
Challenges of Aspect-oriented Technology

Roger T. Alexander
Colorado State University

Department of Computer Science
Fort Collins, Colorado 80523

01-970-491-7026
rta@cs.colostate.edu

James M. Bieman
Colorado State University

Department of Computer Science
Fort Collins, Colorado 80523

01-970-491-7096
bieman@cs.colostate.edu
ABSTRACT
Aspect-oriented technology is a new programming paradigm
that is receiving considerable attention from research and
practitioner communities alike. It deals with those concerns
that crosscut the modularity of traditional programming
mechanisms, and its objectives include a reduction in the
amount of code written and higher cohesion. As with any
new technology, aspect-oriented technology has both
benefits and costs. In this position paper, we explore these
costs in terms of their impact on software engineering. We
seek to understand both the strengths and limitations of this
new technology, and to raise awareness of the potential
negative side effects of its use. 

1. INTRODUCTION
Many researchers and industrial practitioners are exploring
the benefits and uses of aspect-oriented technology. There
seems, however, to be little ongoing research into the costs
and effects. At first glace, as with most new technologies, the
benefits are promising. However, each new technology
brings with it a set of costs. In this position paper, we explore
these costs in terms of their impact on software engineering.
We seek to understand both the strengths and limitations of
this new technology, and to raise awareness of the potential
negative side effects of its use. Hopefully, the issues and
questions that we identify will help to mature this technology
and make it a practical tool for the development of robust
and high quality software.

The remainder of this paper is organized as follows. Section
2 presents background information on aspect-oriented
technology. Sections 3 through 6 then present problem areas
that pose significant challenges to the effective use of this
technology. Finally, Section 7 presents conclusions and
questions for further research.

2. BACKGROUND
Aspect-oriented programming is a new technology for
dealing explicitly with separation of concerns in software

development. In particular, it deals with those concerns that
crosscut the modularity of traditional programming
mechanisms. For example, code that implements a particular
security policy would have to be distributed across a set of
classes and methods that are responsible for enforcing the
policy. However, with aspect-oriented technology, the code
implementing the security policy could be factored out from
all the classes to an aspect. Thus, the aspect localizes in one
cohesive place the code that affects the implementation of
multiple classes and methods [1, 2].

Aspects make it possible to create cohesive modules that
implement specific concerns that otherwise would have to be
distributed across many primary abstractions. By placing
these concerns separately in an aspect, the primary
abstractions are made more cohesive since their
implementations are relieved of the burden of managing
concepts unrelated to their purpose. For example, all code
implementing a particular sychronization policy could be
placed in a single aspect. Later, this code would be
integrated with the classes that must support this policy by a
process known as weaving. Weaving injects the code of an
aspect into well-defined locations, called joinpoints, in the
syntactic structure of a primary abstraction.

The practical consequence of writing aspects is that less code
is written. All the code that would otherwise be distributed
throughout a collection of primary abstractions is now
localized, thus reducing redundancies. A key observation
here is that the originally distributed code actually has a
modular structure of its own, and this is the key idea behind
aspect-oriented programming [1].

3. UNDERSTANDABILITY
One of the fundamental principles of software engineering is
that designs and implementations should exhibit low
coupling. In general, software that exhibits these properties
is much easier to understand. However, there are cases where
this principle is sacrificed to some degree as a trade-off for
other benefits afforded by new technology. A notable
example of this is the use of inheritance in object-oriented
technology where the implementation of descendants are
often tightly coupled to their parents. Thus, to understand a
child often requires understanding of its parents. Further, a
change in the implementation of a parent often requires a
change in the child. However, this cost is offset by the
benefits of polymorphism and dynamic binding.

Aspect-oriented technology has similar issues. First, since an

bieman
Published in Proc. ICSE 2002 Workshop on Software Quality, 2002.



aspect cannot stand on its own [3], understanding the aspect
requires knowledge of the primary abstractions it is weaved
into. The inverse of this is also true: to understand a primary
abstraction also requires understanding the aspects that will
be woven together. Thus, a many-to-many relationship can
exist between aspects and the primary abstractions they
integrate with. 

To understand one aspect potentially requires the
understanding of many others. To exacerbate this, it possible
that multiple aspects woven into a primary abstraction class
can interact in ways that are difficult to understand and result
in emergent behaviors that are unexpected and beyond the
composite specification of the woven artifacts. This leads
not only to difficulties in understanding, but also has the
potential to manifest faults that are extremely difficult to
diagnose (see Section4). The key question to be answered is
are the benefits of this technology worth the costs?

4. EMERGENT PROPERTIES AND FAULT RESOLU-
TION
When a failure occurs, the first challenge is in diagnosing the
failure and detecting the fault. In non-aspect-oriented
programs, this means examining the code and possibility
instrumenting with probes to isolate and localize the fault.
With aspect-oriented programs, the model is similar.
However, it is not sufficient to solely examine the code of
the primary abstraction. Instead, the code of the woven
aspects must also be examined. The consequence of the
weaving process is that the fault may be located in one of
several places. There are four alternatives that must be
considered:

• The fault resides in a portion of the primary abstrac-
tion that is not affected by a woven aspect. The fault is
unaffected by the data and control dependencies induced
by the woven aspect. Thus, the fault is peculiar to the pri-
mary abstraction and could occur if there was no weav-
ing. 

• The fault resides in code that is specific to the aspect.
isolated from the woven context. In this case, the fault
would be present in any composition that included the
aspect. However, the fault resides in aspect code that is
independent of the data and control dependencies
induced by the weaving process.

• The fault is an emergent property that results from
some interaction between the aspect and the primary
abstraction. This would occur when the result of the
weaving process introduces additional data or control
dependences not present in the primary abstraction or the
aspect alone. Instead, these dependencies arise from the
integration and interaction of code and data between the
primary abstraction and the aspect. 

• The fault is an emergent property of a particular
combination of aspects woven into the primary
abstraction. This is a more insidious version of the third
alternative, but compounded by the integration and inter-
action of data and control dependences from multiple
aspects combined with those occurring in the primary
abstraction. The fault may or may not exist with a differ-
ent combination of aspects with respect to the primary

abstraction.

With the exception of the first, each of the above alternatives
likely results in a (possibly non-linear) increase in the testing
effort required to achieve a given level of quality.

5. IMPLICIT CHANGES IN SYNTACTIC STRUC-
TURE AND SEMANTICS
Depending on how they are used, aspects have the potential
to alter the syntactic structure and semantics of a primary
abstraction. In one scenario, aspects are the result of
refactoring code common to many primary abstractions and
aggregating the code within an aspect [3]. The justification
for doing this is that the code represents a cross-cutting
concern that is integrated within many distinct abstractions.
The refactoring results in smaller implementations of the
respective abstractions, and, to a degree, allows the cross-
cutting concern to be treated as a distinct entity of its own.
The result of weaving the aspect back into the corresponding
abstractions should result in behavior that is identical to that
of the original non-factored implementations.

The second scenario is almost the inverse of the first. Instead
of refactoring code from primary abstractions and
aggregating to form the implementation of the aspect, the
aspect is defined independently with respect to some cross-
cutting concern not present in the primary abstractions (e.g. a
synchronization or security policy) [4]. In this model, the
cognitive burden shifts from understanding the
commonalities of existing code to that of defining a new
behavior that must be pushed into the primary abstractions.
This shift in burden requires that the aspect author
understand, at a detailed level, both the syntactic structure
and semantics of each primary abstraction that will be
affected by the aspect.

Regardless of which scenario is used, control and data
dependencies of the composition resulting from the weaving
process will be different from that of the primary abstraction.
Also, in most cases, the control and data dependencies of the
aspect are incomplete. This will be the case when the code
and data dependencies of the aspect are dependent upon the
context provided by the primary abstraction. Thus, it will not
be until weave-time that the dependencies are resolved.
Further, since an aspect has the potential to be woven into
many primary abstractions, the set of concrete control and
data dependencies that result are likely to be disparate.

6. EFFECTS ON COGNITIVE BURDEN
Weaving results in a change in the cognitive model of the
author of a primary abstraction A, potentially leading to
cognitive non-determinism. Each woven aspect that induces
mutual data and control dependencies with A increases the
cognitive distance between the woven implementation IW
and A’s implementation IA. Thus, what the author knew to be
true of IA may know longer be true of IW. The root of this
difficulty is that weaving can alter base assumptions made
by the author of a IA, and has the potential to inject new
assumptions in IW that are inconsistent with those of IA.

Another effect on cognitive burden is the specification of the
woven artifact W. Weaving necessarily begins with the



specification of A that forms the base of W, but must also
account for the behavioral modifications induced by the
woven aspects. From the perspective of a client of A, the
specification of W needs to be behaviorally compatible with
A’s. Thus, a challenge for an aspect author is to ensure that
the behavior of a woven artifact is no stronger than that of
the primary abstraction it is based on. 

How does an author know that his aspect will not cause
undesirable emergent properties after weaving? This is
particularity difficult if the aspect is to be woven with other
aspects and with potentially many different primary
abstractions. 

A further complication arises when the collection of aspects
to be woven are written by different authors (a likely
scenario in a large system). For this to be effective, each
author must have knowledge of the set of primary
abstractions that their aspects can be woven with. Further,
each must have knowledge of the other aspects that they
make use of, either by direct composition or indirectly as the
result of weaving.

7. CONCLUSION
This position paper has presented a number of areas that are
problematic for the effective use of aspect-oriented
technology. Many of these raise significant concerns that
should be understood before this technology can mature. To
that end, the following research questions need further
investigation:

• How do we measure the complexity that results from
the weaving process? Can this be predicted prior to
weaving?

• Can we control or minimize the cognitive distance
induced by the weaving process? Are there ways to
model the effects of a set of aspects on a primary abstrac-
tion, making apparent the effects of weaving?

• How do we maintain aspect-oriented programs? Simi-
lar to the fragile-base class problem [5], changes to the
primary abstraction that form the basis for a woven com-
position have the potential to require changes to the
woven aspects. Also, changes to woven aspects may
induce faults in other aspects. Thus, mechanisms are
needed to understand the actual extent and impact of a
potential change.

• How do we effectively test aspect-oriented programs?
What new test adequacy criteria must be defined? Are
the existing techniques sufficient?

• How do we analyze aspect-oriented programs? What
representations are needed? Representations that simply
reflect the static pre-woven structure are necessary, but
not sufficient. New representations and tools are needed
that take into the account the effects of weaving and that
can identify potential emergent properties that can induce
faults.

Author Information
Roger Alexander is an Associate Professor of Computer
Science at Colorado State University. He spent many years
in industry as a software developer (and researcher)
including experience at the Software Productivity
Consortium, Michael Jackson Systems, and Cigital
(formerly Reliable Software Technologies). His work is
focused on the testing, reverse engineering, maintenance,
design, and implementation of high-quality software.

Jim Bieman is the Editor-in-Chief of the Software Quality
Journal and Associate Professor of Computer Science at
Colorado State University. His work is focused on the
evaluation and improvement of software design quality.

REFERENCES

1. Elrad, T., R.E. Filman, and A. Bader, Aspect-oriented pro-
gramming: Introduction. Communications of the ACM, 
2001. 44(10): p. 29-32.

2. Elrad, T., et al., Discussing aspects of AOP. Communica-
tions of the ACM, 2001. 44(10): p. 33-38.

3. Kiczales, G., et al. An Overview of AspectJ. in 15th Euro-
pean Conference on Object-Oriented Programming. 2001. 
Budapest, Hungary.

4. The AspectJ Team, The AspectJ(TM) Programming 
Guide. 2002, Xerox Corporation.

5. Mikhajlov, L. and E. Sekerinski. A Study of The Fragile 
Base Class Problem. in 12th European Conference on 
Object-Oriented Programming (ECOOP '98). 1998. Brus-
sels, Belgium: Springer-Verlag.




