
Research

A Quantitative Framework for Software

Restructuring

BYUNG-KYOO KANG1 and JAMES M. BIEMAN2�

1Technology Deployment International, Inc., Santa Clara CA 95054 U.S.A.
2Department of Computer Science, Colorado State University, Fort Collins CO 80523, U.S.A.

SUMMARY

Many existing software systems can bene�t from restructuring to reduce main-

tenance cost and improve reusability. Yet, intuition-based, ad hoc restructuring

can be di�cult and expensive, and can even make software structure worse. We

introduce a quantitative framework for software restructuring. In the frame-

work, restructuring decisions are guided by visualized design information and

objective criteria. The design information can be extracted directly from code

to restructure existing or legacy software. Criteria for comparing alternative

design structures include measures of design-level cohesion and coupling. Re-

structuring is accomplished through a series of decomposition and composition

operations which increase the cohesion and/or decrease the coupling of individual

system components. An example and a case study demonstrate the framework.

The framework insures that restructuring results in measurable improvements

in design quality. Copyright c
1999 John Wiley & Sons, Ltd

J. Softw. Maint., 11(0), 000{000, (1999)

No. of Figures: 12. No. of Tables: 3. No. of References: 50.

KEY WORDS: software restructuring; software re-engineering; cohesion; coupling; software mea-

surement and metrics; software design

Contract/grant sponsor: NASA Langley Research Center; Contract/grant number: NAG1-1461.

�Correspondence to: Dr. James M. Bieman, Department of Computer Science, Colorado State

University, Fort Collins CO 80523, U. S. A. Email: bieman@cs.colostate.edu

1. INTRODUCTION

Software restructuring is the process of re-organizing the logical structure of existing soft-
ware systems in order to improve particular quality attributes of software products (Arnold,
1989). Some examples of software restructuring are improving coding style, editing doc-
umentation, transforming program components (renaming variables, moving expressions,

1

abstracting functions, so on), and enhancing functional structures (relocating functional
components into other or new modules).
Poor software structure results from an immature process, improper prototyping, overly

optimistic deadlines, etc. (Arnold, 1989). Even the structure of well designed software tends
to deteriorate as it is maintained over time (Lehman, 1980). The restructuring of old and
new software systems can potentially make them easier to understand, change, and reuse.
Restructured software can reduce costs to the user community by containing fewer bugs,
and by allowing for quick responses to user requests for system changes. Other savings
include reduced maintenance costs, increased component reuse, and extended software life-
times (Arnold, 1989).
Commercial software systems are generally far too large and complex to be e�ectively

restructured on an ad hoc basis. Analysts need rigorous techniques and tools to restructure
large software systems. Ideally, restructuring should be done during design so that design
alternatives can be evaluated before coding. However, existing systems also can be restruc-
tured to recover lost design integrity. Thus, analysts can make use of restructuring tools and
techniques that can be applied to both designs and implementations.
Griswold and Notkin demonstrate one approach to help analysts restructure existing soft-

ware (Griswold and Notkin, 1993 and 1995). After an analyst makes a local change to a
program, a tool makes the necessary non-local changes. The tool requires implementation
information, and does not help an analyst decide initially what to modify or what change to
make. Kim, Kwok, and Chung (1994), Choi and Scacchi (1990), and Tesch and Klein (1991)
develop heuristics to help analysts make restructuring decisions. Our objective is to develop
restructuring criteria and operations that are rigorously de�ned, can be applied to software
designs, and can be readily automated. Structural measures can predict future maintenance
costs (Ferneley, 1999). Thus, we use measures of design structure to steer the restructuring
process.
In preliminary work, we show how a model of intramodular dependencies can be used to

visually display module structure and to quantify design-level cohesion (Kang and Bieman,
1996 and 1998). We also propose a set of restructuring operations which are de�ned in terms
of the model. In Bieman and Kang (1998), we evaluate these and other design-level cohesion
measures and show that they can predict code level attributes.
This paper presents a quantitative framework for software restructuring. The framework

has three key elements: models of software designs, measurement based restructuring criteria,
and a process for restructuring. The model, measures, and operations de�ned in our prior
papers (Bieman and Kang, 1998; Kang and Bieman, 1996 and 1998) �t the requirements of
the framework. The framework allows other models, measures, and operations. Here, we
introduce a model and measure of intermodule connections into the framework.
Framework restructuring models will generally use graphs to represent module components

and the connections between modules. These graphs can be readily displayed in a visual
form. To apply the restructuring framework to existing code, design information is extracted
from the code.
Since our focus is on structure, we use two commonly referenced structural attributes as

restructuring criteria: cohesion and coupling. Software cohesion or strength refers to the
relatedness of a module's components. Cohesive modules are di�cult to split into separate
components. Software coupling refers to the connectedness of modules. A module with

2

high coupling has many connections with other modules. A commonly used software de-
sign heuristic is to design modules with high cohesion and low coupling (Stevens, Myers and
Constantine, 1974). Thus, one restructuring objective is to increase cohesion and reduce cou-
pling. We use a focused set of cohesion and coupling measures as our restructuring criteria.
These measures are de�ned in terms of the restructuring models, and their de�nitions fol-
low the requirements of measurement theory (Baker et al., 1990; Fenton and P
eeger, 1997;
Fenton, 1994).
The restructuring process consists of a sequence of decomposition and composition op-

erations; the measures are criteria to determine whether or not a given module should be
restructured. A set of tools support the restructuring framework which includes a tool to
extract design information from program code, cohesion and coupling measurement tools,
and a program-slicing tool. An example and a case study demonstrate the restructuring
process.
Our current restructuring framework supports the restructuring of procedural software,

such as software written in C, COBOL, FORTRAN, or Pascal. The support tools are
designed to help restructure programs implemented in C. We do not attempt to convert
procedural software into object-based or object-oriented software. Rather, the restructuring
presented here aims to improve design characteristics without changing the design paradigm.
In this work, we use the term `module' to refer to individual procedures or functions, which
are the logical units in C programs.
The rest of this paper is organized as follows. Section 2 outlines the framework for soft-

ware restructuring. Section 3 de�nes the models used to represent program units and their
connections. We use the models to derive and validate design-level cohesion and coupling
measures in Section 4. In Section 5, we describe a set of restructuring operations and a
restructuring process. Section 6 describes our restructuring support tools. In Section 7, we
demonstrate the process through its application on a software system. Section 8 reviews
related work, and our conclusion are provided in Section 9.

2. PROFILE OF A SOFTWARE RESTRUCTURING

FRAMEWORK

Our restructuring framework is based on four principles:
1. A practitioner should be provided only with the information needed for restructuring;

unnecessary details should be hidden.

2. Restructuring should be based on objective criteria for comparing alternative struc-
tures.

3. The restructured programs should be `functionally' equivalent to the original programs,
because restructuring should not change, delete, or add functions.

4. The restructuring process should be automated, because it should be possible to build
a tool to perform low-level activities corresponding to a user's high-level decisions.

The restructuring framework provides a practitioner with abstracted design information
derived from program code|the module interface information needed for restructuring.

3

Code
New ProgramProgram

Code
Design
Structure

Maintenance stage

Design stage

Extraction &
Visualization Generation

1. Design

Design-Level Attributes

3. Restructuring Process

4. Code

2. Measuring

Figure 1. A quantitative restructuring framework

Other details are hidden. Restructuring choices are guided by quantitative measures and
visualized representations. The restructuring process consists of a series of semantic pre-
serving decompositions and compositions of `processing elements'. Thus, the functions of a
system are preserved during the process. Program code and its abstracted information are
represented by control and data dependence relations between program components. Depen-
dencies between components can be determined by data
ow analysis using a compiler-like
tool when an implementation is available.
Figure 1 shows such a framework for software restructuring. The framework includes four

major activities: (1) Design information is extracted from program code and represented
in a visualized graph form, (2) the design structure is evaluated objectively by design-level
measures together with the visualized design information, (3) the design is restructured based
on the evaluation, and (4) restructured code is generated from the restructured design. Step
(2) and (3) are repeated until the evaluation of the resulting design structure is accepted.
The design structure is represented by module interface information which is available during
design. The software restructuring framework satis�es the following requirements; all are
covered in detail in the later sections of this paper.

1. The restructuring process can be applied during design, development, and maintenance.

2. Module design information can be captured and extracted from module code. We can
automate the extraction of information.

3. The restructuring process manipulates only design information rather than implemen-
tation details. We restructure design structures by decomposing and/or composing
them.

4. The design information (design structure) is represented in a visual form. We can thus
visualize the whole restructuring process to help us understand the design structure

4

and evaluate alternative designs. A software tool can construct a visual representation
from a design.

5. Restructured code can be generated from the restructured design.

6. The restructuring decisions are based on objective quantitative criteria for comparing
alternative design structures, as well as human intuition guided by graphical represen-
tation of modules.

7. The restructuring process can be automated. We can automate design extraction, de-
sign visualization, design-level measures, design decomposition/composition, and code
generation.

3. SOFTWARE DESIGN ABSTRACTIONS

3.1. A Model to Represent Modules

Techniques that help analysts extract design and structure information can support soft-
ware reuse (Choi and Scacchi, 1990; Lano and Haughton, 1992; M�uller et al., 1993) by
helping to locate reusable software components from existing (or legacy) systems (Calliss
and Cornelius, 1989; Esteva and Reynolds, 1991; Ning, Engberts and Kozaczynski., 1993).
Abstract models represent modules and relationships between modules, and can serve as a
basis for measurement (Baker et al., 1990; Gustafson, Tan and Weaver, 1993).
An input-output dependence graph (IODG) models data and control dependence relation-

ships between module interface components (Bieman and Kang, 1998; Kang and Bieman,
1996 and 1998). The IODG is adapted from the variable dependence graph introduced by
Lakhotia (Lakhotia, 1993). Since in this work, a module is a procedure or function, the inter-
face components are procedure/function inputs and outputs. Input components are values
imported either as parameters or referenced global entities. Output components are values
exported either through reference parameters, values returned by functions, and modi�ed
globals. A composite component, such as an array, linked list, or record, is treated as a
single component.
We make use of data dependence and two types of control dependence: c-control depen-

dence and i-control dependence, which are derived from the notion of control dependence
used in program dependence graphs (PDG's) (Ottenstein and Ottenstein, 1984). The fol-
lowing de�nition assumes the existence of a PDG.

De�nition 1 Dependence Classi�cations

Data Dependence: Output y has a data dependence on input or output x (x
d
! y)

if x `reaches' y through a dependence path consisting only of data dependence
edges in a PDG.

C-Control Dependence: Output y has c-control dependence on input or output x
(x

c
! y) if a dependence path between x and y in a PDG contains a control

dependence edge, but no control dependence edges where the source variable

5

is used in a predicate of a loop structure. A c-control dependence between

an input and an output indicates that the output value is controlled by the

input value through a decision structure.

I-Control Dependence: Output y has i-control dependence on input or output x

(x
i
! y) if a dependence path in a PDG between x and y contains a control

dependence edge which includes a variable used in a predicate of a loop

structure. When an output has i-control dependence on an input, the output

value is a�ected by the execution of a iteration process whose execution count

is determined directly or indirectly by the input.

I/O Direct Dependence: Output y has data, c-control, and/or i-control I/O
direct dependence on input or output x if y has a data dependence on x, and

there is no other input or output on the dependence path between x and y.

De�nition 1 is simpli�ed from our prior work (Kang and Bieman, 1996 and 1998; Bieman
and Kang, 1998). Compiler texts provide more formal de�nitions of the notion of depen-
dence (Zima and Chapman, 1991, pp. 112{172). The IODG is de�ned in terms of the input
output components and their dependencies.

De�nition 2 Input-Output Dependence Graph (IODG).

The IODG of module M is a directed graph, GM = (V, E) where V is a set of

input-output components of M, and E is a set of edges labeled with dependence

types such that E = f(x; y) 2 V � V j y has data, c-control, and/or i-control

I/O direct dependence on xg. Each vertex in an IODG is labeled with one of �ve

types: in-parameter, out-parameter, in-global, out-global, and function-return.

The IODG is an abstraction of a PDG. It is a PDG without nodes and edges representing
internal dependencies. In addition, the IODG classi�es control dependencies as i-control
or c-control. Figure 2 depicts two IODG's, one for procedure Tsale Tpay and another for
procedure Sale Pay Profit. Sale Pay Profit gets a sale record from a �le and computes
the pay and pro�t from the sale record by calling procedure Tsale Tpay.
The �gure shows that a graphical display of the IODG can make a module's interface easy

to visualize. We extend the IODG to represent a caller-callee relationship by including the
input-output dependence relationship of the callee inside the IODG of the caller. A circle
represents a parameter input, and a square represents an output and function-return. A
dashed circle indicates a global input and a dashed square represents an output. The texts
in each circle and square are the names of input and output variables. Each arrow indicates
the dependence between two components.
The extended IODG contains the complete dependence paths between inputs and out-

puts of a module. Thus, we can determine exact dependence relationships between in-
put/output components. For example, consider input days and output pay of the IODG

of Sale Pay Profit. We �nd three dependence paths between them: (1) days
d
! pay,

(2) days
d
! input parameter

i
! output parameter

d
! pay, and (3) days

i
! sale

d
!

input parameter
d
! output parameter

d
! pay. According to our dependence de�nitions,

6

days

d di i

sale

tpaytsale
d

d
i

i

costfiledays

sale

pay profit

 tpay : float;

begin

 var sale : int_array;

begin

var i : integer;
 var tpay : float);

 tsail := 0;
 tpay := 0;

 tsale := tsale + sale[i];

 if sale[i] > 1000 then
 tpay := tpay + 50;
 end;
end;

 tpay := tpay + 0.1 * sale[i];

 var tsale : integer;
 sale : int_array;

procedure Tsale_Tpay
 (days : integer;

 for i := 1 to days do begin

 var pay : float;
 var profit : float);

end;

 end;

 pay := tpay / days + 100;
 profit := 0.9 * tsale - cost;

 Tsale_Tpay(days, sale, tsale, tpay);

var i, tsale : int;

 reset(file); i := 0;

 i := i + 1;
 while i > days do begin

 readln(file, sale[i])

 cost: float;
 (days: integer; file: text;
procedure Sale_Pay_Profit

d d

dTsale_Tpay

i d

d d

d

Figure 2. Input-output dependence graph representation for Tsale Tpay and Sale Pay Profit

pay has data and i-control dependencies on days. Indirect dependences are implied by a
sequence of direct dependences. The IODG of Sale Pay Profit in Figure 2 shows that the
direct and indirect dependence relationship between three inputs and two outputs.

3.2. A Model to Represent Relationships between Modules

Several models capture the relationship between modules. A well known model is a call-

graph which represents a call relationship between modules. Weiser de�nes a concept of
interprocedural dependences using control and data dependencies in the context of producing
slices of programs (Weiser, 1994). The interprocedural slices do not include the call relation-
ship between procedures. Loyall and Mathisen de�ne a model that captures inter-procedural
control and data dependences (Loyall and Mathisen, 1993). They use the model to perform
dependence analysis for determining e�ects of software modi�cations and support automated
test and coverage analysis.
We model the relationship between modules in a system with a module interconnection

graph (MIG). The model is based on the control, data
ow relationship, and call relationship
between modules of a system. In the model, there are four types of relationships between
two modules:

1. common relation: a module sends information to another through a global compo-
nent; a module writes a variable, a compound variable, or data �le, which in turn is
read by another module,

2. call relation: a module imports another module's computation to execute its func-
tions; a module calls another module,

3. sequential relation: an output of a module is passed to another module as an input;
an output of a module is used as an input of another module, and

7

m6

(b)

m4

m8

m9

m5

m1

m2 m3 m7

(iv) No relation(iii) Sequential relation(ii) Call relation(i) Common relation

(a)

Figure 3. (a) Four types of module relationships; (b) Example module interconnection graph (MIG)

4. no relation: two modules do not have any of above relations.

Figure 3(a) shows graphical representations of these relation types between modules, where
a module is represented by a square and a global component by a circle. Thus, in Fig-
ure 3(a),(i) an arrow from a square to a circle indicates that a module corresponding to the
square writes to a global component, and an arrow from a circle to a square indicates that a
module corresponding to the square reads from a global component, (ii) a solid arrow from
square A to square B indicates that module A is called by module B, (iii) a dashed arrow
from square A to square B indicates that an output of module A is used as an input of mod-
ule B, and (iv) no connection between squares indicates that there is no relation between
modules.
Multiple parameters connecting two modules are treated as one connection since addi-

tional parameters do not a�ect decisions concerning module composition. For the same
reason, passing multiple global components between two modules is treated as one connec-
tion. Multiple function calls between two modules are also represented as one connection
since the additional function calls do not increase the need to compose the modules.
The MIG of a module is a directed graph, where a node represents a module or a global

component, and an edge between two nodes represents one of three relations: common, call,
or sequential relation.

De�nition 3 Module Interconnection Graph (MIG).

The MIG of a system S is a directed graph, GS = (V, E) where V = V1 [V2;

E = E1 [E2 [E3 [E4 such that

8

V1 = a set of modules of S,
V2 = a set of global components of S,
E1 = f(x; y) 2 V1�V1 j x is invoked by y through a function call (call relation)g,

E2 = f(x; y) 2 V1 � V1 j an input of y has a dependence on an output of x

(sequential relation)g,

E3 = f(x; y) 2 V1 � V2 j x writes to yg, and

E4 = f(x; y) 2 V2 � V1 j y reads xg.

When a MIG is displayed graphically, an edge E2 (sequential relation) is represented by
a dashed line and the other edges by solid lines. The MIG can be generated automatically
from program code or can be determined during the design stage. When program code is
available, the relation types can be determined by dependence analysis using a compiler-like
tool. During the design stage, the information about global components, function-calls, and
caller-callee relationships should be available.
Figure 3(b) shows an example of a MIG representation of a system. The MIG shows

the relationship between modules of a system. In its graphical form, the MIG visually
displays the system's organization. This representation is used to de�ne design-level coupling
measures and is applied to software restructuring.
Analysts can use the visualized IODG and MIG representations to help them understand

the design structure of program. The IODG shows input-output components of a module. It
also shows how the input-output components are related through dependence information.
The MIG shows system components, modules and global structures, and the relationship
between the components. The IODG and MIG representations can be used to recapture
designs from existing, possibly legacy, systems.
When program size is large or program structure is complex, program understanding by

reading code is a painful process. It is not easy to glean program functionalities by reading
program code. The IODG and MIG information is much more compact than program code.
IODG size is not proportional to program size; it is related to the size of a procedure's
interface, not its body.

4. DESIGN MEASURES

4.1. Measuring Design Cohesion

Design-level cohesion and coupling measures guide restructuring in the proposed frame-
work. Measures identify modules that may be restructured by decomposition|splitting into
two or more modules|or by composition|merging with other modules. We develop a set
of design-level cohesion and coupling measures based on the IODG and MIG design-level
module abstractions. The representation condition of measurement theory requires that,
in deriving a measure of an attribute, the empirical relations of the attribute should be
preserved in the numerical relation system (Fenton, 1994). We �rst de�ne intuitive rela-
tions and derive measures in terms of those relations. This approach is consistent with
the model-order-mapping paradigm for specifying software measures (Gustafson, Tan and
Weaver, 1993).

9

Stevens, Myers, and Constantine (1974) de�ne software cohesion (\SMC Cohesion") as a
property that can be used to help determine if the components of a module actually belong
together. Based on the properties of the associations between each pair of processing elements
in a module, SMC Cohesion de�nes seven cohesion levels on an ordinal scale: coincidental,
temporal, procedural, communicational, sequential, and function cohesion. Experts use their
intuition to determine the SMC Cohesion of a component. Because of this dependence
on intuitive judgement, SMC Cohesion cannot be readily applied to measure cohesion in
practice (Nandigam, Lakhotia and �Cech 1999; Woodward, 1993).
In prior work, we applied SMC Cohesion directly to the IODG of a module to derive

a design-level cohesion (DLC) measure (Kang and Bieman, 1996 and 1998) satis�es the
representation condition of measurement (Fenton and P
eeger, 1997, pp. 23{72). The DLC
measure derivation is based on the IODG; we use the approach used to de�ne SMC Cohesion
and by Lakhotia to de�ne module cohesion (Lakhotia, 1993). Here, we brie
y de�ne the DLC
measure. Detailed derivations of DLC are found in prior papers (Bieman and Kang, 1998;
Kang and Bieman, 1998).
The DLC measure is ordinal; a module exhibits one of six cohesion \levels." These levels

are based on six relations between module output pairs. The levels and relations are designed
to be consistent with the di�culty of splitting a module.

De�nition 4 Module Output Relations.

1. Coincidental relation (R1): Two outputs have no dependence relationship

with each other and no dependence relation on a common input (Lakhotia,

1993).

2. Conditional relation (R2): Two outputs are c-control dependent on the

same input.

3. Iterative relation (R3): Two outputs are i-control dependent on the same

input.

4. Communicational relation (R4): Two outputs are dependent on a com-

mon input. This input is used to compute both outputs, but the two outputs

are not c-control or i-control dependent on this input (Lakhotia, 1993).

5. Sequential relation (R5): One output is dependent on the other out-

put (Lakhotia, 1993).

6. Functional relation (R6): There is only one output in a module.

These six relations are on an ordinal scale; cohesion strength increases from R1 to R6.
Like Lakhotia's module cohesion measure (Lakhotia, 1993), DLC measurement is based on
the pair of outputs with the weakest association.

De�nition 5 Design-Level Cohesion (DLC) Measure Calculation.

Determine the strongest relation for each pair of outputs. The DLC value of the

module is the weakest (lowest level) relation of the set of strongest relations for

each pair.

10

Coincidental cohesion

d ii d

Conditional cohesion

ddi ic c

flag

Iterative cohesion

d di i

Communicational cohesion

ddi i

Sequential cohesion

d

d
d

i

Functional cohesion

di

Figure 4. Sample IODG's for each DLC level

We apply the DLC Measure to the IODG's of Figure 2. Outputs tsale and tpay of mod-
ule Tsale Tpay have iterative and communicational relations. Since the communicational
relation is stronger than the iterative relation, the cohesion level of module Tsale Tpay is
communicational cohesion. Module Sale Pay Profit has three pairs of outputs. The output
pair sale and pay has three relations: iterative, communicational, and sequential. Since the
sequential relation is the strongest, the pair has a sequential relation. Similarly, the output
pair sale and profit has a sequential relation, and the output pair pay and profit has
a communicational relation. Since the communicational relation is the weakest among the
relations of all pairs, the entire module exhibits communicational cohesion.
Figure 4 graphically depicts six IODG's, one for each of the six cohesion levels. Edges

are labeled to indicate the dependence relations. The �gure demonstrates the relationship
between the ordering of the cohesion levels and the relative \splittability" of a module.

4.2. Measuring Coupling

4.2.1. Myers' Coupling Relations

Coupling is de�ned as the degree of \interaction" or \interdependence" between mod-
ules (Myers, 1978, p. 41), (Pressman, 1997, p. 359). A common design principle is that
coupling should be kept low to reduce the system complexity (Stevens, Myers and Constan-
tine, 1974).
To perform the restructuring process systematically, we want to solve local problems �rst

and then global ones. Thus, in our restructuring framework, restructuring is applied �rst
to individual modules and then applied to an increasingly larger set of modules. To �t this
\bottom-up" restructuring approach, we want to measure coupling between pairs of modules,
rather than the coupling of entire systems of modules. We derive a coupling measure using
the intuition provided by Myers (Myers, 1978, pp. 41{56), who de�nes six levels of coupling.
Our coupling measure is de�ned in terms of the IODG abstraction.
Using Myers' approach, coupling levels are determined by inspecting the type of interaction

between two modules. The levels of interaction range from the strongest coupling to the
weakest:

11

1. Content Coupling: One module references the contents of the other, i.e., one branches
into a label of the other, modi�es a statement of the other, or changes local data of
the other.

2. Common Coupling: Two modules have access to the same global data.

3. Control Coupling: One module passes a
ag as parameter to control the logic of the
other.

4. Stamp Coupling: Two modules use a common data structure but may operate on
di�erent portions of the data structure.

5. Data Coupling: One module passes simple data or a data structure as a parameter to
the other. All components of the data structure are used by the called module.

6. No Coupling: There is no communication between two modules.

A general design goal is to avoid the strongest forms of coupling. Myers' coupling, like SMC
cohesion, is di�cult to determine because of its subjective nature (Woodward, 1993). We use
Myers' coupling levels as an empirical relations system to validate our design-level coupling
measure.

4.2.2. A Design-Level Coupling (DCP) Measure

Our DCP measure is de�ned by examining coupling exhibited by the MIG and IODG
representations of modules following a similar approach to that used by Myers. The coupling
between two modules is classi�ed by �ve relations which are ordered from strongest to
weakest:

1. Common Coupling: In the MIG representation, two modules have a common re-
lation when one module writes to a global data and the other reads from the global
data. In the IODG representation, common coupling exists when two IODG's contain
the same global data and one IODG has the global data as an input component and
the other IODG has it as an output component.

2. Conditional Coupling: Conditional coupling occurs when, in the MIG representa-
tion, two modules have a call relation and in the IODG representation, one module
passes a parameter to another module, and the parameter has c-control dependence on
an output component. Conditional coupling includes Myers' control coupling since a

ag is implemented as an `if-then-else' predicate component and a
ag in an IODG rep-
resentation always has `c-control dependence' on an output. However, since a compo-
nent with c-control dependence is not always a
ag, DCP conditional coupling includes
some cases of Myers' stamp, and data coupling.

3. Computational Coupling: Computational coupling occurs when, in the MIG rep-
resentation, two modules have a call relation and in the IODG representation, one
module passes a parameter to another module, and the parameter has i-control or
data dependence on an output component. Computational coupling corresponds to
both Myers' stamp and data coupling, since whenever data or a data structure that is

12

not used as a
ag is passed through parameter, it has i-control or data dependence. We
cannot di�erentiate between a data structure and a simple data input, because in an
IODG an input-output component is represented by its name but not by its contents.

4. Sequential Coupling: Two modules have a sequential coupling when, in the MIG
representation, outputs of one module are used as inputs of the other module (sequen-
tial relation). In the IODG representation, the output components of an IODG are
input components of the other IODG. Sequential coupling is classi�ed as no-coupling
by Myers since there is no connection through parameter passing or global data. Thus,
the connection strength is weaker than Myers' data coupling but stronger than or the
same as Myers' no coupling.

5. No Coupling: Two modules have no coupling when there are no connections be-
tween the MIG representation of two modules. There is no coupling when, in the
IODG representation, there is no global data sharing and no function-calls between
two modules.

A pair of modules may have several connections. Since we want to apply the coupling
measure to software restructuring, we represent multiple connections between modules by
the corresponding multiple coupling levels of the modules. Fenton and Melton merge both
the connection kind and the number of connections between a pair of modules in their
de�nition of a coupling measure (Fenton and Melton, 1990). They choose the strongest
(least desirable) level of coupling when there are multiple connections between two modules.
We cannot apply Myers' content coupling in our framework since the IODG cannot repre-

sent direct references to the contents of another module (content coupling primarily occurs in
assembly language programming). We introduce a new level of coupling, sequential coupling,
where the output of one module is used as input of the other. Though the two modules are
independent when inspecting them in isolation, they have a caller-callee relationship from
the perspective of the control module.
We can always determine the DCP measure based on the MIG and IODG information.

When program code is available, the MIG and IODG can be generated automatically from
the analysis of control and data dependence between program components using a compiler-
like tool. Without code, a designer must specify the dependencies between input and output
components of IODG and the relationship between modules of MIG.
Since the derivation of the DCP measure is consistent with the intuition used to de�ne

Myers' Coupling, we assume the following ordering of the �ve DCP relation levels:

Common > Conditional � Computational > Sequential � No Coupling (1)

The DCP measure is on an ordinal scale as long as we accept the ordering implied by the
relations of Myers' Coupling.

13

O1

I I21

M1

O2 O

I

M2

1

1 O

I

2

M3

2

O

I

M2

1

1

M1

O1 O

I1

2 O

I

2

M3

1

O1

O2

I1

O1

I

M2

1
I2

O2

M3

I1

O2

O1

O2

M1

O

I1

1

M2
M2

M1

I1

1 M2M1 :O
D4

M2, M3{ }M1
D1

M2, M3{ }M1
D2

O2O2

I1

O2

M2, M3{ }

(c)

(d)

(e)

(f)

(a)

(b)

M1

M1
C1

M2, M3{ }M1
D3

I1

O1

I1

O1

M1 M2
M1 M2

H(

R(
M1 M2

O1)

O1)

M2

O

I1

1

M1
M1

O

I1

M2

2

M2
C2

{ }M1, M2

Figure 5. Restructuring Operations (from Kang and Bieman (1996)); edge labels are not included

5. SOFTWARE RESTRUCTURING

5.1. Basic Restructuring Operations

Restructuring is completed by applying restructuring operations. The restructuring pro-
cess is guided by the DLC and DCP measures and the intuition provided by the graphically
displayed IODG and MIG models.
Basic restructuring operations can either compose (merge), decompose (split), or reorga-

nize modules. Individual decomposition operations can be applied to modules with speci�c
DLC cohesion levels. Conversely, the application of composition operations depends on
the DCP coupling of module pairs. Modules can also be restructured to hide components
with greater visibility than necessary. We use eight basic operations, shown in Figure 5, to
restructure modules (Kang and Bieman, 1996):
Coincidental Decomposition (D1): A module exhibiting coincidental cohesion has disjoint

components|one or more groups of data tokens linked to individual outputs without
any dependence relations on another group. These modules can be easily split by
separating the disjoint groups as shown in Figure 5(a).

CIC Decomposition (D2): Modules with conditional, iterative, or communicational cohesion
have one or more inputs tied to all of the outputs. These modules can be decomposed
by copying all data tokens linked to more than one output as shown in Figure 5(b).

Sequential Decomposition A (D3): In modules with sequential cohesion one or more outputs

14

depend on other outputs. Such modules can be decomposed by splitting the modules
into two or more modules with sequential coupling, which is one of the most desired
forms of coupling. The output of a module (producer module) is used as the input of
the other (user module) as shown in Figure 5(c).

Sequential Composition (C1): The inverse of sequential decomposition is to compose two
modules with sequential coupling (also shown in Figure 5(c)).

Sequential Decomposition B(D4): An alternative to operation D3, Sequential Decomposi-
tion A, is to replace an output component with a module call, and move the output
component and the components that it depends on into a separate callee module as
shown in Figure 5(d).

Caller/Callee Composition (C2): Two modules can be composed if they have a call relation,
exhibit either conditional or computational coupling, and the callee has only one caller.
The call statement is replaced by the tokens of the callee, and unnecessary coupling is
reduced. Figure 5(e) shows operation C2.

Hide (H): The hide operation, shown in Figure 5(f), converts an exported output into a
hidden local variable, when the exported output is not actually used externally.

Reveal (R): Reveal, also shown in Figure 5(f), is the inverse of hide. Using reveal, R(M1:O1),
a local variable O1 of M1 is exported by changing the local variable into an output
variable. Reveal can be used to separate a hidden function from a large module.

5.2. Restructuring Process

A software restructuring process provides guidance for determining when to apply indi-
vidual restructuring operations. Systematic restructuring process can improve cohesion and
coupling attributes of a system. An appropriate restructuring will: (1) locate the mod-
ules with low cohesion levels and determine which are the poorly-designed modules among
them, (2) decompose the modules identi�ed as a poorly-designed ones, and (3) locate overly
decomposed (i.e., overmodularized) modules that increase the coupling of the system, and
recompose them.
During restructuring, decomposition should precede composition because of the poten-

tial existence of partially-used modules|modules where each output component is used by
di�erent modules. The decomposition process converts a partially-used module into a fully-
used module. Composition of fully-connected modules does not decrease module cohesion.
To perform restructuring systematically, we solve local problems �rst and then global ones:
restructuring is applied �rst to each module and then expanded to a larger set of modules.
An improvement in one software attribute can deteriorate other attributes. The opti-

mal cohesion and coupling levels will depend on the application, the required reusability,
readability, and maintainability of software. Restructuring should be performed objectively
so that both cohesion and coupling measures of software are improved, and at least both
measures do not become worse.
The six step restructuring process that we proposed in (Kang and Bieman, 1996 and 1998)

can be applied to procedures Tsale Tpay and Sale Pay Profit in Figure 2:

15

1. Generate IODG's of candidate modules. IODG's can be constructed solely from design
information. If a formal design notation is used, they can be generated automatically
by a tool. If the code for modules already exists, the information necessary to construct
the IODG's can be extracted from the code using a compiler-like tool. Figure 2 shows
the IODG's of procedures Tsale Tpay and Sale Pay Profit. System 1.1 in Figure 6
also depicts these IODG's.

2. Compute DLC levels. The IODG's for procedures Tsale Tpay and Sale Pay Profit

in System 1.1 in Figure 6 both exhibit communicational cohesion.

3. Locate modules with low DLC levels and identify restructuring subjects. Low DLC
levels indicate modules with multiple independent functions. If the policy is to aim for
functional cohesion, restructure both Tsale Tpay and Sale Pay Profit of System 1.1
in Figure 6. Both modules perform multiple functions.

4. Decompose the IODG of each identi�ed restructuring subject using the following pro-
cedure:

(a) Partition the output components of the IODG so each resulting IODG has a
higher DLC level. An optimal partition can be identi�ed by computing DLC
values for all possible partitions, since the number of module output components
is generally limited to a tractable number.

(b) Decompose each IODG according to the partition of IODG outputs. Resulting
IODG's include input-output components with dependence relations with the
partitioned outputs.

Use a bottom-up approach to decompose two IODG's with a caller-callee relationship|
examine the callee �rst. Change the corresponding invocation in the caller to re
ect
the callee's decomposition, and then apply the decomposition to the caller. Thus, we
decompose Tsale Tpay before we decompose Sale Pay Profit.

Repeat Step 4 until the DLC level of each resulting IODG is acceptable, or there are
no further candidates for decomposition.

In the example shown in Figure 6, Tsale Tpay is called by Sale Pay Profit. Thus, the
decomposition of procedure Tsale Tpay a�ects the code of its caller Sale Pay Profit;
a modi�ed IODG of Sale Pay Profit re
ects this change. We �rst decompose Tsale Tpay

using restructuring operation D2, CIC Decomposition, producing two modules, Tsale
and Tpay. We also modify the caller, Sale Pay Profit, to invoke the modi�ed callee.
This restructuring step is shown as transition R2 in Figure 6, producing System 1.2.
Procedures Tsale and Tpay both exhibit functional cohesion, while the cohesion level
of Sale Pay Profit remains unchanged.

We apply restructuring operation D2 again, as shown in Figure 6 as transition R3. This
time we split Sale Pay Profit into Sale Pay and Sale Profit producing System 1.3.
Both new modules exhibit sequential cohesion.

16

tpay

sale

sale

n

n

d

di

i

tsale

Tsale

Tpaysale

tsale tpay

days

ddi i

Tsale_Tpay
sale

profit

cost

pay

d
d

i
i

costfiledays

sale

pay profit

days

R5

cost

profit

sale
days

days

i
file

sale

Sale

d
tpay

days
sale

Tpay

i d

days
sale

tsale

Tsale

i d

R6

pay

sale

profit

days file days file

cost

tpay

days
sale

days
sale

tsale

Tsale

Tpay

i d

i d

sale

pay

sale
days

Pay

days

i
file

sale

Sale

d

days
sale

cost

profit

Profit

i d
d

days
sale

Program code

System1.1 System1.2

R1

R3

DLC(
DLC(
DLC() = functional cohesion
DLC() = functional cohesion

DLC of every module is functional cohesion.

DCP(
DCP() = computational coupling

in Figure 2.

DLC(
DLC(

) = communicational cohesionTsale_Tpay

DLC(
communicational cohesion

DLC() = functional cohesion
DLC() = functional cohesionTsale

Tpay

Tsale
Tpay

Sale_Pay_Profit) = communicational
cohesion

Sale_Pay_Profit

Sale_Pay_Profit) =

Sale_Pay
Sale_Profit) = sequential cohesion

) = sequential cohesion
Tpay, Pay

ProfitTsale,
) = computational coupling

System1.4

Sale_Pay_Profit

d d

di

Tsale Tpay

d i

d d

dTsale_Tpay

d d

d d

System1.5

{

R6: Generate program code.

R2:

R1: Generate IODG’s.

R3:

R4:

R5:

Restructuring steps :

{

{

{ }

Tsale_Tpay

Sale_Pay_Profit

Sale_Pay

Sale, Profit

{ }
D2

D2

D3

D3
{

}
C2

Pay

Profit
C2

Sale_Pay, Sale_Profit }

Tsale, Tpay

Sale, Pay }

Sale, Profit }

Tpay, Pay

Tsale, Profit

i file
id

d

d

di

Tpay

Profit

d

d

DLC of every module is functional cohesion.

R2

d d

d
dd

System1.3

Sale_Pay

d

d

di

Tsale

di

Sale_Profit

Tpay d

d

R4
d

d

di

d
Tsale d

d

d

d d

d
d

i

d

i

d

Pay

Pay

d,i

Program

Figure 7.
code in

There is no computational coupling between modules.

Figure 6. Restructuring procedures Tsale Tpay and Sale Pay Profit of Figure 2

17

We repeat the process using operation D3 (transition R4) on both Sale Pay and
Sale Profit producing modules Sale, Pay, and Profit in System 1.4. After com-
pleting transitions R2, R3, and R4, all of the modules exhibit functional cohesion. We
now examine coupling to consider candidates for composition.

5. Locate unnecessarily decomposed modules and compose them. After repeated decom-
positions, a system can become overmodularized, resulting in too much interaction
between modules and an increase in coupling. The DCP between each pair of modules
can identify overmodularized modules. Apply composition operations to overmodular-
ized modules only when composition does not decrease their cohesion levels and does
not a�ect connections with other modules.

We apply the DCP measure to the module pairs in System 1.4 of Figure 6 and �nd
computational coupling between procedure Tsale and Profit, and Tpay and Pay,
and sequential coupling between procedure Sale and Pay, and between Sale and
Profit. The computational coupling is removed by applying composition operator
C2, Caller/Callee Composition, as shown in transition R5 producing System 1.5. All
of the modules in System 1.5 exhibit functional cohesion, and there is no computational
coupling.

6. Generate module code (if the original IODG's were generated from source code). A tool
can automate code generation by using the data tokens and the dependence information
obtained from the initial modules during step 1.

Transition R6 in Figure 6 represents the generation of new code for the example mod-
ules. The resulting restructured modules are given in Figure 7. At the start of the
restructuring process, both modules exhibit communicational cohesion and computa-
tional coupling. The modules are restructured into three modules that exhibit func-
tional cohesion, the strongest cohesion level and sequential coupling, the weakest cou-
pling. The restructured modules should be easier to understand, maintain, and reuse.

Coupling plays a limited role in our framework since a composition of modules must
consider other factors in addition to coupling. For example, future reuse: if a module is
likely to be reused, we should not hide the module by composing into other modules. We
use coupling as a supplementary measure and cohesion as a primary one.
At the start of the restructuring process, both modules in Figure 2 exhibit communica-

tional cohesion and computational coupling. These two modules are restructured into three
new modules. The restructured modules, shown in Figure 7, exhibit functional cohesion,
the strongest cohesion level and sequential coupling, the weakest coupling. The restructured
modules should be easier to understand, maintain, and reuse.

6. RESTRUCTURING TOOLS

Our software restructuring framework includes four major processes: (1) the design infor-
mation of modules is extracted from module code and represented in a visualized graph form;

18

begin

end;
 end;

 var sale : int_array);
 file: text;

procedure Sale
 (days: integer;

var i : integer;

 reset(file); i := 0;
 while i < days do begin
 i := i +1;
 readln(file, sale[i])

begin

 sale : int_array;

var i, tpay : integer;

 for i := 1 to days do begin

 var profit : float);

 cost: float;
 (days : integer;
procedure Profit

 tsale := 0;

 tsale := sale + sale[i];
 end;

end;
 profit := 0.9 * tsale - cost;

begin

procedure Pay
 (days : integer;
 sale : int_array;
 var pay : float);
var i, tpay : integer;

 tpay := 0;
 for i := 1 to days do begin
 tpay := pay + 0.1 * sale[i];
 if sale[i] > 1000 then
 tpay := tpay + 50;
 end;
 pay := tpay / days + 100;
end;

Figure 7. Procedures produced after restructuring the procedures of Figure 2

(2) the design structure is evaluated objectively by design-level measures; (3) the design is
restructured based on the measures; and (4) the restructured code is generated from the
restructured design.
We have developed tools to support the restructuring process using lex and yacc from

the gcc compiler. The tools process C programs in a UNIX workstation environment. They
have been installed and tested for SUN SPARCstatations running SUN-OS and IBM RS6000
systems running AIX. Key components of the restructuring tool include the following:

1. Control Flow Graph Generator: Vertexes of this graph are module statements. C out-
put variables are identi�ed, including modi�ed global variables, reference arguments,
and function return values.

2. Data Token Identi�er: Identi�es all de�ned and used data tokens of each statement in
a module, and all local variables and output variables.

3. Dependency Analyzer: Computes data dependencies and control dependencies for data
tokens in module statements, and identi�es control dependencies involving loop pred-
icates.

4. F-Slicer: Generates program (also data) slice information for a module. A program

slice is the portion of program text that a�ects a speci�ed program variable (Weiser,
1994): Bieman and Ott (1994) de�ned a data slice for a data token as the sequence of
all data tokens in the statements that comprise the \backward" and \forward" slices
of the data token.

5. IODG tool: Generates IODG information with only input and output components
using program slice information generated by the F-Slicer.

6. DLC tool: Computes the DLC measure using the IODG information.

7. Decomposition Tool: Performs decomposition using the slice information and IODG.

19

8. Coupling Analyzer: MIG information and a DCP tool can be easily constructed from
call graph and data
ow information. To build a composition tool, in addition to
the call graph and data
ow information, we need to consider the details of program
constructs, such as declarations, globals, and variable names.

Our FUNCO tool set is a metrics analyzer for C programs that integrates the above tool
components. Prototypes for components 1{6 are operational. We use information generated
by the F-Slicer for component 7. However, the F-slicer is not designed to automatically
generate source code slices, so the process is labor intensive. Existing slicing tools can
potentially automate component 7 (Gallagher and Lyle, 1991; Jackson and Ladd, 1994).
The current version of Unravel, a C-slicer, is capable of producing compilable slices (Lyle
et al., 1995), so it is a good candidate for component 7. A coupling analyzer is now under
construction. FUNCO also includes an implementation of the functional cohesion measure
de�ned by Bieman and Ott (Bieman and Ott, 1994). FUNCO has been installed and tested
for SUN SPARC workstations running SUN-OS and IBM RS6000 systems running AIX. It
is available for general use on the World Wide Web (Kang and Bieman, 1997).

7. RESTRUCTURING CASE STUDY

7.1. Limitations

We restructure a small software system to demonstrate the restructuring process and
to evaluate how e�ectively the process can be applied to real software. The IODG tool
generated IODG information from program code and the DLC tool measured DLC levels
from the IODG information. We generated visual IODG representations manually from the
IODG information to provide further intuitive information.
When this study was conducted, the available version of Unravel could not generate com-

pilable slices. Thus, for this case study, we used the F-Slicer tool to help perform the de-
composition operation. The F-Slicer tool provides program slice information from program
code. Decomposition decisions were based on the IODG representation and DLC measure-
ment. We generated the restructured program code by selecting a program slice or slices
that correspond to one or more output components of each restructured IODG.

7.2. Applying the Restructuring Process

The data for the case study was the JASMIN software system (Bieman and Zhao, 1995).
JASMIN is a research tool that collects data concerning the use of inheritance in C++
software. JASMIN measures the depth of the inheritance, number of classes with/without
private sections, number of classes derived from classes with/without private sections, and
number of private, public, and multiple inheritances. JASMIN contains 39 C functions and
4540 lines of source code. On average, each function has 4.69 inputs, 2.26 outputs, and 66.95
data tokens.
We applied the restructuring process to the JASMIN system following the steps given in

Section :

20

after_parent

private

class_tree pre_class

class_from_parent

pre_class

class_from_parent

c_name

add_class

i i
c

Figure 8. An IODG representation of function add class

1. Generate IODG's: The IODG tool generated IODG information from JASMIN source
code. Figure 8, Figure 9, and Figure 10 show example IODG representations for
functions add class, print info, and print summary respectively. The Appendix
includes the program code for function print info.

2. Compute DLC levels: The DLC tool computed DLC levels for each generated IODG.
We found 22 functions with functional cohesion, 3 functions with sequential cohesion,
11 functions with communicational cohesion, and 3 functions with coincidental cohe-
sion. No functions exhibit conditional or iterative cohesion. Actually, many JASMIN
output components exhibit conditional or iterative associations. However, those associ-
ations are hidden by other stronger associations, such as communicational association.

3. Determine restructuring candidates among functions with low DLC levels: Among the
three coincidental functions, one function initializes a tree data structure, and related
global variables. This function actually exhibits temporal cohesion according to the
original SMC Cohesion criteria (Stevens, Myers and Constantine, 1974), which is a
cohesion category not supported by the DLC measure. Our examination eliminates
this function from the restructuring process. Both of the two remaining coincidental
functions, add class and tg add class, contain two related outputs and an isolated
output that is used for computation control purpose. We restructure these two coinci-
dental functions since they unnecessarily include a control variable.

Among the 11 functions exhibiting communicational cohesion, two functions, print info

and print summary, include loosely connected outputs|they generate output �les that
are not tightly related to each other. We restructure these functions because of the
weak relationship between their output �les. Figure 8, 9, and 10 show IODG's for
three of the restructuring candidates.

4. Decompose the IODG of each module identi�ed as a poorly-designed one: We apply
appropriate decomposition operations:

R1 : add class
D1
�! fadd class; tempg

R2 : tg add class
D2
�! ftg add class; tg tempg

R3 : print info
D3
�! fprint inh info; print outputg

21

verbose

depthpublic_inh

private_inhclass_treeflag child_count

print_it

string

i,d i,d i i,dc

c c

print_info

output std_output

Figure 9. An IODG representation of function print info

filename

minmaxmedianmean

columnsrows

class_tree

stat1classtable

output

stat1classtable stat2classtable

stat2classtable

stat

i i ii
i,d

i

i i,c i,c

print_summary

Figure 10. An IODG representation of function print summary

22

flag class_tree

c

string

print_inh_info

verbose

depthpublic_inh

private_inhclass_tree child_count

i,d i,d i i,d

c

print_output

output std_output

(a) (b)

Figure 11. (a) shows IODG print inh info and (b) shows IODG

print output; they are IODG's decomposed from IODG print info

R4 : print summary
D3
�! fprint stat1; print stat2; print out summaryg

We decompose IODG add class into two IODG's. One, also named add class, in-
cludes two output components, class tree and pre class. The other IODG, temp,
includes only one output component, class from parent. In the new add class func-
tion, class from parent is assigned a constant value. We will later compose temp with
its caller(s). The new add class IODG exhibits sequential cohesion and IODG temp

exhibits functional cohesion. Following a similar procedure, IODG tg add class is
decomposed into IODG tg add class and IODG tg temp.

IODG print info has two tightly connected output components, output and std output.
Another output, string, is loosely connected with the other outputs. We decom-
pose IODG print info into IODG print inh info and IODG print output, as
shown in Figure 11. IODG print inh info exhibits functional cohesion and IODG
print output exhibits communicational cohesion.

IODG print summary contains three output components that are loosely connected.
Two outputs, stat1classtable and stat2classtable, could be placed into the same
IODG or separated into individual IODG's. This decision depends on the detailed and
conceptual relationship between two outputs and the software application. We decom-
pose IODG print summary into three new IODG's, print stat1, print stat2, and
print out summary. Figure 12 displays these IODG's. The IODG of print out summary

omits an invocation of stat. All of the new IODG's in the Figure 12 exhibit functional
cohesion.

In applying the decompositions, we change the invocations in caller IODG's to re
ect
the callee's decomposition. For example, function add class is called by function
add parent, and thus, an invocation of add class in add parent is replaced by two

23

class_tree

stat1classtable

print_stat1

(a)

class_tree

print_stat2

stat2classtable

(b)

stat1classtable

stat2classtableclass_tree

output

print_out_summary

c,i,d

(c)

Figure 12. (a) shows IODG print stat1, (b) IODG print stat2, and (c) IODG

print out summary; they are IODG's decomposed from IODG print summary

invocations of add class and temp.

5. Locate unnecessarily decomposed modules and compose them: We apply composition
operations:

R5 : fadd parent; tempg
C1
�! add parent

R6 : fmain; tg tempg
C2
�! main

IODG temp is called from three functions (call-couplings), but used only in IODG
add parent. Note that temp includes a global variable assigned with a constant value.
Thus, we combine temp into IODG add parent and remove the invocations in the
other functions. IODG tg temp is called and used only from IODG main, and thus,
we also combine tg temp into IODG main.

6. Generate program code from the restructured IODG's: Program code is generated
from each corresponding IODG. The Appendix includes program code corresponding
to IODG print inh info and IODG print output.

Through restructuring, two functions exhibiting coincidental cohesion have been converted
into functions with sequential cohesion, one function exhibiting communicational cohesion
was decomposed into a function with communicational cohesion and a function with func-
tional cohesion, and another function with communicational cohesion has been decomposed
into three functions with functional cohesion.

7.3. Restructuring Results

At the end of the process, we had restructured six functions, creating nine new func-
tions. The restructuring process included �ve decompositions and two compositions. All
restructuring decision were based on the IODG's and DLC/DCP values.

24

Table 1. Properties of the Restructured Functions in the JASMIN System, Before Restructuring.

Original No. of No. of No. of No. of No. of

Functions inputs outputs lines nodes edges V(g) DLC

1. tg add class 5 3 44 12 19 9 coincidental

2. add class 5 3 40 12 17 7 coincidental

3. print info 8 3 88 16 25 11 communicational

4. print summary 3 3 111 22 30 10 communicational

5. add parent 5 4 37 9 13 6 communicational

6. main 3 4 285 53 72 21 communicational

Totals 29 20 605 124 176 � 64 ��

Mean 4.83 3.33 100.83 20.67 29.33 10.67 ��

� This is the V(g) count for the aggregate of the set of functions rather than the total V(g).

�� The sum and average of DLC levels are not de�ned.

Table 1 shows properties of the six functions before restructuring, and Table 2 shows
these same properties of the nine resulting functions. The process converted two functions
with coincidental cohesion and four functions with communicational cohesion into three
functions with functional cohesion, two functions with sequential cohesion, and three with
communicational cohesion. The set of restructured functions have 20 more lines of code than
the original functions, which represent an increase of about 5%. However, the average size
of the restructured functions is 30% smaller than the original functions.
Just decreasing the size of functions does not demonstrate improvement, and we should

expect that the restructured functions would show an improvement in cohesion levels, since
cohesion is a key factor driving restructuring. We do see that the cyclomatic complex-
ity, V (g), in the restructured functions is much lower than the original ones: the V (g)
of restructured functions average 7.67, while the original functions have an average V (g) of
10.67. Keeping V (g) below 10 is common advice, �rst proposed by McCabe (McCabe, 1976),
and all but one of the restructured functions have V (G) < 10, while three of the original
functions have V (G) � 10.
Table 3 summarizes the properties of both the entire system and the modi�ed functions,

before and after restructuring. The restructured JASMIN has 42 functions: 26 functions have
functional cohesion, 3 functions have sequential cohesion, 12 functions have communicational
cohesion, and one functions has coincidental cohesion. The one coincidental function actually
exhibits temporal SMC cohesion. The restructured JASMIN has three more call-couplings
(function calls) than the original JASMIN. Clearly, restructuring improved module cohesion,
with a small increase in overall system coupling. We also see that the average number of
lines of code in a function decreased by 7%, even though the total number of lines increased
by 30 lines or less than 1%.
Four poorly designed functions were greatly improved at a cost of a small increase in call-

coupling. DCP call-coupling corresponds to the `data coupling' of Myers' coupling hierarchy,
which is the best type of coupling when communication between modules is necessary (Myers,
1978, pp. 41{56).

25

Table 2. Properties of the Restructured Functions in the JASMIN System, After Restructuring.

Original No. of No. of No. of No. of No. of

Functions inputs outputs lines nodes edges V(g) DLC

1. tg add class 5 2 41 11 16 6 sequential

2. add class 5 2 38 11 15 6 sequential

3a. print inh info 2 1 25 7 10 5 functional

3b. print output 7 2 69 12 19 9 communicational

4a. print stat1 1 1 19 4 6 4 functional

4b. print stat2 1 1 23 5 8 5 functional

4c. print out summary 3 1 89 17 22 7 functional

5. add parent 5 4 41 11 15 6 communicational

6. main 3 4 290 55 74 21 communicational

Totals 32 18 635 133 186 � 69 ��

Mean 3.56 2.00 70.56 14.78 20.67 7.67 ��

� This is the V(g) count for the aggregate of the set of functions rather than the total V(g).

�� The sum and average of DLC levels are not de�ned.

Table 3. Properties Before and After Restructuring for the Entire JASMIN System and Changed

Functions.

Entire System Changed Functions

Attributes Before After Before After

No. Functions 39 42 6 9

No. Lines 4540 4570 605 635

Lines per Function 116.41 108.81 100.83 70.56

No. Functions

at each DLC level:

Functional 22 26 0 4

Sequential 3 5 0 2

Communicational 11 10 4 3

Iterative 0 0 0 0

Conditional 0 0 0 0

Coincidental 3 1 2 0

26

The restructuring framework includes only eight basic operations, which are described in
Section and in Figure 5. It might seem that this limited number of transformation would
apply to too few modules to be useful. Yet, in the case study, we could restructure six out
of 39 modules, which represent 15% of the system's components. An improvement of 15%
of the modules is signi�cant|the restructured system shows measurable improvements over
the original system.

7.4. Further Information Needs

Overall, our restructuring process was very e�ective. However, we found that, to make
restructuring decisions, we sometimes needed more detailed information about a program:

1. Simple dependence information between input-output components cannot depict some
relationships. For example, if two outputs of a function are computed by sequentially
reading di�erent parts of a common �le or data structure, it is di�cult to decompose
the program slices corresponding to the two outputs into two separated functions. The
IODG and DLCmeasure cannot be used to recognize such an input-output relationship,
because the IODG representation does not distinguish between a �le or a data structure
and a simple scalar. We could extend the IODG representation by decorating its nodes
and edges with additional information. For example, each node can be labeled with a
node type such as a �le, a data structure, or a simple variable, and each edge is with
connection information such as a single, multiple, or speci�c number of connections.

2. Some functions with low DLC levels have outputs sharing many inputs. These func-
tions have tightly-connected input-output components although they have low DLC
levels. The DLC measure is useful for software restructuring because it always �nds
the weakest connection among input-output components. However, it does not indi-
cate how tightly bound other components are. Consider two functions A and B; A has
two outputs that have data dependence on one common input and B has two outputs
that shares �ve inputs. The DLC level for both functions is communicational cohesion
while the outputs of B is more tightly connected than those of A.

Another class of cohesion measures, Design Functional Cohesion (DFC) measures (Bie-
man and Kang, 1998), detects the tightness di�erence between input-output compo-
nents. These measures can complement the DLC measure. We could �rst �nd a set
of procedures with weak cohesion levels using the DLC measure, and then identify a
subset with loosely connected input-output components using the DFC measure.

Even though two outputs of a program access multiple inputs and share only one input,
the two outputs might share large segments of program code. The IODG representation
and DLC/DFC measures do not indicate how much program code is shared by output
components. A function with outputs sharing signi�cant amount of code should not
be decomposed. If we decompose outputs sharing program code, the shared code
part can be copied, and the execution of the di�erent programs result in the repeated
execution of identical code. In order to represent the amount of code sharing, we
can extend the IODG representation by decorating each node with the amount of the
shared code. At design stage, to include the size information, a designer would need to

27

estimate the amount of shared code. If program code is available, the information can
be obtained from dependence analysis. We can also apply Functional Cohesion (FC)
measures (Bieman and Ott, 1994) on program code to have the code-level information.
The FC measures indicate how much code is shared by output components. DFC and
FC measures can be used with the DLC measure to provide more speci�c information.

3. The restructuring process allows us to do e�ective decomposition and composition of
design components and program code. However, the process does not support low-
level restructuring. We �nd frequent use of global components for communication
between program components in JASMIN. Some of those global components can be
implemented by parameter-passing mechanisms which minimizes the overall system
coupling. Our restructuring process can reveal the existence of global components, but
cannot e�ectively restructure this code.

Until now, we have only addressed the restructuring of procedural programs such as those
written in the C language. The principal restructuring processes are (1) extracting and
visualizing design information from program code, (2) applying design-level measures on the
design, (3) restructuring the design based on the visualized design information and design-
level measures, and (4) generating restructured program code from the restructured design.
We have not yet addressed restructuring aimed towards converting procedural software into
modular-style programs|programs with sets of procedures that access regional variables.
Such conversions may require additional semantic information beyond that available from
our graph-based design representations. The basic approach in our restructuring framework
can be applied to object-oriented software. We plan to extend our work to the restructuring
of object-oriented software. We have already de�ned a model to represent object-oriented
programs and two class cohesion measures (Bieman and Kang, 1995).

8. RELATED WORK

8.1. Cohesion and Coupling Measurement

Closely related work includes the development of cohesion and coupling measures, and
restructuring methods based on design or code-level analyses.

Emerson's Cohesion Measurement. Emerson developed a cohesion measure in terms
of a control
ow graph model (Emerson, 1984). Flow subgraphs are generated for each
variable referenced in a module. The precise cohesion value depends upon the ratio of the
size and cyclomatic complexity of the subgraphs to the size of the complete
owgraph. Un-
fortunately, multiplying the reference set size by the cyclomatic complexity masks the view
of cohesion. Cyclomatic complexity is a control
ow measure, and combining the measures
of di�erent attributes weakens the discriminating power of a measure (Melton et al., 1990).
Emerson's cohesion measure can only be applied to implementations.

28

Rules for SMC Cohesion. Lakhotia uses the output variables of a module as the pro-
cessing elements of SMC Cohesion and de�nes rules for designating a cohesion level which
preserve the intent of SMC Cohesion (Lakhotia, 1993). The associative principles of SMC
Cohesion are transformed to relate the output variables based on their data dependence rela-
tionships. A `variable dependence graph' models the control and data dependences between
module variables. The rules for designating a cohesion level are de�ned using a strict inter-
pretation of the association principles of SMC Cohesion. Because the rules are formal, a tool
can automatically perform the classi�cation. The technique, as de�ned by Lakhotia (1993),
can be applied only after the coding stage since it is de�ned in terms of implementation
details. However, if designers specify variable dependence graphs for inputs and outputs,
this method could be applied to designs in a manner similar to our DLC measure.

Functional Cohesion Measures. Bieman and Ott develop cohesion measures that in-
dicate the extent to which a module approaches the ideal of functional cohesion (Bieman
and Ott, 1994). They introduce three measures of functional cohesion based on \data slices"
of a procedure. Bieman and Ott show that the measures satisfy the requirements of an ordi-
nal scale. The functional cohesion measures are formally de�ned, and cohesion measurement
tools have been built. These measures also depends on the implementation details of module
and can be applied to program code. This development of measures of functional cohesion
was based on earlier work by Ott and Thuss (1989), which introduced the notion of de�ning
cohesion in terms of program slices.

Coupling Measure from Empirical Relations. Fenton and Melton also use Myers'
Coupling (Myers, 1978, pp. 41{56) as an empirical relation system to determine coupling of
a pair of modules and global coupling (Fenton and Melton, 1990). The relations are ranked
with a type number; type 5 (content coupling) is least desirable and type 0 (no coupling)
is most desirable. The authors de�ne a coupling measure between module x and y on an
ordinal scale by considering the relation type between x and y and the number of connections
of the relation type between x and y:

M(x; y) = i+
n

n + 1
(2)

where i is the greatest coupling type number between x and y, and n is the number of
interconnections of the relation type between x and y. Global coupling C(S) of a system
is de�ned as the overall level of connectivity in the system: C(S) is the median value of
the pairwise coupling values for all modules in a system. The coupling measures are de�ned
rigorously based on the measurement theory (Fenton and P
eeger, 1997). However, the em-
pirical relations are not de�ned quantitatively and cannot determined objectively.

Cohesion and Coupling Measures for Object-Oriented Software Our focus in this
paper is on procedural software. However, there is active work on developing cohesion and
coupling measures for object-oriented and object-based software. Bieman and Kang de�ne
`class cohesion' measures based on dependencies between methods through their references to
instance variables (Bieman and Kang, 1995). Chidamber and Kemerer de�ne another class
cohesion measure, lack of cohesion between methods (LCOM), which is also based on method

29

interconnections through instance variable references (Chidamber and Kemerer, 1994). Hitz
and Montazeri (1995) de�ne coupling measures based on the distinction between \dynamic
dependency" and \static dependency". Briand et al. introduce cohesion and coupling mea-
sures for object-based systems based on interactions between declarations (Briand, Morasca
and Basili, 1993). In related work, Briand et al. develop a framework for developing and
analyzing both cohesion and coupling in object-oriented systems (Briand, Daly and W�ust,
1997 and 1978; Briand, Devanbu and Melo, 1997).

8.2. Software Restructuring

Slicing and Restructuring. The restructuring method of Kim, Kwon, and Chung (1994)
makes use of a notion of module strength (cohesion). They de�ne processing blocks which
are similar to the `data slices' of Bieman and Ott (1994). A processing block is a group of
data tokens with data or control dependence relationship with an output variable. A rule
recognizes `logically associated' module functions that are dependent together on an output.
They treat each of these logically associated functions as a processing block. Unfortunately,
an analysis of program code cannot always automatically detect these logically associated
functions. An examination of dependencies alone cannot determine whether a predicate
variable is used to select a function or to compute a function.
Module strength is de�ned in terms of data sharing, control sharing, and level of sharing.

Depending on its module strength, a module is restructured by either `separating' or `group-
ing'. A module with low module strength is split into new modules, while other modules
are decomposed and the resulting components are grouped into a package. Information on
module strength alone is not su�cient to determine how to group components into packages.
An understanding of module functions and underlying design decisions is needed. Like our
approach, module strength is used as a criterion for software restructuring. However, unlike
our approach, module strength is based only on the code implementation. The attributes
that are actually quanti�ed by the measure are not speci�ed. The module strength measure
computes the average of the relatedness between processing blocks rather than �nding the
most weakly connected blocks.

A Restructuring Assistant. Griswold and Notkin (1993 and 1995) provide support for
analysts in making a speci�c change. They do not help guide the analyst in making his/her
initial decision. A tool performs nonlocal structural changes in behalf of an analyst:

1. When the analyst moves an expression of a program, the tool checks to ensure that
the change preserves meaning.

2. When the analyst renames a variable, the tool renames all its uses and makes sure that
the new name does not con
ict with any existing names.

3. When the analyst wants to replace the uses of a variable de�nition with the de�ning
expression, he/she selects the assignment to be inlined and the tool handles �nding
and inlining the uses.

4. When the analyst turns a sequence of expressions into a function, the tool replaces the
abstracted statements with a call on the function.

30

The software analyst manipulates the program code itself rather than an abstracted repre-
sentation of the program. After the analyst makes a local change in the program to improve
structure, the tool automatically selects the global changes. Restructuring depends on the
analyst's initial intuitive decision about what kinds of change in the program need to be
made. Thus, it is di�cult to show that the restructured program has been improved over
the original program.

Finding Hierarchical Relationships. Choi and Scacchi (1990) propose a restructuring
process to change the relationship between modules from a resource-exchange relationship to
a hierarchical relationship. Here, source �les are treated as modules. The resource-exchange
relationships are represented by a resource-
ow diagram (RFD) where resources exchanged
between modules include data types, procedures, and variables. A hierarchical relationship
shows the control connections between modules and a control module, and is represented by
a resource-structure diagram (RSD).
The main goal is to map from an RFD to an RSD. The restructuring algorithm minimizes

\module coupling" and \alteration distance", which are de�ned informally. Module coupling
is the number of modules in the system or subsystem. Alteration distance between modules
is the length of the path between the altered and a�ected module. The alteration distance of
a system or subsystem is the sum of the alteration distances of all the modules of a system
or subsystem.
The measures used as criteria to map from an RFD to an RSD are not de�ned formally.

Thus, it is not clear how the values of the measures are improved through the restructuring
algorithm. There is no support to help determine which program code should be changed or
which additional code is needed during restructuring. The hierarchical relationship among
modules is built by adding a subsystem node to a set of modules or other subsystems.
However, the contents of the subsystem node are not speci�ed. This restructuring method
provides a hierarchical design corresponding to a module relationship (i.e., RFD). It does
not help perform the actual restructuring of the original software.

A Documentation-based Approach. Tesch and Klein (1991) propose a design opti-
mization method based on cohesion and coupling measurements of existing documentation.
The goal is to develop a complete hierarchy chart of organized processes in a top-down,
optimal fashion. A composite measure is formulated from the cohesion and coupling mea-
sures. The composite measure is used to decompose the processes in a system into successive
groupings of modules on a hierarchy chart by grouping modules that are closely related and
separating modules that perform di�erent functions.
They determine SMC cohesion by computing three relational matrices: precedence matrix,

matrix of timing relationship, and incidence matrix. For each cohesion level, a value between
0 and 1 is assigned. Thus, the resulting cohesion measure is on ordinal scale.
Coupling is de�ned as the percentage of data items used within groupings of modules such

that:

Ci;j =
number of shared data items for i and j

number of data items for all processes
(3)

As Ci;j increases, the objective is to group process i with process j to lower the coupling.
These cohesion and coupling measures are used to derive a single composite measure for

31

evaluating a design such that:

Pi;j = w1Wi;j + w2(1� Ci;j) (4)

where the Wi;j is the cohesion level of a module including process i and j, Ci;j is the coupling
value between two processes i and j, wi's represent importance weights on the criteria. Then,
the design optimization process use the composite measure to decompose the process graph
into a hierarchy chart by trying to minimize the measure.
The module clustering method is developed to help construct an optimal design for a sys-

tem from existing documentation. A composite measure accomplishes this goal, thus, the
validation of the clustering process depends on the measure. Unfortunately, the composite
measure combines the ordinal-scale cohesion measure and the ratio-scale coupling measure
using addition operation. Applying the addition operation to an ordinal-scale measure is not
a meaningful transformation.

Converting Procedural Programs into Object-Module Programs. Zimmer (1990)
demonstrates the conversion of a procedural program into an object-module program. Both
the original and restructured program are implemented in FORTRAN. The resulting object-
module program makes use of regional variables that simulate the module-scoped variables
used in an object-based language, or the attributes, �elds, or instance variables used in an
object-oriented language. Restructuring requires semantic knowledge of the program includ-
ing a fairly formal speci�cation including state invariants, an understanding the \coherent
purpose" of code segments, and an understanding of code details. For example, data
ow
analysis determines dependencies between variables, called cobwebs.
The restructuring of an example 100 line FORTRAN program is e�ective|data dependen-

cies are reduced. However, the restructuring required an intuitive understanding of many
code details and a signi�cant amount of human labor. The restructured program barely
resembles the original; it has a very di�erent design structure. For such a method to scale
up, much of the process needs to be automated. On a large system, the code, design doc-
uments, integration and regression test plans and data, etc. would have to be adapted to
match the new implementation. Quantitative criteria might potentially identify potential
object-modules, and allow this kind of restructuring to �t into a quantitative restructuring
framework. However, quantifying such semantic information is an open problem.

9. CONCLUSIONS

Software restructuring should be easy, e�cient, and semantic preserving. We provide
a software restructuring framework where design structures can be extracted from code,
visualized, quanti�ed, and restructured. Software analysts can directly apply the presented
models, measures, restructuring operations, and restructuring process to re-engineer legacy
systems that were developed using the procedural paradigm. The measures can quickly
identify components that are amenable to restructuring. Visualized design-level models
provide further intuition to help select restructuring candidates, without including all of the
details in the code. The restructuring process and operations gives a step-by-step procedure

32

for optimizing improvements in cohesion and coupling. Again, the visualized models help
guide the process.
In the case study, restructuring increased cohesion and decreased module size and cyclo-

matic complexity. Such improvements suggest that future maintenance and testing will be
easier. Also, the process of developing design-level models can improve an analyst's under-
standing of system structure.
These results show that restructuring can demonstrate improvements, while preserving

the original development paradigm. A system developed using the procedural paradigm,
remains a procedural system, with measurable improvements in its structure. Restructuring,
without changing development paradigms, will be simpler than the restructuring required
to move from the procedural to an object-based or object-oriented development paradigm.
Restructuring will involve fewer and simpler changes, and the architecture of the resulting
system will still resemble the original system. Thus, the original development life-cycle
products, such as design documents and regression test data, will require less revision. An
e�ective restructuring process that is simple should be practical. A simple process, with
automated support, is especially important when restructuring large industrial systems.
The quantitative restructuring framework uses two design-level models, the IODG and

MIG. The IODG is an abstraction of a module interface; it models dependency relationships
between module inputs and outputs. The MIG models the connections between modules.
Design-level cohesion (DLC) and design-level coupling (DCP) measures can be computed in
terms of these models. These measures guide the restructuring process. Our restructuring
approach provides several bene�ts:

1. Since the restructuring operations are applied to the IODG's rather than program code
itself, the whole restructuring process can be simpli�ed and visualized.

2. Since users manipulate the IODG's rather than code, unnecessary implementation
details can be hidden from users.

3. The IODG and MIG information can be generated from system code. Thus, analysts
can recapture designs from existing, possibly legacy, systems.

4. Since restructuring operations are applied to design-level rather than more detailed
code-level information, performance of the restructuring process can be improved
greatly.

5. DLC and DCP measures provide objective criteria for restructuring while graphical
displays of IODG's and MIG's provide visual guidance.

6. Although the restructuring framework is based on the DLC and DCP measures, addi-
tional design-level measures based on the IODG and MIG models can be de�ned and
applied within the framework.

7. The IODG and MIG representations, the DLC and DCP measures, and the restruc-
turing process can be applied during software design as well as maintenance.

8. The restructuring process consists of a series of semantic preserving decompositions and
compositions of `processing elements'. Thus, the semantics of a system are preserved
during the process.

33

9. The restructuring process can be easily automated. IODG's and MIG's can be readily
generated using a compiler-like code analysis tool. The DLC and DCP measures can
be easily computed once IODG's and MIG's are generated either from a design or
implementation. A tool to perform the decomposition and composition operations can
be built using a concept of program slicing (Weiser, 1994). Several slicing tools are
available (Jackson and Ladd, 1994; Lyle et al., 1995).

We have developed a tool to generate IODG information from program code, tools to
compute DFC and DLC measures from the generated IODG information, and a program
slicing tool to support the restructuring process. These tools have been integrated as part
of FUNCO, which is available for general use on the World Wide Web(Kang and Bieman,
1997). Planned developments include a tool to graphically display IODG information and
an integrated user-interface to allow easy user access to the tools for software restructuring.
We are investigating other design measures which can be used as restructuring criteria.
For example, much more work needs to be done to develop quantitative means to identify
objects in large procedural systems and restructure the code in an appropriate manner.
We also plan to evaluate the e�ects of restructuring on external quality attributes such as
testability, reusability, reliability, and maintainability.

Acknowledgements

This research was partially supported by NASA Langley Research Center grant NAG1-1461. We

thank the Journal's anonymous reviewers for their comments, which greatly improved both the

content and presentation.

APPENDIX. PROGRAM CODE RESTRUCTURING

EXAMPLE

In this appendix, we provide an original source program, print info, of the JASMIN
system and its restructured program code print inh info and print output.

A.1. Original Code: print info

/***

print_info writes given class-inheritance information in three files, a file named

by an out-parameter `string', a file named by another out-parameter `output', and

a standard output file.

***/

void print_info(char *string, char *flag, int print_it, char *output, int verbose) {

save_class *cl;

children *buffe;

parent *temp;

float childof_private_pct = 0.0,

childof_non_private_pct = 0.0,

private_pct = 0,

34

non_private_pct = 0;

FILE *fp,

*fd;

int CTG = 0,

parent_ct = 0,

private_ct = 0,

non_private_ct = 0,

num_class = 0,

num_undefined = 0,

childof_private = 0,

childof_non_private = 0,

multiple_inheritance = 0,

i;

fp = fopen(string, flag);

for(cl = class_tree; cl; cl = cl->next) {

if (cl != class_tree)

num_class++;

fprintf(fp,"class: %s\tprivate: %d\tdepth: %d\tchild: %d\tparents: %d\n",

cl->name, cl->private, cl->inh_depth, cl->child_count, cl->parent_count);

fprintf(fp,"defined: %d\n" , cl->defined);

temp = cl->parent;

while (temp) {

fprintf(fp, "parent: %s \t %d\n", temp->name, temp->scope);

temp = temp->next;

}

fprintf(fp, "parent: 0 \t %d\n", 0);

buffe = cl->child;

while (buffe) {

fprintf(fp, "child: %s\n", buffe->name);

buffe = buffe->next;

}

fprintf(fp, "child: 0\n");

if ((cl != class_tree) && cl->not_printed == 1) {

if(cl->private==1) {

childof_private += cl->child_count;

private_ct++;

}

else {

childof_non_private += cl->child_count;

non_private_ct++;

}

cl->not_printed = 0;

if (cl->parent_count >= 2)

multiple_inheritance++;

if (cl->defined == 0)

num_undefined++;

}

}

fclose(fp);

if (print_it) {

fd = fopen(output, "a");

fprintf(fd, "\n\n");

35

private_pct = 100 *((float) private_ct) / ((float) num_class);

non_private_pct = 100 *((float) non_private_ct) / ((float) num_class);

childof_private_pct = 100 * ((float) childof_private) /

((float)(childof_private + childof_non_private));

childof_non_private_pct = 100 * ((float) childof_non_private) /

((float)(childof_private + childof_non_private));

fprintf(fd, " Total | %5d\n", num_class);

fprintf(fd, " Undefined | %5d\n", num_undefined);

fprintf(fd, "\n\n");

fprintf(fd, " Private | %5d\n", private_inh);

fprintf(fd, " Non_private | %5d\n", public_inh);

fprintf(fd, " Multiple | %5d\n", multiple_inheritance);

fprintf(fd, "\n\n");

fprintf(fd, " Private || %5d %4.2f%% | %5d %4.2f%%\n",

private_ct, private_pct, childof_private, childof_private_pct);

fprintf(fd, " Non-Private || %5d %4.2f%% | %5d %4.2f%%\n",

non_private_ct, non_private_pct, childof_non_private,

childof_non_private_pct);

fprintf(fd, "\n\n");

fprintf(fd, "Nodes ");

for (i = 0; i <= depth; i++)

fprintf(fd, "%5d", child_count[i]);

fprintf(fd, "\n\n\n");

fclose(fd);

if (verbose) {

printf("\n\n");

printf("Total number of classes: %5d\n", num_class);

printf("Classes with private section: %5d \t %3.2f%%\n",

private_ct, private_pct);

printf("Classes without private section: %5d \t %3.2f%%\n",

non_private_ct, non_private_pct);

printf("Num of classes derived from classes with private sections:\n\

%5d \t %3.2f%%\n", childof_private, childof_private_pct);

printf("Num of classes derived from classes without private sections:\n\

%5d \t %3.2f%% \n",childof_non_private,childof_non_private_pct);

printf("Private inheritance: %5d \n", private_inh);

printf("Non-private inheritance: %5d \n", public_inh);

printf("Multiple inheritances: %5d \n", multiple_inheritance);

printf("Undefined classes: %5d \n", num_undefined);

printf("Tree depth: %5d \n", depth + 1);

for (i = 0; i <= depth; i++)

printf("Num of nodes in tree level %d: %d\n", i, child_count[i]);

}

}

} /* print_info */

A.2. Restructured Code: print inh info and print output

/***

print_inh_info writes given class-inheritance information in a file named by

an out-parameter `string'. Another input `flag' indicates write or append

operation of the file.

36

***/

void print_inh_info(char *string, char *flag) {

save_class *cl;

children *buffe;

parent *temp;

FILE *fp;

fp = fopen(string, flag);

for(cl = class_tree; cl; cl = cl->next) {

fprintf(fp,"class: %s\tprivate: %d\tdepth: %d\tchild: %d\tparents: %d\n",

cl->name, cl->private, cl->inh_depth, cl->child_count, cl->parent_count);

fprintf(fp,"defined: %d\n", cl->defined);

temp = cl->parent;

while (temp) {

fprintf(fp, "parent: %s \t %d\n", temp->name, temp->scope);

temp = temp->next;

}

fprintf(fp, "parent: 0 \t %d\n", 0);

buffe = cl->child;

while (buffe) {

fprintf(fp, "child: %s\n", buffe->name);

buffe = buffe->next;

}

fprintf(fp, "child: 0\n");

}

fclose(fp);

} /* print_inh_info */

/***

print_output writes given class-inheritance information in a file named by an

out-parameter `output' and standard output file based on a flag `verbose'.

***/

void print_output(char *output, int verbose) {

save_class *cl;

float childof_private_pct = 0.0,

childof_non_private_pct = 0.0,

private_pct = 0,

non_private_pct = 0;

FILE *fd;

int private_ct = 0,

non_private_ct = 0,

num_class = 0,

num_undefined = 0,

childof_private = 0,

childof_non_private = 0,

multiple_inheritance = 0,

i;

for(cl = class_tree; cl; cl = cl->next) {

if (cl != class_tree)

37

num_class++;

if ((cl != class_tree) && cl->not_printed == 1) {

if(cl->private==1) {

childof_private += cl->child_count;

private_ct++;

}

else {

childof_non_private += cl->child_count;

non_private_ct++;

}

cl->not_printed = 0;

if (cl->parent_count >= 2)

multiple_inheritance++;

if (cl->defined == 0)

num_undefined++;

}

}

fd = fopen(output, "a");

fprintf(fd, "\n\n");

private_pct = 100 *((float) private_ct) / ((float) num_class);

non_private_pct = 100 *((float) non_private_ct) / ((float) num_class);

childof_private_pct = 100 * ((float) childof_private) /

((float)(childof_private + childof_non_private));

childof_non_private_pct = 100 * ((float) childof_non_private) /

((float)(childof_private + childof_non_private));

fprintf(fd, " Total | %5d\n", num_class);

fprintf(fd, " Undefined | %5d\n", num_undefined);

fprintf(fd, "\n\n");

fprintf(fd, " Private | %5d\n", private_inh);

fprintf(fd, " Non_private | %5d\n", public_inh);

fprintf(fd, " Multiple | %5d\n", multiple_inheritance);

fprintf(fd, "\n\n");

fprintf(fd, " Private || %5d %4.2f%% | %5d %4.2f%%\n",

private_ct, private_pct, childof_private, childof_private_pct);

fprintf(fd, " Non-Private || %5d %4.2f%% | %5d %4.2f%%\n",

non_private_ct, non_private_pct, childof_non_private,

childof_non_private_pct);

fprintf(fd, "\n\n");

fprintf(fd, "Nodes ");

for (i = 0; i <= depth; i++)

fprintf(fd, "%5d", child_count[i]);

fprintf(fd, "\n\n\n");

fclose(fd);

if (verbose) {

printf("\n\n");

printf("Total number of classes: %5d\n", num_class);

printf("Classes with private section: %5d \t %3.2f%%\n",

private_ct, private_pct);

printf("Classes without private section: %5d \t %3.2f%%\n",

non_private_ct, non_private_pct);

38

printf("Num of classes derived from classes with private sections:\n\

%5d \t %3.2f%%\n", childof_private, childof_private_pct);

printf("Num of classes derived from classes without private sections:\n\

%5d \t %3.2f%% \n",childof_non_private,childof_non_private_pct);

printf("Private inheritance: %5d \n", private_inh);

printf("Non-private inheritance: %5d \n", public_inh);

printf("Multiple inheritances: %5d \n", multiple_inheritance);

printf("Undefined classes: %5d \n", num_undefined);

printf("Tree depth: %5d \n", depth + 1);

for (i = 0; i <= depth; i++)

printf("Num of nodes in tree level %d: %d\n", i, child_count[i]);

}

} /* print_output */

References

Arnold, R. (1989) `Software restructuring', Proceedings of the IEEE, 77(4), 607{617.

Baker,A.; Bieman, J.; Fenton, N.; Gustafson, D.; Melton, A. and Whitty, R. (1990) `A philosophy

for software measurement', The Journal of Systems and Software, 12(3), 277{281.

Bieman, J. and Kang, B.-K. (1995) `Cohesion and reuse in an object-oriented system', SIGSOFT

Software Engineering Notes, 20(5), 259{262.

Bieman, J. and Kang, B.-K. (1998) `Measuring design-level cohesion,' IEEE Transactions on

Software Engineering, 24(2), 111{124.

Bieman, J. and Ott, L. (1994) `Measuring functional cohesion', IEEE Transactions on Software

Engineering, 20(8), 644{657.

Bieman, J. and Zhao, J. X. (1995) `Reuse through inheritance: A quantitative study of C++

software', SIGSOFT Software Engineering Notes, 20(5), 47{52.

Briand, L.; Daly, J. and W�ust, J. (1997) `A uni�ed framework for cohesion measurement in object-

oriented systems', in Proceedings of the Fourth International Software Metrics Symposium, IEEE

Computer Society Press, Los Alamitos CA, pp. 43{53.

Briand, L.; Daly, J. and W�ust, J. (1998), `A uni�ed framework for cohesion measurement in

object-oriented systems', Empirical Software Engineering, 3(1), 65{117.

Briand, L.; Daly, J. and W�ust, J. (1999) `A uni�ed framework for coupling measurement in object-

oriented systems', IEEE Transactions on Software Engineering, 25(1), 91{121.

Briand, L.; Devanbu, P. and Melo, W. (1997) `An investigation into coupling measures for C++',

in Proceedings 19th International Conference on Software Engineering, IEEE Computer Society

Press, Los Alamitos CA, pp. 412{421.

Briand, L.; Morasca, S. and Basili, V. (1993) `Measuring and assessing maintainability at the end

of high level design', in Proceedings Conference on Software Maintenance, IEEE Computer Society

Press, Los Alamitos CA, pp. 88{95.

39

Calliss, F and Cornelius, B. (1989) `Two module factoring techniques', Journal of Software Main-

tenance: Research and Practice, 1(2), 81{89.

Chidamber, S. and Kemerer, C. (1994) `A metrics suite for object-oriented design', IEEE Trans-

actions on Software Engineering, 20(6), 476{493.

Choi, S. and Scacchi, W. (1990) `Extracting and restructuring the design of large systems', IEEE

Software, 7(1), 66{71.

Emerson, T. (1984) `A discriminant metric for module cohesion', in Proceedings of the 7th Interna-

tional Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos CA, pp.

294{303.

Esteva, J. and Reynolds, R. (1991) `Identifying reusable software components by induction', In-

ternational Journal of Software Engineering and Knowledge Engineering, 1(3), 271{292.

Fenton, N. (1994) `Software measurement: a necessary scienti�c basis', IEEE Transactions on

Software Engineering, 20(3), 199{206.

Fenton, N. and Melton, A. (1990) `Deriving structurally based software measures', The Journal of

Systems Software, 12(3), 177{187.

Fenton, N. and P
eeger, S.L. (1997) Software Metrics|A Rigorous and Practical Approach, Inter-

national Thompson Computer Press, London, 638 pp.

Ferneley, E. (1999), `Design metrics as an aid to software maintenance: an empirical study', Journal

of Software Maintenance: Research and Practice, 11(1), 55{72.

Gallagher, K. and Lyle, L. (1991) `Using program slicing in software maintenance', IEEE Trans-

actions on Software Engineering, 17(8), 751{761.

Griswold, W. and Notkin, D. (1993) `Automated assistance for program restructuring', ACM

Transactions on Software Engineering and Methodology, 2(3), 228{269.

Griswold, W. and Notkin, D. (1995) `Architectural tradeo�s for a meaning-preserving program

restructuring tool', IEEE Transactions on Software Engineering, 21(4), 275{287.

Gustafson, D.; Tan, J. and Weaver, P. (1993) `Software measure speci�cation', in Proceedings of

the First ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM Press, New

York NY, pp. 163{168.

Hitz, M. and Montazeri, B. (1995) `Measuring coupling and cohesion in object-oriented systems', in

Proceedings of the International Symposium on Applied Corporate Computing, XXXXX, pp. 75{76,

197, and 78{84.

Jackson, D. and Ladd, D. (1994) `Semantic Di�: A tool for summarizing the e�ects of modi�cations',

in Proceedings International Conference on Software Maintenance, IEEE Computer Society Press,

Los Alamitos CA, pp. 243{252.

Kang, B.-K. and Bieman, J. (1996) `Using design cohesion to visualize, quantify, and restructure

software', in The 8th International Conference on Software Engineering and Knowledge Engineer-

ing, Knowledge Systems Institute, Skokie IL, pp. 222{229.

Kang, B.-K. and Bieman, J. (1997) Funco|A Functional Cohesion Software Measurement Tool

for C Programs, Computer Science Department, Colorado State University, Fort Collins CO, URL

http://www.cs.colostate.edu/~bieman/funco.html

40

Kang, B.-K. and Bieman, J. (1998) `Using design abstractions to visualize, quantify, and restructure

software', The Journal of Systems and Software, 42(2), 175{187.

Kim, H.-S.; Kwon, Y.-R. and Chung I.-S. (1994) `Restructuring programs through program slicing',

International Journal of Software Engineering and Knowledge Engineering, 4(3), 349{368.

Lakhotia, A. (1993) `Rule-based approach to computing module cohesion', in Proceedings 15th

International Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos

CA, pp. 35{44.

Lano, K. and Haughton, J. (1992) `Extracting design and functionality from code', in Proceedings

of the Fifth International Workshop on Computer-Aided Software Engineering, IEEE Computer

Society Press, Los Alamitos CA, pp. 74{82.

Lehman, M. (1980) `Programs, lifecycles, and laws of software evolution', Proceedings of the IEEE,

68(9), 1060{1076.

Loyall, J. and Mathisen S. (1993) `Using dependence analysis to support the software maintenance

process', in Proceedings Conference on Software Maintenance, IEEE Computer Society Press, Los

Alamitos CA, pp. 282{291.

Lyle, J.; Wallace, D.; Graham, J.; Gallagher, K.; Poole, J. and Binkley, D. (1995) Unravel: A

CASE Tool to Assist Evaluation of High Integrity Software, Technical Report NIST IR 5691,

U.S. Department of Commerce, Technology Administration, National Institute of Standards and

Technology, Computer Systems Laboratory, Gaithersburg MD, 124 pp.

McCabe, T. (1976) `A complexity measure', IEEE Transactions on Software Engineering, SE-2(4),

308{320.

Melton, A.; Gustafson, D.; Bieman, J. and Baker, A. (1990) `A mathematical perspective for

software measures research', Software Engineering Journal, 5(5), 246{254.

M�uller, H.; Orgun, M.; Tilley, S. and Uhl, J. (1993) `A reverse-engineering approach to subsystem

structure identi�cation', Journal of Software Maintenance: Research and Practice, 5(4), 181{204.

Myers, G.J. (1978) Composite/Structural Design, Van Nostrand Reinhold, New York NY, 1978,

174 pp.

Nandigam, J.; Lakhotia, A. and �Cech, G. (1999) `Experimental evaluation of agreement among

programmers in applying the rules of cohesion', Journal of Software Maintenance: Research and

Practice, 11(1), 35{53.

Ning, J.; Engberts, A. and Kozaczynski, W. (1993) `Recovering reusable components from legacy

systems by program segmentation,' in Proceedings of the Working Conference on Reverse Engi-

neering, IEEE Computer Society Press, Los Alamitos CA, pp. 64{72.

Ott, L. and Thuss J. (1989) `The relationship between slices and module cohesion', in Proceedings

11th International Conference on Software Engineering, IEEE Computer Society Press, Washington

DC, pp. 198{204.

Ottenstein, K. and Ottenstein [Ott], L. (1984) `The program dependence graph in a software

development environment', SIGPLAN Notices, 19(5), 177{184.

Pressman, R. (1997) Software Engineering: a Practitioner's Approach Fourth Edition, McGraw

Hill, New York NY, 852 pp.

41

Stevens, W.; Myers, G. and Constantine, L. (1974) `Structured design', IBM Systems Journal,

13(2), 115{139.

Tesch, D. and Klein, G. (1991) `Optimal module clustering in program organization', in Proceedings

of the Twenty-Fourth Annual Hawaii International Conference on System Sciences, Volume 2, IEEE

Computer Society Press, Washington DC, pp. 238{245.

Weiser, M. (1984) `Program slicing', IEEE Transactions on Software Engineering, 10(4), 352{357.

Woodward, M. (1993) `Di�culties using cohesion and coupling as quality indicators', Software

Quality Journal, 2(2), 109{127.

Zima, H. and Chapman, B. (1991) Supercompilers for Parallel and Vector Computers, ACM Press,

New York NY, 376 pp.

Zimmer, J. (1990) `Restructuring for style', Software Practice and Experience, 20(4), 365{389.

Authors' biographies:

Byung-Kyoo Kang is a Senior Member of Technical Sta� at Technology Deployment Interna-

tional, Inc. in Santa Clara California. He was a Senior Member of Technical Sta� in the Software

Engineering division of the Electronics and Telecommunications Research Institute (ETRI) in Ko-

rea in 1997 and 1998. He received a Ph.D. in Computer Science from Colorado State University in

1997. He also received an M.S. in Computer Science from Washington University in St. Louis, and

a B.S. in Computer Science from Western Illinois University. His email address is kang@tdiinc.com

James M. Bieman is an Associate Professor in the Computer Science Department at Colorado

State University. His research is focused on software design evaluation and improvement, and

automated software testing. Jim is currently the Chair of the IEEE-CS TCSE Subcommittee

on Quantitative Methods, and Chair of the Steering Committee for the IEEE-CS International

Symposium on Software Metrics. He was General Chair of Metrics'93 and Metrics'97. He received

a Ph.D. and an M.S. in Computer Science from the University of Southwestern Louisiana, a Master

of Public Policy from the University of Michigan, and a B.S. in Chemical Engineering from Wayne

State University. His email address is bieman@cs.colostate.edu

42

