotation and the similarity between their
annotations is defined as the maximum similarity between any
pair of annotations. When one of the proteins has an unknown
GO annotation, the kernel value is set to 0.

2.3.2 Interactions in other species.It has been shown that
interactions in other species can be used to validate or infer
interactions (Yu et al., 2004): the existence of interacting
homologs of a given pair of proteins implies that the original
proteins are more likely to interact. We quantify this observa-
tion with the following homology score for a pair of proteins
(X1, X2):

h(X1, X2) = max
i∈H(X1),j∈H(X2)

I(i, j)×

min(l(X1, Xi), l(X2, Xj)) ,

whereH(X) is the set of non-yeast proteins that are signi-
ficant BLAST hits ofX, I(i, j) is an indicator variable for
the interaction between proteinsi andj andl(Xk, Xi) is the
negative of the log E-value provided by BLAST when compa-
ring proteink with proteini in the context of a given sequence
database. We used interactions in human, mouse, nematode
and fruit fly to score the interactions in yeast.

2.3.3 Mutual clustering coefficient.Protein-protein inter-
action networks tend to be “cliquish”; i.e., the neighbors
of interacting proteins tend to interact. Goldberg and Roth
(2003) quantified this cohesiveness using themutual clu-
stering coefficient(MCC). Given two proteinsu, v, their
MCC can quantified, e.g., by the jaccard coefficient|N(v) ∪
N(u)|/|N(v) ∩ N(u)|, whereN(x) is the set of neighbors
of a proteinx in an interaction network. In our classification
experiments we performed cross-validation where the MCC
in each cross-validation fold is computed with respect to the
interactions that occur in the training set of that particular fold.

2.4 Combining kernels
Given a genomic kernelK, we denote byKp(K) the pair-
wise kernel that usesK. When several genomic kernels are
available, the final kernel can be defined as

∑
i Kp(Ki)
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or as Kp(
∑

i Ki). Using Kp(
∑

i Ki) mixes features bet-
ween the individual kernels, while the feature space for∑

i Kp(Ki) includes pairs of features that originate from
the same genomic kernel. In practice, the results from these
two different approaches were very close, and the mixing
approach was used because of its lower memory require-
ment. A Gaussian or polynomial kernel can be introduced
at several stages: instead of the linear genomic kernel as:
exp(−γ(Kp(P, P )−2Kp(P, P ′)+Kp(P ′, P ′)), whereP, P ′

are two pairs of proteins. We haven’t tried introducing a non-
linear kernel at the level of the genomic kernel; a Gaussian
kernel at the level of the pairwise kernel performed similarly
to the “linear” pairwise kernel, despite the high dimensiona-
lity of the resulting feature space. The results reported in this
paper are computed using “linear” pairwise kernels.

2.5 Incorporating interaction reliability in training
Several studies of protein-protein interaction data have noted
that different experimental assays produce varying levels of
false positives and have proposed methods for finding which
interactions are likely to be reliable (von Mering et al., 2002;
Sprinzak et al., 2003; Deane et al., 2002)—see Section 3.1 for
details. We incorporate this knowledge about the reliability of
protein-protein interactions into the training procedure using
the SVM soft-margin parameterC (Schölkopf and Smola,
2002). This parameter puts a penalty on patterns that are
misclassified or are close to the SVM decision boundary. Each
training example receives a value ofC that depends on its
reliability. For a training set with an equal number of positive
and negative examples we use two values:Chigh for interac-
tions believed to be reliable and for negative examples;Clow

for positive examples that are not known to be reliable.

3 METHODS
3.1 Interaction Data
We focus on prediction of physical interactions in yeast and
use interaction data from the BIND database (Bader et al.,
2001). BIND includes published interaction data from high-
throughput experiments as well as curated entries derived from
published papers. The advantage of BIND is that it provides
an explicit distinction between direct physical interactions and
co-membership in a complex.

3.1.1 Positive and negative examples.We use physical
interactions from BIND as positive examples, for a dataset
comprised of 10 517 interactions among 4233 yeast proteins
(downloaded July 9th, 2004). We eliminated self interacti-
ons from the dataset since such interactions do not require a
pairwise kernel, and the GO and MCC features are not appro-
priate in this case. As negative examples we select random,
non-interacting pairs from the 4233 interacting proteins; the
number of negative examples was taken as equal to the number
of positive examples. In view of the large number of protein
pairs compared to the number of interactions, such a set of

negative examples is likely to contain very few proteins that
interact.

High-throughput protein-protein interaction data contains a
large fraction of false positives, estimated to be up to 50% in
some experiments (von Mering et al., 2002). Therefore, we
prepared a set of BIND interactions that are expected to have
a low rate of false positives. We use these reliable interactions
in two ways. We evaluate the performance of our method on
the reliable interactions because they are more likely to reflect
the true performance of the classifier. We also use reliability to
set the value of the SVM soft-margin parameter as discussed
in Section 2.5. “Gold standard” interactions can be derived
from several sources:

• Interactions corroborated by interacting yeast paralogs.
Deane et al. (Deane et al., 2002) find 2829 interactions
from the DIP database that are supported by their para-
logous verification method (PVM). The estimated false
positive rate of this method is 1%.

• Interactions that are supported by interacting homologs in
multiple species are likely to be correct (Yu et al., 2004).

• Interactions that are discovered by different experimen-
tal assays were estimated to be correct 95% of the time
(Sprinzak et al., 2003).

• Highly reliable methods, for example, interactions deri-
ved from crystallized complexes.

We do not use PVM-validated interactions because they
contain several biases.

• The test set is biased toward interactions that can be easily
discovered by sequence similarity.

• The list of PVM-validated interactions cannot be used
as-is to set the SVM soft-margin parameter in trai-
ning because this may incorporate information about
interactions that are in the test set.

Also, we do not include interactions validated by interacting
homologs in other species, since that information is included
in the data as a feature. Therefore, for the purpose of asses-
sing performance we use a list of 750 interactions that were
validated by high-quality or multiple assays. For setting the
SVM soft-margin parameter we augment the 750 interacti-
ons with PVM-validated interactions that are computed on
the basis of the training data alone. Training is performed on
all interactions so that sensitivity is not sacrificed.

3.2 BLAST/PSI-BLAST based ranking
We compare our method with a simple ranking method that
assigns a candidate interaction a score based upon its simi-
larity to interacting pairs in the training set. Specifically, let
l(X,X ′) denote the negative log of the E-value assigned by
PSI-BLAST (BLAST) when searchingX againstX ′ in the
context of a large database of sequences, and letI(i, j) be an
indicator variable for the interaction between proteinsi and
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j. l(X, X ′) is positive for significant matches and increases
as the quality of the match increases. The score for a query
(X1, X2) is defined as:

max
i∈P,j∈P

I(i, j)min(l(X1, Xi), l(X2, Xj)) , (4)

whereP is the set of all proteins in the training set. In these
experiments, we use PSI-BLAST scores computed in the
context of the Swiss-Prot database (version 40, containing
101,602 proteins).

3.3 Figures of merit
Throughout this paper we evaluate the quality of a predictive
method using two different metrics. Both metrics—the area
under the receiver operating characteristic curve (ROC score),
and the normalized area under that curve up to the first 50 false
positives (ROC50 score)—aim to measure both sensitivity and
specificity by integrating over a curve that plots true positive
rate as a function of false positive rate. We include both metrics
in order to account for two different types of scenarios in
which a protein-protein interaction prediction method might
be employed.

In the first scenario, imagine that you have developed a
low-throughput method for detecting whether a given pair of
proteins interacts. Rather than testing your method on ran-
domly selected pairs of proteins, you could use a predictive
algorithm to identify likely candidates. In this case, you would
start from the top of the ranked list of predictions, testing pairs
until you ran out of time or money, or until the success rate
of the predictor was too low to be useful. In this scenario, a
predictor that maximizes the quality of the high-confidence
interactions—i.e., that maximizes the ROC50 score—is going
to be most useful.

In the second, more common scenario, you are interested in
a particular biological system. You run the predictive algo-
rithm, and you check your favorite set of proteins to see
whether they participate in any predicted interactions. In this
case, you do not care only about the high-confidence interac-
tions; instead, you would like to be sure that the complete set
of predictions is of high quality. In this case you are interested
in the ROC score of the classifier.

4 RESULTS
In the following section, we report the results of experiments
in predicting protein-protein interactions using an SVM clas-
sifier with various kernels, and compare these to a simple
method based on BLAST or PSI-BLAST. All the experiments
were performed using thePyML machine learning frame-
work available at http://pyml.sourceforge.net. We begin this
section with results obtained using the various kernels and
kernel-combinations, followed by a discussion of the choice
of negative examples, and a section that shows the effects of
choosing a non-redundant set of proteins.

4.1 Main results
We report results that are computed using five-fold cross-
validation on all BIND physical interactions. The SVM soft-
margin parameter was not optimized—we used the default low
value for this parameter to account for the noise in the data.
The ROC/ROC50 curve is then computed for those reliable
interactions that were not obtained using the PVM method as
discussed in Section 3.1. The ROC statistics that summarize
these experiments are reported in Table 1, and selected ROC
curves are shown in Figure 1.

Our basic method uses a pairwise kernel based on one
of several sequence kernels—the motif, Pfam and spectrum
kernels. The performance of the motif and Pfam kernels is
comparable, with a slight advantage for the Pfam kernel (the
ROC scores are 0.76 and 0.78 and ROC50 scores are 0.17
and 0.20). The spectrum kernel (using k-mers of length 3)
achieves a higher ROC score of 0.81, but its ROC50 score is
significantly lower than that of the Pfam and motif kernels.
The higher ROC score can be explained by the fact that the
motif and Pfam methods are limited in their sensitivity by the
motifs and domain models available. However, when such
models offer a good description of a sequence, their predic-
tions are likely to be more accurate, which is reflected in the
much higher ROC50 scores of these methods. Each of the pair-
wise kernels by itself is not doing much better than BLAST or
PSI-BLAST, but once they are combined, they offer impro-
ved performance. We note that using a spectrum kernel with
k-mers of length 4 did not improve the performance of the
method.

We now explore the effect of adding to the sequence kernels
a kernel based on three types of non-sequence data—Gene
Onotology annotations, the homology score, and the MCC.
For the non-sequence features we first standardized the data
(subtracted the mean of each feature and divided by the stan-
dard deviation), and used a Gaussian kernel whose width was
determined by cross-validation.

Combining the non-sequence features with the pairwise
sequence kernel yielded better performance than any method
by itself in both performance metrics. Furthermore, setting
the soft-margin parameter of the SVM according to the relia-
bility of the interactions provided another significant boost to
the performance. Its ROC and ROC50 scores were 0.98 and
0.58, respectively; at a false positive rate of 1% the classifier
retrieves close to 80% of the trusted interactions. In this expe-
riment we did not try to optimize the ratio between the two
soft margin constants, and usedClow = 0.01Chigh.

The main contribution to the gain in performance comes
from the GO-process kernel feature. Its ROC score by itself
is 0.68 on all the BIND interactions and 0.95 when limiting
to the reliable positive examples. The difference between the
two numbers is likely due to the sizable fraction of false inter-
actions in the BIND dataset. In the next subsection we point
out scenarios where the GO data is not useful. The ROC score
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Fig. 1. ROC and ROC50 curves for several methods. Best performance is obtained using a kernel that combines all the kernels presented in
the paper. Additional results are summarized in Table 1, along with a description of the methods.
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method kernel ROC score ROC50 score
blast - 0.74 0.18
psiblast - 0.78 0.11
non-sequence Knon-seq 0.95 0.37
motif Kp(Kmotif) 0.76 0.17
pfam Kp(Kpfam) 0.78 0.20
spectrum (k=3) Kp(Kspec) 0.81 0.05
motif+pfam Kp(Kmotif + Kpfam) 0.82 0.22
motif+pfam+spectrum Kp(Kmotif + Kpfam+ Kspec) 0.86 0.17
all kernels Kfeat + Kp(Kmotif + Kpfam+ Kspec) 0.97 0.44
all+reliability Kfeat + Kp(Kmotif + Kpfam+ Kspec) 0.97 0.58

Table 1. ROC scores for the various methods computed using 5-fold cross-validation. Training data includes all BIND physical interactions. ROC scores are
computed on reliable interactions that do not include PVM-validated interactions. The blast and psiblast methods rank interactions according to Equation 4.
The “kernel” column of the table shows which kernel was used in conjunction with the SVM classifier. The notationKp(Kg) denotes that the pairwise kernel
was derived from a genomic kernelKg . TheKnon-seqis a Gaussian kernel over the non-sequence features; in each method it participates in, the width of
the Gaussian was determined by cross-validation as part of the classifier’s training. The all-reliable method uses information on reliability to set the SVM
soft-margin parameter as described in Section 2.5.

for the MCC feature was 0.68 on all BIND interactions and
0.53 when computed on the reliable interactions. The large
difference for the MCC feature is a result of the fact that the
MCC requires a large number of interactions to be useful. At
a BLAST cutoff of1e−10, 329 interactions from BIND were
supported by interactions by other species, as opposed to 49
negative examples. The ROC score for this feature by itself is
low since it is sparse, i.e., is informative for a small number
of interactions.

4.2 The role of GO annotations
In order to understand the difference in the role of the sequence
kernels and the non-sequence kernel we compared the two
kernels on the task of distinguishing between physically inter-
acting proteins pairs, and those that are members of the same
complex. In this case, the negative examples are chosen as
protein pairs that are known to belong to the same complex,
but are not known to physically interact. This set of negative
examples is like to be more noisy than the non-interacting set,
because complexes that are not accessible by yeast two-hybrid
likely contain many physical interactions. But still, the motif-
pairwise method achieves an ROC score of 0.78, very close
to the value obtained with non-interacting negative examp-
les. In this task a classifier based on the non-sequence kernel
fails, with an ROC score of 0.5. This is due to the fact that
co-complexed proteins, like physically interacting proteins,
tend to have similar GO annotations and network properties,
while the motif and Pfam rely on a signal that is often directly
related to the interaction site itself (Wang et al., 2004). Simi-
lar observations can be made for other features used to predict
co-complexed proteins, such as gene expression data.

4.3 Choosing negative examples.
Recall that examples of non-interacting proteins were chosen
as random pairs of interacting proteins. To test the stability of

dataset threshold ROC ROC50
BIND 0.50 0.77 0.04

0.10 0.89 0.15
0.07 0.91 0.21
0.05 0.92 0.25
0.04 0.95 0.36

DIP/MIPS 0.5 0.87 0.08
0.1 0.94 0.22
0.07 0.95 0.32
0.05 0.96 0.34
0.04 0.97 0.46

Table 2. The dependence of the performance of the spectrum pairwise
method on the similarity between localization annotations in negative examp-
les. Enforcing the condition that no two proteins in the set of negative
examples have a GO similarity that is less than a given threshold puts a
constraint on the distribution of negative examples. This constraint makes it
easier for the classifier to distinguish between positive and negative examples,
and the effect gets stronger as the threshold becomes smaller. We performed
the experiment on the BIND interaction dataset and on a dataset of reliable
interactions derived from DIP and MIPS interactions.

our results with respect to the choice of negative examples, we
ran a set of experiments using ten different randomly selected
sets of non-interacting proteins. Predictions were made using
the motif kernel. The standard deviation of the resulting ROC
scores was 0.003, showing good stability.

Significant attention has been paid to the problem of
selecting gold standard interacting protein pairs for the pur-
poses of training and validating predictive computational
methods (Jansen et al., 2003). However, less emphasis has
been placed on the choice of non-interacting protein pairs. In
this study, we selected negatives uniformly at random. We
find that this strategy leads to consistent behavior and avoids
bias.
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The possibility for bias due to the method of constructing
negative examples is evidenced by results reported in a related
paper (Martin et al., 2005). In this work, the authors report
that a pairwise spectrum kernel provides highly accurate pre-
dictions of yeast interactions using a dataset studied in (Jansen
et al., 2003). The positive examples in this dataset satisfy our
criteria of trusted interactions, and one might conclude that
the use of highly reliable interactions is the reason for the
success of the predictive method. However, we found that the
method of choosing negative examples has a strong effect on
performance: the negative examples from Jansen et al. (2003)
were chosen as pairs of proteins that are known to be localized
in different cellular compartments. This makes these protein
pairs much less likely to interact than randomly selected pairs,
but the selection constraints put a bias on the resulting distri-
bution that makes the overall learning task easier (note that
this is less likely to affect the results of non-sequence based
methods such as the one used by Jansen et al. (2003)). To illu-
strate this effect, we created datasets with negative examples
taken as pairs whose GO component similarity, as measured
by our kernel, is below a given threshold. The performance of
the resulting classifier varied as we varied this threshold (see
Table 2). This constrained selection method was tested with
the spectrum and motif kernels using both the BIND interac-
tion data and a set of trusted interactions similar to the one used
by Martin et al. (2005) extracted from DIP and MIPS (Mewes
et al., 2000; Xenarios et al., 2002). For the spectrum kernel the
ROC (ROC50) scores varied from 0.87 (0.08) to 0.97 (0.46)
on the DIP/MIPS data and from 0.77 (0.04) to 0.95 (0.36)
on the BIND data, as the threshold was lowered from 0.5 to
0.04. Similar, although slightly less pronounced, results were
obtained for the motif pairwise kernel.

4.4 The dependence on interacting paralogs.
The yeast genome contains a large number of duplicated
genes. Because we are using a sequence-based method to pre-
dict interactions, we need to determine to what extent the
performance depends on the presence of interacting paralogs.
We therefore performed an experiment in which the training
set and test set do not contain proteins whose BLAST E-value
is more significant than a given threshold. In this case we
performed two-fold cross-validation instead of five-fold cross-
validation. For the pairwise motif-pfam-spectrum kernel the
ROC score decreased from 0.86 with no constraint to 0.81
when the training and test set did not contain proteins whose
BLAST E-value was better than 0.1. The ROC score for the
PSI-BLAST (BLAST) method went down from 0.78 (0.74)
to 0.62 (0.62). This illustrates that the kernel combination is
less dependent on the presence of interacting paralogs than
BLAST or PSI-BLAST.

5 DISCUSSION
In this paper we presented several kernels for prediction of
protein-protein interactions, and used them in combination for

improved performance. The concern regarding the pairwise
kernel is the high dimensionality of its feature space, which is
quadratic in the number of features of the underlying kernel.
We considered an alternative kernel which uses summation
instead of the multiplication used in the expression for the
pairwise kernel, similarly to the work of Gomez et al. (2003).
The performance of the summation kernel is not as good as
the corresponding pairwise kernel, showing the advantage of
using pairs of features.

When training a classifier to predict protein-protein interac-
tions there is a balance between putting in the training set only
trusted interactions as opposed to trying to maximize the num-
ber of positive examples by adding interactions about which
we are less sure. When using a sequence-based approach, as
we have done here, the sensitivity of the method may depend
on the richness of the training set. We have shown in this
paper that we are able to use a larger set of noisy data while
still achieving good performance. As an alternative to training
on a dataset that includes false positive interactions we plan to
first apply a step of filtering the interaction data on the basis
of features of trusted interactions, in order to maximize the
number of interactions that can be considered reliable.

We also made no attempt to purge from our dataset examp-
les that contain missing data (missing GO annotations). When
trying to make predictions on unseen data, these data will con-
tain missing data, so the method is more likely to generalize
if presented with examples with missing data during training.

While writing this manuscript we found that the pairwise
approach was proposed in a paper by Martin et al. (2005). They
used only the spectrum kernel, whereas here we considered
several sequence kernels. We found that the spectrum kernel
works better than the motif and Pfam kernels according to the
ROC metric, but the spectrum kernel does not work as well
as the motif and Pfam kernels according to the ROC50 metric.
Apparently, the signal that the spectrum kernel generates is
not as specific as that of the other kernels.

In addition, we have illustrated that pairwise sequence ker-
nels can be successfully combined with non-sequence data.
In this work we have not attempted to learn the weights of
the various kernels as done by Lanckriet et al. (2004). This
is an avenue for future work, although solving the resulting
semi-definite programming problem promises to be compu-
tationally expensive, due to the large training sets involved.
We also plan to consider additional sources of data such
as gene expression and transcription factor binding data,
which have also been shown to be informative in predicting
protein-protein interactions (Zhang et al., 2004).
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