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SUMMARY

Automated program repair (APR) tools apply fault localization (FL) techniques to identify the locations of
likely faults to be repaired. The effectiveness and performance of APR depends in part on the FL method
used. If FL does not identify the location of a fault, the application of an APR tool will not be effective — it
will fail to repair the fault. If FL assigns a faulty location a low priority for repair, the performance of APR
will be reduced, increasing the time required to find a repair. In this paper, we evaluate the impact of five FL
techniques (Jaccard, Optimal, Ochiai, Tarantula, and the GenProg Weighting Scheme) on the effectiveness
and performance of a brute force APR tool when applied to faulty versions of the Siemens Suite and two
other large programs: space and sed. All FL techniques were effective in identifying all faults except Optimal
which failed to identify faulty locations in two faulty versions of the space subject program. We obtained
the best APR performance when Optimal was used. However, Ochiai’s performance was noteworthy since
it always assigned faulty statements at an equal or higher priority for repair than other FL techniques with
acceptable performance.
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1. INTRODUCTION

Debugging is an expensive process [1] that includes locating software faults and fixing them.
Automated program repair (APR) refers to techniques that locate and fix software faults
automatically, which promises to dramatically reduce debugging costs.

APR techniques apply fault localization (FL) to guide a repair tool towards code segments that
are more likely to contain faults. Then an APR tool can modify the code most likely to contain faults
until a repair is found. FL techniques compute a suspiciousness score to indicate the likelihood that
each statement contains a fault. A list of potentially faulty statements (LPFS), ordered by their
suspiciousness, is created for use by the repair tool.
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2 F.Y.ASSIRI AND J.M.BIEMAN

The effectiveness and performance of APR can be impacted by the selected FL technique. APR
effectiveness is the ability to fix faults, while performance is the time or number of steps required to
find a repair. An ineffective fault localization technique might mislead the repair process by missing
the locations where a fault hides, assigning a low score to a faulty statement, or identifying too
many statements that might contain the faults. Missing faulty locations will lower APR effectiveness
by failing to find a repair. Assigning a low score to a faulty statement will not decrease APR
effectiveness, but it will reduce APR performance since the APR will unproductively modify
many fault-free statements before reaching the faulty statement. On the other hand, identifying
too many locations might improve APR effectiveness by increasing the chance of finding a repair,
but with potentially poor performance. In the worst case, a fault localization technique can mark
all statements in a program as potentially faulty locations, which can decrease the performance of
APR dramatically especially with large programs. Le Goues et al. [2] found that for APR “time
is governed” by the number of potentially faulty locations rather than program size. Thus, a fault
localization technique that marks fewer statements, and/or places the faulty statement at the head
of the LPFS will decrease the number of variants generated by an APR technique until a repair is
found, thus improving APR performance.

Different FL techniques have been used with APR to locate potential faults. Weimer et al. [3, 4]
apply a simple Weighting Scheme that assigns weight values to statements based on their execution
by passing and failing tests. Higher weight is assigned to statements that are executed only by
failing tests, and lower weights are assigned to statements that are executed by both passing and
failing tests. They excluded statements that are only executed by passing tests to prevent changing
correct statements. Debroy and Wong [5], and Nguyenet et al. [6] use the Tarantula fault localization
technique [7, 8, 9] to rank program statements based on their likelihood of containing faults. Using
better fault localization techniques can identify faulty statements more quickly, thus improving APR
effectiveness and performance.

The effectiveness of different fault localization techniques on automated program repairs has
been evaluated by Qi et al. [10]. Their evaluation used GenProg, an APR tool that implements a
random search algorithm (a genetic algorithm) to find the optimal solution from the solution space.
The randomness of the search algorithm might affect the accuracy of the reported results since
there is dependency between the accuracy of the fault localization technique and the randomness
of the search algorithm. The FL technique might accurately locate a faulty statement, but the
search algorithm can select mutation operators that do not fix the fault. A brute-force algorithm
is guaranteed to fix a fault if a repair is possible. Thus, to evaluate the effect of FL on APR
performance and effectiveness, we evaluate FL techniques with an APR that applies a brute-force
search algorithm.

We studied the impact of four well known fault localization techniques: Jaccard, Optimal, Ochiai,
and Tarantula. We also used the Weighting Scheme employed by GenProg as a baseline. Our
evaluation was conducted on six subject programs that include large programs (more than 14K
LOC). Our results showed that Optimal improved APR performance but it failed to identify faulty
statements in two of the trials, which decreased APR effectiveness. All four fault localization
techniques improved APR performance compared to the Weighting Scheme used by GenProg.
Optimal and Tarantula assigned low priority (place them far from the head of the LPFS) to faulty
statements in 6 trials, and Jaccard assigned low priority to faulty statements in 3 trials. Ochiai always
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Figure 1. Overall Automated Program Repair (APR) Process

assigned the same priority or higher (near the head of the LPFS) for the faulty statements compared
to other FL techniques, and it did not degrade the performance.

The main contributions of this paper are the following:

• A framework for comparing FL techniques in terms of their impact on the performance and
effectiveness of automated program repair. The MUT-APR evaluation framework is built by
adapting GenProg to (1) fix operator faults, (2) use a brute-force search, and (3) apply four
additional FL techniques.

• A determination of the impact of FL techniques on an APR tool’s ability to repair a faulty
statement. We found that Optimal decreased APR effectiveness compared to the other four
alternatives.

• Our results show that the differences in performance between the GenProg Weighting
Scheme and the four alternative FL techniques (Jaccard, Optimal, Ochiai, and Tarantula)
are significant, while differences between the alternatives are not significant.

2. BACKGROUND

2.1. Automated Program Repair (APR)

An automatic program repair process takes a faulty program and set of repair tests, and produces a
repaired program. Figure 1 describes the overall organization and activities of APR techniques. An
APR technique consists of three main steps: fault localization (step 1), program modification (step
2), and variant validation (step 3).
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4 F.Y.ASSIRI AND J.M.BIEMAN

Table I. The dynamic behavior of the faulty program gcd when executed against tests in T1, ..., T5. Sus.
Score is the suspiciousness score computed using Tarantula.

Stmt ID Stmt T1 T2 T3 T4 T5 Sus. Score

gcd (int a, int b) {
1 if(a < 0) //fault X 1.0
2 { printf(“%g \n ”, b) ; 0.0
3 return 0 ; } 0.0
4 while(b ! = 0) X X X X X 0.5
5 if(a > b) X X X X 0.57
6 a = a − b ; X X 0.0
7 else X X X X 0.57
8 b = b − a ; X X X X 0.57
9 printf(“%g \n ”, a) ; X X X X 0.0

10 return 0 ; X X X X 0.0
}

Faulty locations that are more likely to contain a fault are identified by a fault localization
technique. A faulty program is modified by using a set of mutation operators that change the code in
the faulty locations to generate a new copy of the faulty program, which is called a variant or patch.
Some APR techniques generate a variant from a variant produced in prior iterations. The variant is
validated by executing it against a set of repair tests, regression tests, or formal specifications. The
variant is called a repair if it passes all repair tests. The repair process stops when it finds a validated
variant producing a repaired program, or when the predefined parameters have reached their limits.

2.2. Fault Localization Techniques (FL)

Fault localization techniques were introduced in order to guide developers towards the most
suspicious statements to check during debugging. Lately, FL techniques are employed by APR to
guide search algorithms towards statements that are more likely to hide faults than other non faulty
statements (step 1 in Figure 1). Thus, applying FL helps to fix faults faster without breaking other
required functionality.

FL techniques locate potentially faulty locations in the source code by computing a
suspiciousness score for each statement that indicates its likelihood of containing a fault. Then,
statements are ordered based on their suspiciousness. Developers can use the suspiciousness score
to order their search for a fault to debug.

Spectrum-based fault localization (SBFL) [11, 12, 13, 8, 14, 15, 16] is a common approach
that compares the program behavior of a passing execution to a failing execution. SBFL collects
information on the dynamic behavior of program statements when they are executed against each
test in a test suite. SBFL methods record the number of passing and failing tests executed for each
statement, and compute the suspiciousness score for each statement. Statements that are executed
more during a failing run are considered to be more likely to contain faults, thus are assigned a higher
suspiciousness score than other statements in the program. Many heuristics have been proposed to
compute statement suspiciousness scores [11, 7, 8, 17, 15, 15, 18].

To illustrate how FL techniques rank program statements using the computed suspiciousness
scores, we used the C program in Table I, which computes the Eculid’s greatest common divisor.

FL techniques record the dynamic behavior of program statements when a program is executed
against a set of tests by counting the number of passing and failing tests for each statement. Each
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Table II. List of Potentially Faulty Statements (LPFS) in format used by APR tool

Statement ID Suspiciousness score

1 1.0
5 0.57
7 0.57
8 0.57
4 0.5

FL technique uses a formula to compute suspiciousness scores. This example uses five test inputs
TS = T1, T2, T3, T4, T5 in which T1, T2, T3, and T4 are passing tests, and T5 is a failing test, and
Tarantula computes suspiciousness score for each statement. A list of potentially faulty statement
(LPFS), which consists of statement IDs and their suspiciousness scores is created and sorted
(Table II). The LPFS contains all statements with a suspiciousness score greater than zero, and
will be used by the APR tool.

3. BRUTE-FORCE APR

APR processes apply a search algorithm to select a mutation operator from a pool of mutation
operators to modify a suspicious statement (step 2 in Figure 1). A brute-force search algorithm
applies all possible changes to the program until a repair is found. In contrast, a genetic algorithm
applies mutation and crossover operators to modify a faulty program. A genetic algorithm randomly
selects mutation operators from a pool of mutation operators, and a crossover operator combines
changes from two parent variants to generate a new child variant. A genetic algorithm does not
guarantee a repair due to its randomness.

In this study, we apply a brute-force APR process to eliminate the randomness of a genetic
algorithm, and to guarantee a repair when the FL technique identifies the faulty statements and the
repair is supported by the set of mutation operators.

For each mutable statement (mutable statement is a program construct that can be changed by
one of the supported mutation operators) from the LPFS, brute-force applies all possible mutation
operators. Mutation operators are applied in a predefined order. If no repair is found by changing the
first potentially faulty statement to all its possible alternatives (w.r.t. the set of mutation operators
that are supported by the APR tool), the next statement is modified and so forth. A brute-force search
algorithm runs until a repair is found or all possible combinations are executed.

Algorithm 1 describes how the brute-force algorithm fixes faults. It produces a variant (repaired
program) from a faulty program, an LPFS produced by an FL technique, and a maximum fitness
value that determines if a repair is found or not. A variant is a copy of the faulty program with
one modification. The algorithm modifies statements sequentially. It takes the first statement in the
LPFS, and checks if it contains an operator (line 4). If the operator is mutable, it applies all possible
alternatives (line 5-10). Each change creates a variant (line 7). The fitness value is computed for
each generated variant (line 8) by executing it against the repair tests (one of the inputs to the repair
process in Figure 1). If a variant that passes all repair tests is found (in other words, the variant has
a fitness value equal to the maximum fitness value), a repair is found. If not, the process continues
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Algorithm 1 Brute-Force Pseudocode
1: Inputs: Program P , List of Potentially Faulty Statements LPFS, and maximum fitness value
2: Output: Variant
3: for i=0 to length(LPFS)-1 do
4: let stmtOp = checkOp(stmti),
5: for all mutation operators mOp for stmtOp do
6: repeat
7: let variant= apply(stmti, stmtOp,mOp)
8: let variant fitness= computeFitness (variant)
9: until variant fitness= maximum fitness || mOp is the last mutation operator for stmti

10: end for
11: if i != last index in the LPFS then
12: i++
13: end if
14: end for
15: return variant

with the next statement in the LPFS until a repair is found (line 9) or the algorithm reaches the last
statement in the LPFS without a repair.

The brute-force search algorithm guarantees a repair if the fault is related to one of the mutation
operators supported by APR technique, but it can be infeasible with large programs. A good FL
technique assigns higher weight to the faulty statement (places it near the head of the LPFS). Then,
APR modifies the most suspicious statements before modifying other non-faulty statements. Thus
it finds a repair by modifying fewer statements. A good FL technique improves performance by
decreasing the number of variants generated and total time required to find a repair.

Using a brute-force APR process allow us to accurately measure the impact of the FL technique
since a repair is guaranteed. We conduct an evaluation to measure the impact of FL techniques on
the brute-force APR process.

4. STUDY AND METHOD

In this section we report the results of evaluating the impact of five FL techniques on the
performance and effectiveness of brute-force APR using six C programs of different sizes. We used
many faulty versions for each subject program. Nineteen faulty versions with a total of 22,298 lines
of code are used in our evaluation.

4.1. Research Questions and Evaluation Metrics

Our evaluation study is designed to answer the following research questions:

RQ1: What is the relative APR effectiveness when different FL techniques are employed?
APR effectiveness is the ability to fix faults. We compare the effectiveness of an APR tool when

using five different FL techniques to identify a faulty location. An FL technique that successfully
determines faulty locations improves APR effectiveness. On the other hand, an FL technique that
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fails to identify faulty locations limits APR effectiveness.

RQ2: Which FL technique assigns higher priority to faulty statements?
We are concerned with the accuracy of FL techniques in identifying faulty statements. We

measure the priority of a statement by its position in the LPFS produced by the FL technique. The
position of a statement in the LPFS is its LPFS rank. Statements with higher suspiciousness scores
are placed near the head of the list, thus have a lower LPFS rank compared to other statements. For
example, in Table II statement ID 1 has the lowest (best) LPFS rank (LPFS rank =1) since it has the
highest suspiciousness score. On the other hand, statement ID 4 has the highest (worst) LPFS rank
(LPFS rank = 5).

We compared the LPFS rank of the faulty statement using the LPFS that is created by each FL
technique. An FL technique that assigns higher suspiciousness score to the faulty statement, placing
it near the head of the LPFS (lower LPFS rank), improves APR performance compared to another
FL technique that places the faulty statement far from the head of the LPFS (higher LPFS rank).

RQ3: How does the use of different FL techniques affect the number of generated variants (NGV)
until a repair is found?

NGV, defined by Qi et al. [10], measures the number of generated variants until a repair (a variant
that passes all repair tests) is found. We compared NGV when applying a brute-force APR using
different FL techniques (lower NGV is better). An FL technique that assigns a low LPFS rank to
a faulty statement requires fewer statements to be modified, thus creating fewer variants (reducing
NGV).

The difference between the LPFS rank metric (used for RQ2) and NGV is that the LPFS rank
metric is totally dependent on the FL technique; however, NGV can be influenced by the number of
mutable statements with lower LPFS ranks than the faulty statement. For example, consider the use
of two FL techniques (FL1 and FL2) to identify a faulty statement in the gcd program. FL1 creates
List1 (Table III), and FL2 creates List2 (Table IV). Both techniques assign the same LPFS rank
for the faulty statement (the faulty statement, statement 1, in both lists has a rank = 3). However,
NGV depends on the number of mutable statements prior to the faulty statement. List1 consists
of two statements prior to the faulty statement (statement 2 and 3) but neither can be mutated by
MUT-APR mutation operators; thus NGV can be equal to any value between 1 and 5 (depending
on the order of the application of alternative mutation operators that transform faulty operator <
into the correct one ==). On the other hand, List2 consists of two mutable statements prior to the
faulty statement (statement 5 and 8), thus NGV can be equal to any value between 2 and 10.

RQ4: Does the use of different FL techniques affect the total time required to find a repair?
We computed the total time required to find a repair. Total time includes the total time needed to

generate a new variant, compile and execute each generated variant on the repair tests, and compute
its fitness values. We compared the total time, measured in seconds, when each FL technique is
used.
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8 F.Y.ASSIRI AND J.M.BIEMAN

Table III. List1: List of Potentially Faulty Statements (LPFS) for gcd created by FL1

Statement ID Suspiciousness score

2 0.96
3 0.91
1 0.80
5 0.71
7 0.68
8 0.57
4 0.5

Table IV. List2: List of Potentially Faulty Statements (LPFS) for gcd created by FL2

Statement ID Suspiciousness score

5 0.96
8 0.91
1 0.80
2 0.72
3 0.6
4 0.5
10 0.5

Table V. Benchmark programs. Each Program is an original program from the SIR [19]. LOC is the number
of lines of codes. #Faulty Versions is the number of faulty versions. Average # Repair Tests is the average

number of repair tests for each faulty version.

Program LOC # Faulty Versions Average # Repair Tests

tcas 173 4 6.4
replace 564 5 19

schedule2 374 2 9
tot info 565 4 8
space 6195 2 38.4
sed 14427 2 28

Total 22298 19 108.9

4.2. Subject Programs

To evaluate our approach, we used six C programs from the Software artifacts Infrastructure
Repository (SIR) [19] along with a comprehensive set of test inputs. We used the Siemens Suites:
tcas, replace, schedule2, and tot info. We also used two larger programs: space and sed. Subject
programs have sizes ranging from 173 to 14K lines of code; each program is seeded with a single
fault. We used multiple faulty versions for each subject program. Faulty versions are taken from
the SIR. We also used Proteum/IM 2.0 [20], which is a C mutation tool, to create additional faulty
versions. Our study includes nineteen faulty versions. Table V identifies the subject programs along
with their size, the number of faulty versions (after removing equivalent mutants), and the average
size of repair tests.

4.3. Repair Tests

One of the inputs to an APR tool is a set of repair tests. We selected a set of repair tests that have
at least one failing test, and one passing test. Failing tests execute faults, and passing tests protect
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FAULT LOCALIZATION FOR AUTOMATED PROGRAM REPAIR 9

program functionality. Repair tests for the Siemens Suites are taken from the SIR repository. Test
suites for the large programs provided by the SIR contain too many test inputs, which will slow
the APR process, since repair tests are used to validate each generated variant. We created repair
tests for each large program containing at least one failing test and 20 passing tests following Qi et
al.[10]. In addition, a study by Abreu et al. [15] found that fault localization techniques give a stable
behavior when no less than 20 test inputs are used. To validate our results, we repeated the study
for each faulty version using five different repair tests that are selected/created randomly using test
data provided by the SIR except for two versions of tcas program (tcas-v5 and tcas-25), which used
three and one repair tests, respectively, since there are no other test suites that execute faults. The
average number of repair tests can be found in the last column of Table V.

4.4. Fault Localization Techniques

We used the FL technique employed by GenProg [3, 4, 21, 2], called the Weighting Scheme, as a
baseline. We compared the results of using the Weighting Scheme to the four other fault localization
techniques: Jaccard, Ochiai, Optimal, and Tarantula. We selected these four FL techniques for the
following reasons:

1. Ochiai was identified as a highly effective FL technique from a developer point of
view [15, 22].

2. Jaccard was identified as the most effective FL technique with GenProg [10].
3. Tarantula was used in prior work with APR techniques [5, 6].
4. Optimal is one of the recent proposed heuristics which was found to be more effective than

Ochiai and Jaccard from a developer point of view [18].

We used the implementation of the Weighting Scheme from the GenProg framework, and we
implemented Jaccard, Ochiai, Optimal, and Tarantula using about 300 LOC of OCaml code.

4.5. Automated Program Repair Tool

To fix faults, we used our MUT-APR repair tool [23]. MUT-APR was build by adapting the GenProg
version 1 framework [3, 4, 21, 2]. Unlike GenProg which makes use of existing code in the subject
program to repair faults, MUT-APR applies a set of mutation operators that construct new operators
to replace faulty ones within a genetic algorithm. For this paper, we replaced the genetic algorithm
in MUT-APR with a brute-force search algorithm, and added support for the use of different FL
techniques applying the changes developed by Qi et al. [10].

4.6. Study Design

For each faulty version, we used each FL technique to create an LPFS. Then the list is used by
MUT-APR to find a repair. We executed each FL technique five times on each faulty version with
five different repair tests except for tcas. On one version of tcas we used three different repair tests,
and on the other version of tcas we used one repair test. In total, our evaluation includes 79 trials
(faulty versions × number of test suites for each faulty version). We compute the average value
of our measurements for each faulty version across the multiple test suites. Our experiments were
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10 F.Y.ASSIRI AND J.M.BIEMAN

conducted on a fedora Linux machine with an Intel Xeon R 2.67GHz CPU and 7.7 GB memory
size.

5. RESULTS

We compared the values of each individual subject program using our measurements. Then, we
compared the mean values of each metric (LPFS rank, NGV, and time) to measure the impact when
using each FL technique. We excluded the trials in which at least one FL technique did not identify
faulty statement.

Then, to measure the statistical difference we applied Mixed Model [24], which is preferable over
ANOVA, to study the effect of many measurements using the same subject program. We studied the
difference at the 0.95 confidence level.

RQ1: Relative APR Effectiveness

To compare APR effectiveness when different FL techniques are used, we studied the ability of FL
techniques to identify faulty statements. If an FL technique failed to identity faulty location, APR
will fail to repair the faults. The four FL techniques successfully identified faulty statements for all
faulty versions except that Optimal failed to identity the faulty locations for two trials of the space
program.

All FL techniques failed to identify faulty statement in two faulty versions of replace (version 25
and version 31). We checked these two versions of replace to investigate why FL techniques failed
to identify faulty statements. In both versions, faults were in an if statement nested inside a switch
statement. When the program is executed against the failing tests, the if statement is checked and it
returns false. Thus, the execution jumps to the default statement, which caused failures. However,
the faulty if statements were not recorded as one of the executed statements. We are not certain of
the reason; it might be a problem in the code that creates the instrumented version of faulty programs
which records coverage information.

RQ2: Which FL Technique Ranked Faulty Statements lowest?

We evaluated the accuracy of FL techniques in identifying faulty statements by comparing the LPFS
rank of the faulty statement produced by each FL technique. We excluded the two versions of the
replace program in which the faulty statements were not identified. We compared the LPFS rank of
faulty statements using seventeen faulty versions (79 trials).

First, we compared the LPFS rank of faulty statements when using Jaccard, Optimal, Ochiai
and Tarantula to that of the Weighting Scheme. We found that in 12 out of 79 (15.18%) of the
trials the Weighting Scheme assigned the lowest LPFS rank to faulty statements, but in 67 out of
79 (84.8%) of the trials Jaccard, Optimal, Ochiai and Tarantula assigned the lowest LPFS rank to
faulty statements.

Then, we compared the behavior of FL techniques when using different test suites for each faulty
version. We compared the LPFS ranks given by Jaccard, Optimal, Ochiai and Tarantula, since they
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Table VI. Result summary of running Jaccard, Optimal, Ochiai, Tarantula and the Weighting scheme on each
faulty version. Measurement is the metric used for comparison.

Measurement Jaccard Optimal Ochiai Tarantula Weighting Scheme

LPFS Rank
Mean 26.6 25.3 26.1 25.9 144.4

Median 24 23 24 24 55
Std Err 4.4 4.4 4.4 4.4 29.8

NGV
Mean 36.6 34.4 35.4 35.6 211.8

Std Err 17.9 17.9 17.9 17.9 39.8

Time
Mean 73.5 27.9 71.8 66.9 502.8

Std Err 67.3 63.5 67.6 65.5 204.5

Figure 2. Average LPFS Rank for each FL Technique across all trials

have similar behavior. For the small subject programs (58 trials), all four FL techniques assigned
the same LPFS rank to the faulty statements across the five test suites used for each faulty version.
For replace version 5 and tot info versions 7 and 13, all four FL techniques performed equally
by assigning the same LPFS rank for faulty statements in most (89.66%) of the trials. In 6 out
of 58 (10.34%) of the trials Optimal and Tarantula assigned the lowest (best) LPFS rank to faulty
statements compared to Jaccard and Ochiai, but in these trails Ochiai performed better than Jaccard
by assigning a lower LPFS rank to faulty statements. In 3 out of 58 (5.17%) trials, Jaccard assigned
the highest (worst) LPFS rank to faulty statements compared to Optimal, Ochiai and Tarantula.

For the space program, Optimal failed to identify faulty statements in two trials (one trial for
each faulty version), but it assigned the same or lowest LPFS rank to faulty statements compared to
Jaccard, Ochiai and Tarantula in the other trials. For the sed program, Optimal assigned the same or
lowest (best) LPFS rank to faulty statements compared to other FL techniques.

We compared the average LPFS rank for all FL techniques (Table VI). On average, Jaccard,
Optimal, Ochiai and Tarantula assigned lower (better) LPFS ranks to faulty statements than the
Weighting Scheme. The average LPFS ranks of Optimal and Tarantula is slightly better than Jaccard
and Ochiai. Figure 2 graphically shows the average LPFS ranks of faulty statements for each FL
technique across all trials. Since LPFS rank is an ordinal measure, we also compared the median.
Optimal assigned a lower LPFS rank to faulty statements, but the difference is just one position
compared to Jaccard, Ochiai and Tarantula.

In summary, all four FL techniques assigned lower (better) LPFS ranks to faulty statements
compared to the Weighting Scheme, and the difference is significant between the Weighting
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12 F.Y.ASSIRI AND J.M.BIEMAN

Table VII. P-values of applying the Mixed Model for LPFS Rank, NGV, and time Metrics at 0.95 confidence
level.

Methods LPFS Rank NGV Time

Jaccard-Optimal 0.508 0.941 0.595
Jaccard-Ochiai 0.802 0.980 0.985

Jaccard-Tarantula 0.740 0.979 0.939
Jaccard-Weighting Scheme 0.0001 0.0001 0.046

Optimal-Ochiai 0.679 0.966 0.609
Optimal-Tarantula 0.743 0.969 0.643

Optimal-Weighting Scheme < 0.0001 < 0.0001 0.027
Ochiai-Tarantula 0.934 0.996 0.955

Ochiai-Weighting Scheme 0.0001 < 0.0001 0.046
Tarantula-Weighting Scheme 0.0001 < 0.0001 0.043

Scheme and all four alternative FL techniques (Jaccard, Optimal, Ochiai, and Tarantula) at the 0.95
confidence level. In two trials Optimal failed to identify faulty statements. Optimal and Tarantula
had the worst performance in 6 trials, and Jaccard was the worst in 3 trials. Although Ochiai was not
the best FL technique on average, it always identified faulty statements, and it never assigned the
highest (worst) LPFS rank to faulty statements across all trials. The differences are not significant
between Jaccard, Optimal, Ochiai, and Tarantula (p-values are shown in Table VII).

RQ3: Number of Generated Variants (NGV)

In order to repair faults, APR tools apply mutation operators to modify a location in the faulty
program generating variants. Modifying a non-faulty location generates an invalid variant (a variant
that does not pass all repair tests). If the faulty statement is placed earlier in the LPFS, then the APR
will change the faulty statement and produce fewer invalid variants.

We compared the number of generated variants (NGV) until a repair is found to determine the
most effective FL technique for use in APR. An FL technique that gives lower NGV is better since
it decreases the chances of producing invalid variants before finding the correct one. First, we
compared the NGV of Jaccard, Optimal, Ochiai and Tarantula to that of the Weighting Scheme.
In 5 out of 79 (6%) trials the Weighting Scheme decreased NGV compared to other four FL
techniques, and in 4 out of 79 (5%) trials the Weighting Scheme generated the same NGV as other
FL techniques. The Weighting Scheme increased the NGV in 68 out of 79 trials (86.1%).

Then we compared the NGV for Jaccard, Optimal, Ochiai and Tarantula. For the small
benchmarks (59 trials), all FL techniques generated the same NGV except in 4 out of 59 (6.78%)
trials in which Jaccard generated more variants (high NGV) until a repair is found. For space and
sed programs, in 6 out of 20 (30%) trials Optimal decreased NGV, and in one out of 20 (5%)
trials Jaccard decreased NGV. In 11 out of 20 trials (55%) Jaccard, Optimal, Ochiai, and Tarantula
generated the same number of variants until a repair is found.

Table VI shows the average NGV for each FL technique across all trials. NGV is similar for
all techniques except the Weighting Scheme which generated an average of 211 variants. Figure 3
shows the average NGV for each technique. The difference is significant between the Weighting
Scheme and all alternative FL techniques at the 0.95 confidence level (Table VII).
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Figure 3. Average Number of Generated Variants (NGV) for each FL Technique across all trials

Figure 4. Average Time for each FL Technique across all trials

RQ4: Total Time

We compared the total time required until a repair is found when each FL technique is used to
generate the LPFS. We compared the average time for each FL technique. Table VI shows that
Optimal required the shortest average time (27.9 seconds) to repair faults. Jaccard, Ochiai and
Tarantula required similar times (69.5, 67.8, 63.3 seconds respectively). The Weighing Scheme
required on average 502.8 seconds to find a repair. Figure 4 shows the average time required to
repair faults when each FL technique is used to identify faulty statements. The time improvement
of Jaccard, Optimal, Ochiai, and Tarantula over the Weighting Scheme (Table VII) is significant at
the 0.95 confidence level.

6. DISCUSSION

We evaluated the impact of different FL localization techniques on the effectiveness and
performance of APR techniques. We compared APR performance when different FL techniques are
used in terms of three metrics: LPFS rank, NGV, and time. We studied the relationship between these
metrics. There is a high correlation (0.949, 0.872, 0.985, 0.986, and 0.988 for Jaccard, Optimal,
Ochiai, Tarantula and Weighting Scheme respectively) between the LPFS rank of faulty statements
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Table VIII. Correlation results between performance metrics: LPFS Rank, Number of Generated Variants
(NGV), and Time of Jaccard, Optimla, Ochiai, Tarantula and the Weighting Scheme.

Correlation Jaccard Optimal Ochiai Tarantula Weighting Scheme

LPFS Rank-NGV 0.949 0.872 0.985 0.986 0.988
LPFS Rank-Time 0.050 0.332 0.277 0.342 0.784

NGV-Time 0.110 0.492 0.309 0.375 0.776

and the NGV until a repair is found (Table VIII). FL techniques that assigned lower LPFS ranks to
faulty statements decreased the NGV until a repair is found. Decreasing the NGV improved APR
performance in terms of time.

The correlation between time and other two metrics: LPFS rank and NGV is weak. This might
be due to the influence of other factors that affect the time to find repair such as the number of repair
tests, and the compilation and execution time of variants. In addition, time can be affected by the
resources used to run the experiments.

7. THREATS TO VALIDITY

Our evaluation studied the impact of different FL techniques on the performance and effectiveness
of automated program repair. To mitigate threats to internal validity, we applied a brute-force APR
to eliminate the randomness of the search algorithm used in a previous study [10]. We also selected
many faulty versions of each subject program.

External validity relates to the ability to generalize the results. To mitigate external threats, our
evaluation consists of programs of different sizes including two large C programs (more than 14K
LOC). However, our results might not be generalized to other fault types or to programs from other
domains.

The accuracy of FL techniques depends in part on the test inputs used to identify faulty
statements, which is a threat to construct validity. To mitigate this threat we used five different
sets of repair tests (test inputs). For the small programs, we selected test suites randomly from the
set of suites provided by the SIR. For the large programs, we created independent repair tests for
each faulty version with no less than 20 passing test cases to achieve the best accuracy as reported
in [15].

Conclusion validity is another threat to our results. We applies statistical tests to measure the
consistency of the results across all faulty versions, and to measure the statistical difference. To
limit the threats to the conclusion validity, we used the same trials (combination of faulty versions
and repair tests) with all FL techniques. In addition, we ensured randomness in the experimental
setting when selecting/creating tests inputs.
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8. RELATED WORK

Fault localization tools are introduced to decrease the cost of finding faults and improving software
quality. These tools are based on the spectrum-based fault localization (SBFL) techniques to identify
faulty locations in source code. The Tarantula tool [9] was developed to locate faults in C programs,
and AMPLE [13] is an Eclipse plug-in for object-oriented software. Ochiai is the formula that is
used in the molecular biology domain [25], and Jaccard is the formula used in the Pinpoint tool [26].

FL techniques have been evaluated in terms of their accuracy to locate faults. Abreu et al. [27]
evaluated the effectiveness of four FL techniques (Pinpoint, Ochiai, Tarantula and AMPLE) in terms
of the LPFS rank of the faulty statement. Experiments conducted on the Siemens Suites and space
program showed that the Ochiai FL technique is the most effective of those evaluated. Abreu et
al. [15, 28] studied the impact of the quality and the quantity of passing and failing tests on the
accuracy of FL techniques. They found that Ochiai, Jaccard, and Tarantula provide accurate results
with low quality tests that include only 1% of failing tests that propagate faults to the outputs. They
studied the impact of the number of passing and failing tests on the accuracy of FL techniques, and
found that adding more failing tests will always improve the accuracy of FL techniques. Adding
more than 6 failing tests has a minimal affect but it does not lower the accuracy of fault diagnosis.
On the other hand, adding more than 20 passing tests decreased the accuracy of FL techniques. Lee
et al. [29] and Naish et al. [18] conducted a more comprehensive study to compare the accuracy of
the formulas used to locate faults. Naish et al. also proposed two Optimal metrics to locate faults,
which outperform other metrics. The latest study by Xie et al. [30] performed a theoretical analysis
to evaluate FL techniques, and found that the Optimal metrics by Naish et al. have similar behaviors.

Lately, research has been directed toward automated program repair (APR) techniques to
reduce debugging costs. GenProg is a well known APR technique developed by Weimer and his
colleagues [3, 4, 21, 2]. It uses a genetic programming algorithm to fix faults automatically in
C programs. GenProg can fix a variety of faults including segmentation faults and infinite loops.
Arcuri [31, 32] proposed an approach and tool, called JAFF, that use genetic programming for
automatic bug fixing for Java programs. Ackling et al. [33] developed pyEDB tool to automate
repairs of Python software. SemFix [6] is a tool for fixing faults through semantic analysis; Debroy
and Wong [5] applied a brute-force search method to repair faults using first order mutation
operators. Wei et al. [34] developed a tool, called AutoFix-E, to automate fault fixing in Eiffel
programs equipped with contracts. Kim et al. [35] describe the Pattern-based Automatic program
Repair tool (PAR), which repairs faults by generating patches using fix patterns. Ten patterns are
created based on patches commonly written by humans.

APR techniques must locate faults in order to fix them. Existing FL techniques are employed by
APR tools to locate and fix faults automatically. Debroy and Wong [5], and Nguyen et al. [6] use
Tarantula heuristics to identify faulty statements. GenProg uses a basic Weighting Scheme to locate
faults, and some APR techniques [23, 35] apply the Weighting Scheme following the GenProg
approach. Only one prior study evaluates the effectiveness of different FL techniques employed by
APR techniques [10]. However, this work evaluates the effectiveness of FL techniques using the
GenProg random search algorithm, which can affect the accuracy of the results.
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9. CONCLUSION AND FUTURE WORK

Fault localization (FL) techniques are employed by APR tools to reduce the number of potentially
faulty locations to be modified in order to find a repair. FL techniques that identify faulty statements
will improve APR effectiveness. An FL technique that places faulty statements at the head of the list
of potentially faulty statements (LPFS), will improve APR performance since fewer variants will be
generated until a repair is found, thus decreasing the time required to fix faults.

Our evaluation shows that Optimal is the least effective and the Weighting Scheme has the lowest
performance of the FL techniques studied. However, Ochiai never failed to identify faulty statements
or assigned the worst (highest) LPFS rank to faulty statements compared to the other FL techniques.

APR performance is measured in terms of LPFS rank, NGV, and time. LPFS Rank and NGV are
strongly correlated, and they are not platform dependent compared to the time metric.

Our results contribute towards improving effectiveness and performance of APR techniques. We
provide a framework for evaluating alternative FL techniques along with an evaluation of these
techniques. We plan to use the framework to study different search algorithm and identify heuristics
to improve the performance of APR techniques without decreasing their effectiveness.
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