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ABSTRACT

Motivation: Despite advances in high throughput methods
for discovering protein-protein interactions, the interaction
networks of even well-studied model organisms are sketchy
at best, highlighting the continued need for computational
methods to help direct experimentalists in the search for novel
interactions.

Results: We present a kernel method for predicting protein-
protein interactions using a combination of data sources, inclu-
ding protein sequences, Gene Ontology annotations, local
properties of the network, and homologous interactions in
other species. Whereas protein kernels proposed in the litera-
ture provide a similarity between single proteins, prediction
of interactions requires a kernel between pairs of proteins.
We propose a pairwise kernel that converts a kernel bet-
ween single proteins into a kernel between pairs of proteins,
and we illustrate the kernel’s effectiveness in conjunction with
a support vector machine classifier. Furthermore, we obtain
improved performance by combining several sequence-based
kernels based on k-mer frequency, motif and domain content
and by further augmenting the pairwise sequence kernel with
features that are based on other sources of data.

We apply our method to predict physical interactions in yeast
using data from the BIND database. At a false positive rate of
1% the classifier retrieves close to 80% of a set of trusted
interactions. We thus demonstrate the ability of our method
to make accurate predictions despite the sizeable fraction of
false positives that are known to exist in interaction databases.
Availability: The classification experiments were performed
using PyML available at http://pyml.sourceforge.net. Data is
available at: http://noble.gs.washington.edu/proj/sppi.
Contact: Asa Ben-Hur, asa@gs.washington.edu

1 INTRODUCTION

(2002) and references therein). The data obtained by these
methods is partial: each experimental assay can identify only
a subset of the interactions, and it has been estimated that
for the organism with the most complete interaction network,
namely yeast, only about half of the complete “interactome”
has been discovered (von Mering et al., 2002). In view of
the very small overlap between interactions discovered by
various high throughput studies, some of them using the
same method, the actual number of interactions is likely to be
much higher. Computational methods are therefore required
for discovering interactions that are not accessible to high-
throughput methods. These computational predictions can
then be verified by more labor-intensive methods.

A number of methods have been proposed for predic-
ting protein-protein interactions from sequence. Sprinzak
and Margalit (2001) have noted that many pairs of struc-
tural domains are over-represented in interacting proteins,
and that this information can be used to predict interacti-
ons. Several authors have proposed Bayesian network models
that use the domain or motif content of a sequence to pre-
dict interactions (Deng et al., 2002; Gomez et al., 2003;
Wang et al., 2004). The pairwise sequence kernel was inde-
pendently proposed in a recent paper (Martin et al., 2005)
with a sequence representation by 3-mers. Other sequence-
based methods use co-evolution of interacting proteins by
comparing phylogenetic trees (Ramani and Marcotte, 2003),
correlated mutations (Pazos and Valencia, 2002), or gene
fusion which works at the genome level (Marcotte et al.,
1999). An alternative approach is to combine multiple sources
of genomic information—gene expression, Gene Ontology
annotations, transcriptional regulation, etc.—to predict co-
membership in a complex (Zhang et al., 2004; Lin et al.,
2004).

One can consider two variants of the interaction prediction

Most proteins perform their functions by interacting with Problem: predicting co-membership in a complex or predic-
other proteins. Therefore, information about the network ofting direct physical interaction. In this work, we focus on
interactions that occur in a cell can greatly increase our undethe latter task, and use interactions that are derived from the
standing of protein function. Several experimental assays th&!ND database (Bader et al., 2001), which makes a distinc-
probe interactions in a high throughput manner are now availdion between experimental results that yield co-membership
ble. These methods include the yeast two hybrid screen ari @ complex and interactions that are more likely to be direct
methods based on mass spectrometry (see von Mering et &N€s.
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Kernel methods, and in particular support vector machi-K ((X;, X»), (X1, X5)) that returns the similarity between
nes (SVMs) (Scholkopf and Smola, 2002), have proverproteinsX; and X, compared to protein&; and X}. We
useful in many difficult classification problems in bioinfor- call a kernel that operates on individual genes or proteins a
matics (Noble, 2004). The learning task we are addressingenomic kerneland a kernel that compares pairs of genes or
involves a relationship betwegairs of protein sequences: proteins gairwise kernelPairwise kernels can be computed
whether two pairs of sequences are interacting or not. Theither indirectly, by way of an intermediate genomic kernel,
standard sequence kernletfescribed in the literature mea- or directly using features that characterize pairs of proteins.
sure similarity between single proteins. We propose a method The most straightforward way to construct a pairwise kernel

for converting a kernel defined on single proteins infma- is to express the similarity between pairs of proteins in terms
wisekernel, and we describe the feature space produced hyf similarities between individual proteins. In this approach,
that kernel. we consider two pairs to be similar to one another when each

Our basic method uses motif, domain and k-mer compoprotein of one pair is similar to one protein of the other pair.
sition to form a pairwise kernel, and achieves better perforFor example, if proteinX; is similar to proteinX;, and X,
mance than simple methods based on BLAST or PSI-BLASTIs similar to X}, then we can say that the pa{¥, X») and
However, because it is difficult to predict interactions from (X{, X}) are similar. We can translate these intuitions into
sequence alone, we incorporate additional sources of datthe following pairwise kernel:

These include kernels based on similarity of Gene Ontology

annotations, a similarity score to interacting homologsin other K ((X1, X2), (X1, X5)) = K'(X1, X1)K'(X2, X5) +
species, and the mutual-clustering coefficient (Goldberg and K'(X1, X5)K' (X2, X)),

Roth, 2003) that measures the tendency of neighbors of inter-

acting proteins to interact as well. Adding these additionak,\,here_r(/(.7 ) is any genomic kernel. This kernel takes into
data sources significantly improves our method’s performancgccount the fact thaX; can be similar to eithek| or X3.
relative to a method trained using only the pairwise sequence An alternative to the above approach is to represent a pair
kernel. Using kernel methods for combining data from hete-of Sequencele’X2) exp|icit|y in terms of the domain or
rogenous sources of data allows us to use high dimensiongotif pairs that appear in it. This representation is motivated
sequence data, whereas other studies on predicting proteipy the observation that some domains are significantly over-
protein interactions (see e.g. Zhang et al. (2004); Lin et alrepresented in interacting proteins (Sprinzak and Margalit,
(2004)) use a low dimensional representations which ar@po1). A similar observation holds for sequence motifs as
appropriate for any type of classifier. well. Given a pair of sequencés, , X, represented by vectors

X1,%2, with components:"), z(* we form the vectorx,

2 KERNELS FOR PROTEIN-PROTEIN with components "2 + =" +(!. We can now define the
INTERACTIONS explicit pairwise kernel:

SVMs and other kernel methods derive much of their power

from their ability to incorporate prior knowledge via the ker- K((X1,Xs), (X1, X)) = K'(x12,%}5) (1)

nel function. Furthermore, the kernel approach offers the

ability to easily apply kernels to diverse types of data, inclu-Wherex. is the pairwise representation of the paif, X»),
ding fixed-length vectors (e.g., microarray expression data@nd K'(-,-) is any kernel that operates on vector data. It is
Variab|e-|ength Strings (DNA and protein sequences)' graphgtraightforward to check that for a linear kernel fUnCtion, the
and trees. In this work, we employ a diverse collection ofpairwise and explicit pairwise kernels are identical. The expli-

kernels described in this section. cit representation can be used in order to rank the relevance of
o motif pairs with respect to the classification task. This ranking
2.1 Pairwise kernels is accomplished by sorting the motif pairs according to the

The kernels proposed in the literature for handling genomagnitude of the corresponding weight vector components.
mic information, e.g., sequence kernels such as the motié 2 Sequence kemels

and Pfam kernels presented later in the section, provide &

S|m||ar|ty between pairs of seqguences, or more genera”y, M\/e use three sequence kernels in this work: the Spectrum ker-
similarity between a representation of a pair of proteins. Thenel (Leslie etal., 2002), the motif kernel (Ben-hur and Brutlag,
refore, such kernels are not directly applicable to the task 0£003) and the Pfam kernel (Gomez et al., 2003). The feature
predicting protein-protein interactions, which requires a simi-SPace of these kernels is a set of sequence models, and each

larity between two pairs of proteins. Thus, we want a functioncomponent of the feature space representation measures the
extent to which a given sequence fits the model. The spectrum

1 Akernel is a measure of similarity that satisfies the additional condition ofkernel models a sequence in the Space of all k-mers, and its

being a dot product in some feature space; see (Schélkopf and Smola, 20088atures count the number of times each k-mer appears in the
for details. seqguence.




Kernel methods for predicting protein-protein interactions

The sequence models for our motif kernel are discrete We consider two ways in which to define the dot product
sequence motifs, providing a count of how many times a disin this space. When the nonzero components are set equal
crete sequence motif matches a sequence. To compute the 1, then when each protein has a single annotation, and
motif kernel we used discrete sequence motifs from the eMothe annotatinos are on a tree, the dot product between two
tif database (Nevill-Manning etal., 1997). Yeast ORFs contairproteins is the height of the lowest common ancestor of the
occurrences of 17,768 motifs out of a set of 42,718 motifs. two nodes. An alternative approach assigns annotatian

Finally, the Pfam kernel uses a set of hidden Markovscore of—logp(a), wherep(a) is the fraction of proteins that
models (HMMs) to represent the domain structure of a prohave annotation. We then score the similarity of annotations
tein, and is computed by comparing each protein sequence a’ asmax,, cancestors)nancestors’) — logp(a”). In a
to every HMM in the Pfam database (Sonnhammer et al.tree topology, this score is the similarity between the deepest
1997). Each such protein-HMM comparison yields an E-valuecommon ancestor af anda’, because the node frequencies
statistic. Pfam version 10.0 contains 6190 domain HMMs;are decreasing along a path from the root to any node. The
therefore, each protein is represented by a vector of 6190 logcore is a dot product with respect to the infinity norm on the
E-values. This Pfam kernel has been used previously to prexnnotation vector space. This also holds when the proteins
dict protein-protein interactions (Gomez et al., 2003), thougthave more than one annotation and the similarity between their
not in conjunction with the pairwise kernel described above.annotations is defined as the maximum similarity between any

For all three sequence kernels we use a a normalized lineaair of annotations. When one of the proteins has an unknown
kernel, K (z,y)/v/ K (z,z)K (y,y); in the case of the Pfam GO annotation, the kernel value is set to 0.

kernel we first performed an initial step of centering the kernel, . . .
P P g 2.3.2 Interactions in other speciedt has been shown that

2.3 Non-sequence kernels interactions in other species can be used to validate or infer
An alternative to using the pairwise kernel is the following: interactions (Yu et al., 2004): the existence of interacting
homologs of a given pair of proteins implies that the original
K((X1, Xs), (X1, X3)) = K'(Xy, Xo) K'(X1, X5) . (2)  proteins are more likely to interact. We quantify this observa-
tion with the following homology score for a pair of proteins

This kernel is appropriate when similariyithin the pair is
Xl, XQ):

directly related to the likelihood that a pair of proteins interact.(
In fact, this is a valid kernel even i’ is not a kernel, because o

in this formulationk” is simply a feature of the pair of prote- WXy, Xo) = T TEH(Xa) 1(i,5) x
ins. Consider Gene Ontology (GO) annotations for example: .

a pair of proteins is more likely to interact if the two prote- min(l(X1, X3), U(X2, X;)),
ins share similar annotations. In addition to GO annotation

we also consider local properties of the interaction networkV_Vherteé{L(fs)T'shTe ?i} 0; nop-yeast _pr(;)_telPs tha’g abrle ?lgm-
and homologous interactions in other species. We summarizfﬁ:an > LS orA, (Z’]). 'S an indicator variable for
the interaction between proteingnd; andl(Xy, X;) is the

these properties as a vector of scas€¥;, X5), so that the ) .
kernelfor the non-sequence data can be any kernel appropriarfggat've Qf thellog E—ve}lu.e_ provided by BLAST when compa-
for vector data: ring proteink with protein: in the context of a given sequence
database. We used interactions in human, mouse, nematode
Knon-sed (X1, X2)), (X1, X3)) = K'(s(X1, X2),s(X{,X5)), and fruit fly to score the interactions in yeast.
(3)

where here we chose to use a Gaussian kerngtfor 2.3.3 Mutual clustering coefficientProtein-protein inter-

action networks tend to be “cliquish”; i.e., the neighbors
2.3.1 AGene Ontology kernelProteins that are not present of interacting proteins tend to interact. Goldberg and Roth
in the same cellular component or that participate in differen{2003) quantified this cohesiveness using thetual clu-
biological processes are less likely to interact. We represenstering coefficienMCC). Given two proteinsu, v, their
this prior knowledge using a kernel that measures the similamMCC can quantified, e.g., by the jaccard coefficig¥tv) U
rity of the Gene Ontology (GO) (Gene Ontology Consortium, N (u)|/|N(v) N N(u)|, where N(x) is the set of neighbors
2000) annotations of a pair of proteins, one kernel for each 0bf a proteinz in an interaction network. In our classification
the three GO hierarchies. The feature space for the GO kernekperiments we performed cross-validation where the MCC
is a vector space with one component for each node in thih each cross-validation fold is computed with respect to the
directed acyclic graph in which GO annotations are represerinteractions that occur in the training set of that particular fold.
ted. Denote byA, the annotations (nodes in the GO graph) o
assigned to proteip. Note that, in GO, a single protein can 2-4 Combining kernels
be assigned several annotations. A component of the vect@iven a genomic kernel(, we denote byK,(K) the pair-
corresponding to nodeis nonzero ifa or a parentofiisin  wise kernel that use&. When several genomic kernels are
Ap. available, the final kernel can be defined a§ K,(K;)
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or as K,(>_, K;). Using K,(>", K;) mixes features bet- negative examples is likely to contain very few proteins that

ween the individual kernels, while the feature space foiinteract.

> K, (K;) includes pairs of features that originate from High-throughput protein-protein interaction data contains a

the same genomic kernel. In practice, the results from thesarge fraction of false positives, estimated to be up to 50% in

two different approaches were very close, and the mixingsome experiments (von Mering et al., 2002). Therefore, we
approach was used because of its lower memory requirgrepared a set of BIND interactions that are expected to have
ment. A Gaussian or polynomial kernel can be introducedh low rate of false positives. We use these reliable interactions
at several stages: instead of the linear genomic kernel agm two ways. We evaluate the performance of our method on
exp(—y(K,(P, P)—2K,(P,P")+K,(P’, P")),whereP, P’  thereliable interactions because they are more likely to reflect
are two pairs of proteins. We haven't tried introducing a non-the true performance of the classifier. We also use reliability to

linear kernel at the level of the genomic kernel; a Gaussiarset the value of the SVM soft-margin parameter as discussed
kernel at the level of the pairwise kernel performed similarlyin Section 2.5. “Gold standard” interactions can be derived

to the “linear” pairwise kernel, despite the high dimensiona-from several sources:

lity of the resulting feature space. The results reported in this

paper are computed using “linear” pairwise kernels. ¢ Interactions corroborated by interacting yeast paralogs.

Deane et al. (Deane et al., 2002) find 2829 interactions
2.5 Incorporating interaction reliability in training from the DIP database that are supported by their para-

Several studies of protein-protein interaction data have noted 10gous verification method (PVM). The estimated false
that different experimental assays produce varying levels of ~ Positive rate of this method is 1%.

false positives and have proposed methods for finding which e Interactions that are supported by interacting homologs in
interactions are likely to be reliable (von Mering et al., 2002; multiple species are likely to be correct (Yu et al., 2004).

Sprinzak et al., 2003; Deane et al., 2002)—see Section 3.1 for , |nteractions that are discovered by different experimen-

protein-protein interactions into the training procedure using  (Sprinzak et al., 2003).

the SVM soft-margin parameter (Schoélkopf and Smola,
2002). This parameter puts a penalty on patterns that are
misclassified or are close to the SVM decision boundary. Each
training example receives a value ©fthat depends on its We do not use PVM-validated interactions because they
reliability. For a training set with an equal number of positive contain several biases.

and negative examples we use two valuggy;, for interac-
tions believed to be reliable and for negative examplgs;,
for positive examples that are not known to be reliable.

o Highly reliable methods, for example, interactions deri-
ved from crystallized complexes.

o Thetestsetis biased toward interactions that can be easily
discovered by sequence similarity.

e The list of PVM-validated interactions cannot be used
3 METHODS as-is to set the SVM soft-margin parameter in trai-
ning because this may incorporate information about

3.1 Interaction Data interactions that are in the test set.

We focus on prediction of physical interactions in yeast and ) _ ) ) ) )

use interaction data from the BIND database (Bader et a|_,’AIso, we do not include interactions validated by interacting
2001). BIND includes published interaction data from high-nomologs in other species, since that information is included
throughput experiments as well as curated entries derived froff the data as a feature. Therefore, for the purpose of asses-
published papers. The advantage of BIND is that it provide$ing performance we use a list of 750 interactions that were

an explicit distinction between direct physical interactions ang’alidated by high-quality or multiple assays. For setting the
co-membership in a complex. SVM soft-margin parameter we augment the 750 interacti-

ons with PVM-validated interactions that are computed on

3.1.1 Positive and negative exampled/e use physical the basis of the training data alone. Training is performed on
interactions from BIND as positive examples, for a dataseg| interactions so that sensitivity is not sacrificed.

comprised of 10 517 interactions among 4233 yeast proteins )

(downloaded July 9th, 2004). We eliminated self interacti-3-2 BLAST/PSI-BLAST based ranking

ons from the dataset since such interactions do not require\We compare our method with a simple ranking method that
pairwise kernel, and the GO and MCC features are not apprassigns a candidate interaction a score based upon its simi-
priate in this case. As negative examples we select randontgrity to interacting pairs in the training set. Specifically, let
non-interacting pairs from the 4233 interacting proteins; thd(X, X’) denote the negative log of the E-value assigned by
number of negative examples was taken as equal to the numbeEI-BLAST (BLAST) when searching’ againstX’ in the

of positive examples. In view of the large number of proteincontext of a large database of sequences, anddef) be an
pairs compared to the number of interactions, such a set ofdicator variable for the interaction between proteirend
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j.- (X, X") is positive for significant matches and increases4.1 Main results
as the quality of the match increases. The score for a queRye report results that are computed using five-fold cross-

(X1, X>) is defined as: validation on all BIND physical interactions. The SVM soft-
o margin parameter was not optimized—we used the default low
Jnax I(i, ) min(l(X1, X;), (X2, X;)) (4)  value for this parameter to account for the noise in the data.

The ROC/ROG, curve is then computed for those reliable
where? is the set of all proteins in the training set. In theseinteractions that were not obtained using the PVYM method as
experiments, we use PSI-BLAST scores computed in théliscussed in Section 3.1. The ROC statistics that summarize

context of the Swiss-Prot database (version 40, containinf!€S€ experiments are reported in Table 1, and selected ROC

101,602 proteins). curves are shown in Figure 1.
_ _ Our basic method uses a pairwise kernel based on one
3.3 Figures of merit of several sequence kernels—the motif, Pfam and spectrum

Throughout this paper we evaluate the quality of a predictivernels. The performance of the motif and Pfam kernels is
method using two different metrics. Both metrics—the arescomparable, with a slight advantage for the Pfam kernel (the
under the receiver operating characteristic curve (ROC scorelROC scores are 0.76 and 0.78 and R@€cores are 0.17
and the normalized area under that curve up to the first 50 fals@nd 0.20). The spectrum kernel (using k-mers of length 3)
positives (ROG, score)—aim to measure both sensitivity and achieves a higher ROC score of 0.81, but its BOSZore is
specificity by integrating over a curve that plots true positivesignificantly lower than that of the Pfam and motif kernels.
rate as afunction of false positive rate. We include both metricd he higher ROC score can be explained by the fact that the
in order to account for two different types of scenarios inmotif and Pfam methods are limited in their sensitivity by the
which a protein-protein interaction prediction method mightmotifs and domain models available. However, when such
be employed. models offer a good description of a sequence, their predic-
In the first scenario, imagine that you have developed dions are likely to be more accurate, which is reflected in the
low-throughput method for detecting whether a given pair ofuch higher RO, scores of these methods. Each of the pair-
proteins interacts. Rather than testing your method on ranise kernels by itself is not doing much better than BLAST or
domly selected pairs of proteins, you could use a predictivé®SI-BLAST, but once they are combined, they offer impro-
algorithm to identify likely candidates. In this case, you would Ved performance. We note that using a spectrum kernel with
start from the top of the ranked list of predictions, testing paird<-mers of length 4 did not improve the performance of the
until you ran out of time or money, or until the success ratemethod.
of the predictor was too low to be useful. In this scenario, a We now explore the effect of adding to the sequence kernels
predictor that maximizes the quality of the high-confidence2 kernel based on three types of non-sequence data—Gene
interactions—i.e., that maximizes the R@@core—is going  Onotology annotations, the homology score, and the MCC.
to be most useful. For the non-sequence features we first standardized the data

Inthe Second, more common scenariO, you are interested ﬁubtracted the mean of each feature and divided by the stan-
a particu|ar bio]ogica| System_ You run the predictive a|go_da.rd deViation), and used a Gaussian kernel whose width was
rithm, and you check your favorite set of proteins to seedetermined by cross-validation.
whether they participate in any predicted interactions. In this Combining the non-sequence features with the pairwise
case, you do not care only about the high-confidence interagequence kernel yielded better performance than any method
tions; instead, you would like to be sure that the complete sy itself in both performance metrics. Furthermore, setting

of predictions is of high quality. In this case you are interestedhe soft-margin parameter of the SVM according to the relia-
in the ROC score of the classifier. bility of the interactions provided another significant boost to

the performance. Its ROC and R@Cscores were 0.98 and
4 RESULTS 0.58, respectively; at a false positive rate of 1% the classifier
retrieves close to 80% of the trusted interactions. In this expe-
In the following section, we report the results of experimentSiment we did not try to optimize the ratio between the two
in predicting protein-protein interactions using an SVM clas-soft margin constants, and us€g,, = 0.01Chigh-
sifier with various kernels, and compare these to a simple The main contribution to the gain in performance comes
method based on BLAST or PSI-BLAST. All the experimentsfrom the GO-process kernel feature. Its ROC score by itself
were performed using thByML machine learning frame- s 0,68 on all the BIND interactions and 0.95 when limiting
work available at http://pyml.sourceforge.net. We begin thisy the reliable positive examples. The difference between the
section with results obtained using the various kernels anglyo numbers is likely due to the sizable fraction of false inter-
kernel-combinations, followed by a discussion of the choiceyctions in the BIND dataset. In the next subsection we point

of negative examples, and a section that shows the effects g{;t scenarios where the GO data is not useful. The ROC score
choosing a non-redundant set of proteins.
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Fig. 1. ROC and ROG; curves for several methods. Best performance is obtained using a kernel that combines all the kernels presented in
the paper. Additional results are summarized in Table 1, along with a description of the methods.
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method kernel ROC scorg ROG; score
blast - 0.74 0.18
psiblast - 0.78 0.11
non-sequence Knon-seq 0.95 0.37
motif K, (Kmotif) 0.76 0.17
pfam K (Kptam) 0.78 0.20
spectrum (k=3) K (Ksped 0.81 0.05
motif+pfam K, (Kmotit + Kpfam) 0.82 0.22
motif+pfam+spectrum K (Kmotit + Kptam + Ksped 0.86 0.17
all kernels Kreat+ Kp(Kmotit + Kpfam + Ksped 0.97 0.44
all+reliability Kteat + Kp(Kmotit + Kpfam + Ksped 0.97 0.58

Table 1. ROC scores for the various methods computed using 5-fold cross-validation. Training data includes all BIND physical interactions. ROC scores are
computed on reliable interactions that do not include PVM-validated interactions. The blast and psiblast methods rank interactions according to Equation 4.
The “kernel” column of the table shows which kernel was used in conjunction with the SVM classifier. The néiafiff ) denotes that the pairwise kernel

was derived from a genomic kernal,. The Knon-seqis a Gaussian kernel over the non-sequence features; in each method it participates in, the width of
the Gaussian was determined by cross-validation as part of the classifier’s training. The all-reliable method uses information on reliability to set the SVM
soft-margin parameter as described in Section 2.5.

for the MCC feature was 0.68 on all BIND interactions and dataset | threshold ROC ROg
0.53 when computed on the reliable interactions. The large BIND 050 0.77 0.04
difference for the MCC feature is a result of the fact that the 0.10 0.89 0.15
MCC requires a large number of interactions to be useful. At 0.07 091 0.21
a BLAST cutoff of1e =19, 329 interactions from BIND were 0.05 0.92 0.25
supported by interactions by other species, as opposed to 49 0.04 095 0.36
negative examples. The ROC score for this feature by itself is DIP/MIPS 0.5 0.87 0.08
low since it is sparse, i.e., is informative for a small number 0.1 094 0.22
of interactions. 0.07 0.95 0.32

] 0.05 0.96 0.34
4.2 The role of GO annotations 004 097 046

In order to understand the difference in the role of the sequenci&ble 2. The dependence of the performance of the spectrum pairwise
kernels and the non-sequence kernel we compared the t\IY%EthOd on the similarity between localization annotations in negative examp-
e

L L . . s. Enforcing the condition that no two proteins in the set of negative
kernels on the task of distinguishing between physically Inter'examples have a GO similarity that is less than a given threshold puts a

acting proteins pairs, and those that are members of the sangghstraint on the distribution of negative examples. This constraint makes it
complex. In this case, the negative examples are chosen assier for the classifier to distinguish between positive and negative examples,

protein pairs that are known to belong to the same complex%nd the effect gets stronger as the threshold becomes smaller. We performed

but are not known to physically interact. This set of negative_the exp_eriment_on the BIND interaction Qataset_and on a dataset of reliable
L : . . nteractions derived from DIP and MIPS interactions.

examples is like to be more noisy than the non-interacting set,

because complexes that are not accessible by yeast two-hybrid

likely contain many physical interactions. But still, the motif-

pairwise method achieves an ROC score of 0.78, very close

to the value obtained with non-interacting negative exampour results with respect to the choice of negative examples, we

les. In this task a classifier based on the non-sequence kerrran a set of experiments using ten different randomly selected

fails, with an ROC score of 0.5. This is due to the fact thatsets of non-interacting proteins. Predictions were made using

co-complexed proteins, like physically interacting proteins,the motif kernel. The standard deviation of the resulting ROC

tend to have similar GO annotations and network propertiesscores was 0.003, showing good stability.

while the motif and Pfam rely on a signal that is often directly ~ Significant attention has been paid to the problem of

related to the interaction site itself (Wang et al., 2004). Simi-selecting gold standard interacting protein pairs for the pur-

lar observations can be made for other features used to predigbses of training and validating predictive computational

co-complexed proteins, such as gene expression data. methods (Jansen et al., 2003). However, less emphasis has
. . been placed 