IEEE Int.
(ICST),

Preprint:
Verification,

published in Proc.
and Validation

Conference
April,

on Software Testing,

2014.

An Assessment of the Quality of Automated Program Operator Repair

Fatmah Yousef Assiri, James M. Bieman
Computer Science
Colorado State University
Fort Collins, USA
{fatmahya,bieman} @cs.colostate.edu

Abstract—Automated program repair (APR) techniques fix
faults by repeatedly modifying suspicious code until a program
passes a set of test cases. Although generating a repair is the
goal of APR, a repair can have negative consequences. The
quality of a repair is reduced when the repair introduces new
faults and/or degrades maintainability by adding irrelevant but
functionally benign code. We used two APR approaches to
repair faulty binary operators: (1) find a repair in existing
code by applying a genetic algorithm to replace suspicious
code with other existing code as done by GenProg, and
(2) mutate suspicious operators within a genetic algorithm.
Mutating operators was clearly more effective in repairing
faulty operators than using existing code for a repair. We also
evaluated the approaches in terms of two potential negative
effects: (1) the introduction of new faults and (2) a reduction of
program maintainability. We found that repair processes that
use tests that satisfy branch coverage reduce the number of
new faults. In contrast, repair processes using tests that satisfy
statement coverage and randomly generated tests introduce
numerous new faults. We also demonstrate that a mutation-
based repair process produces repairs that should be more
maintainable compared to those produced using existing code.

Keywords-automated program repair; repair maintainabil-
ity; repair quality; test coverage

I. INTRODUCTION

Producing and maintaining bug-free software generally
requires time and labor-intensive debugging. The cost of
testing, debugging, and verification have been estimated to
be 50% to 70% of total development costs [[L]. Automated
approaches promise to reduce debugging cost.

Recent work has been directed towards automatic fault
fixing. Automatic program repair (APR) techniques take a
faulty program and a set of test inputs. APR techniques fix
faults by modifying the faulty program until it passes the
test inputs. Debroy and Wong [2] use mutation and fault
localization technique to automate fault fixing using brute-
force search. Wei et al. [3] fix faults in Eiffel programs
equipped with contracts. Object states are derived for passing
and failing runs, then the states are compared to study
the abnormal behaviour. A behavioural object model is
generated to change the object state from a failing state into
a passing one. Parkins et al. fix faults without interrupting
the execution by generating repairs as patches in deployed
software [4]], and Kim et al. [5] developed a tool to repair
faults by using built-in patterns. Ten patterns were created

based on common patches written by humans. Evolutionary
computing and genetic programming were adapted to repair
faults in C [6], [7], (81, [9], Java [10], [11], and Python [12]
software, and was also used to help satisfy non-functional
requirements [13], [14].

Of particular note is the GenProg tool, which uses genetic
programming to modify a program until it finds a variant that
passes all tests [6], [[7], [8], [9]. It mutates the program to
generate a variant, then the variant runs against the passing
and failing tests to measure its fitness. GenProg can fix faults
in C programs including infinite loops and segmentation
faults. It also fixed the well known Microsoft Zune-bug
date error, which froze Microsoft devices in 2008 due to an
infinite loop that occurred on the last day of a leap year [15]].
The GenProg approach is described in Section

Repair quality is one of the challenges of the automated
repair process. Weimer et al. [7] describe repair quality as
the ability of repairs to “compile, fix the defects, and avoid
compromising required functionality.” Perkins et al. [4] and
Le Goues et al. [9] studied repair quality in terms of
the introduction of new security vulnerabilities, and Jin
et al. [16], and Liu et al. [[17] studied repair quality in
concurrent software in terms of the introduction of deadlock.
We study repair quality in terms of repair correctness, and
repair maintainability.

Repair correctness concerns how well a repaired program
retains the required functionality without the introducing of
new faults, while repair maintainability concerns how easy
it is to understand and maintain the generated repair. We in-
troduce different measures to indicate repair correctness and
maintainability. Percent of failed repairs (PFR) and average
percent of failed tests (PFT) are metrics for evaluating repair
correctness. PFR is the percentage of repairs produced by
APR that fail when tested on regression tests, and PFT is
the average percent of regression tests that fail for individual
repairs. To measure repair maintainability, we compute the
size of repairs. The number of lines of code changed (LOCC)
is the number of LOC modified, deleted, or added until
a repair is found. We also analyze repairs to check the
distribution of modifications. New code that is scattered may
reduce software maintainability.

Le Goues et al. [9] found that “test suite selection is
thus important to both scalability and correctness.” Nguyen

bieman
Typewritten Text
Preprint: published in Proc. IEEE Int. Conference on Software Testing, Verification, and Validation (ICST), April, 2014.

bieman
Typewritten Text

bieman
Typewritten Text

Faulty
Program Automatic
Prog:ra_m —» Possible_Repair —» PER
Repair = PFT
Repair_Tests (APR) A

Evaluation_Tests

Figure 1. Steps to study repair correctness.

et al. [18] studied the effectiveness of an automated ap-
proach with different test sizes. They found that a large
test suite decreases the success rate. Fast et al. [[19] studied
test suite sampling algorithms to improve fitness function
performance, and found a sampling algorithm that improved
performance of APR by 81%. Le Goues et al. [20] identified
the need to assess and improve repair quality. We study
repair correctness using different test suite coverage criteria
as a step toward higher quality repairs without the need to
use all regression tests.

Figure [I] describes steps that we use to study repair
correctness. APR requires a set of test inputs to find a repair
(Repair_Tests). We generate repair test inputs based on
three test methods: branch coverage, statement coverage, and
random test suites. We use a mutation-based repair process
to fix faults when branch coverage, statement coverage, and
random tests are used. To evaluate the repair correctness
of different test suite selection criteria, we executed the
generated repair (Possible_Repair) on a set of regression
tests (Evaluation_Tests), and compute PFR and PFT.

Another important factor of repair quality is the nature
of mutation operators used to fix faults. We compare the
repair correctness and maintainability of two different APR
techniques: (1) APR that depends on existing code to repair
faults as done by GenProg, and (2) an APR that transforms
faulty operators into their alternatives. The latter is similar
to the approach of Debroy and Wong [2]. Debroy and
Wong applied a brute-force search method to repair faults,
while we combined the mutation of operators with genetic
programming (GP). GP modifies the code by applying two
operators: mutation and crossover. Mutation operators are
injected to the code as done by Debroy and Wong [2], then
a crossover operator is applied to combine information from
the best selected variants.

We developed a prototype tool MUT-APR that injects
mutation operators through genetic programming to repair
faults in the subject programs. Our mutation operators can
fix faulty operators in several different statement types: if,
return, assignment, and loop. The MUT-APR approach is
described in Section

Our focus on single faults is consistent with the competent
programmer hypothesis that programmers “create programs

that are close to being correct” [21]]. We evaluated our work
on Siemens Suite programs [22]], and found that branch
coverage repair test suites improve repair correctness com-
pared to statement and random repair test suites. Repairs that
are generated using tests that satisfy branch coverage have
lower PFR and PFT. Unlike mutation-based APR, the use
of existing code to fix faults generate repairs include many
irrelevant changes to the code (an average of 28.68 LOCC)
thus reducing maintainability. The evaluation is described
in Section and the threats to validity are described in
Section [V]
The main contributions of this paper are the following:

« An evaluation of the nature of mutation operators used
to fix faults in terms of PFR and PFT to measure repair
correctness, and LOCC to measure repair maintainabil-
ity. The evaluation study shows that the mutation of
operators produce higher quality repairs than the use
of existing code as done by GenProg.

o The prototype tool, MUT-APR, that fixes faulty oper-
ators by constructing new operators within a genetic
algorithm. MUT-APR injects fifty-eight mutation oper-
ators to fix binary operator faults in C programs.

« An evaluation of the effectiveness of different test suite
selection criteria on repair quality. Compared to the use
of random tests and statement coverage tests, the use of
branch coverage tests when repairing faults improves
repair correctness. Our results show that the use of
the branch coverage criteria gives lower PFR and PFT
values.

II. THE GENPROG APPROACH

Genetic programming (GP) is an evolutionary computing
method that evolves computer software. GenProg is a tool
developed by Weimer and his colleagues [6], [[7], [8], [9] that
uses genetic programming to repair faults. Figure 2] describes
the GenProg appraoch.

GenProg consists of two steps: fault localization and a
genetic algorithm. It takes as input a C program and a set
of test inputs (passing and failing tests). To locate faults, an
instrumented version of a faulty program is executed against
the test inputs. Statement IDs are recorded for statements
that are executed by the passing and the failing tests to
create a list of statements that are more likely to contain the
faults. It creates a weighted path file, which is an ordered
list of pairs of statements and corresponding weights. Each
statement is assigned a weight based on its execution (1
is assigned to statements that are executed by only failing
tests, and 0.1 is assigned to statements that are executed by
both passing and failing tests). The statements in the list are
ordered based on their assigned weights, and the statement
list is passed to the genetic algorithm for modification.
Statements are selected sequentially from the list. Mutation
and crossover operators modify the program creating a new
variant.

Fault
Localization

Faulty Program
Instrumented
version

List of
Statements

Test Inputs

Genetic
Loop

Mutation

Fitness
Function

Repaired
Program

Select Best
Variants

Figure 2. GenProg Approach.

Three mutation operators — insert, delete and replace
statements — make use of similar code in the subject
program. Variants are created by introducing one mutant.
Each variant is executed against the tests to compute its
fitness. Variants that do not compile or with fitness equal to
zero are discarded. The remaining variants are used for the
next generation.

To create a population for the next generation, a crossover
operation combines information from two parent variants
to create two new child variants. The genetic algorithm
stops when a variant that maximizes the fitness function is
found, or when the algorithm exceeds the upper bound of
the predefined parameters.

III. PROTOTYPE TOOL: MUT-APR

Our approach constructs new operators to replace faulty
ones within a genetic programming algorithm. In order to
fix a fault, potential faulty locations are identified, then
the algorithm runs many times. Each run generates a new
copy of the program with one change in an operator that
is picked randomly. The new program variant is compiled
and executed against the test inputs. If the variant passes all
test inputs, it is deemed to be a possible repair. If not, the
algorithm runs for more iterations to find a repair. We set
an upper bound on the number of cycles that is equal to a
specified maximum value.

A. Mutation Operator

Our mutation operators change each operator into its alter-
natives. We focus on fixing binary operator faults including
relational operators, arithmetic operators, bitwise operators,
and shift operators (Table [[). The mutation operators are

Table I
MUTATION OPERATORS SUPPORTED BY OUR APPROACH.

[Mutation Operator [Description

ROR Relational Operator Replacement
AOR Arithmetic Operator Replacement
BWOR BitWise Operator Replacement
SOR Shift Operator Replacement

as follow: (1) change relational operators in if statements,
return statements, assignments, and loops, (2) change arith-
metic operators, bitwise operators and shift operators in
return statements, assignments, if bodies, and loop bodies.
We use a random selection approach by assigning an equal
probability to all mutation operators.

Algorithm T]is used in the implementation of our mutation
operators. MUT-APR selects the first faulty statement from
the weighted path, and selects a mutation operator randomly
(line 4). Then, it checks the operator in the selected state-
ment. If the statement stmti includes an operator (line 5),
the operator is checked (line 6). If the operator matches the
selected mutation operator (line 7) (e.g., stmti contains >,
and the selected mutation is one of five operators that change
the operator > into one of its alternatives), the statement type
is checked (line 8), and a new statement stmij is created (line
9). Then stmti is substituted by st#mtj in the WP (line 10),
and a new variant is created (line 14).

Algorithm 1 Mutation Operator Pseudocode

1: Inputs: Program P and weighted path WP

2: Output: mutated program

3: for all statements stmti in the weighted path do

4: let mOp = choose(ChangeOp1ToOp2),
5. if stmti contains an operator then
6
7
8
9

let stmtOp = checkOperator(stmti)

if stmtOp = Opl then
let stmtType = checkStmtType(stmti)
let stmtj= apply(stmti,mOp)

10: substitute stmti with stmtj in WP
11: end if

12 end if

13: end for

14: return P with stmti substituted by stmtj

B. The Repair Algorithm

To fix a fault, potential faulty locations are identified.
We use the same fault localization method employed by
GenProg. Then the tool modifies the program. A genetic
programming algorithm mutates the program under test to
generate an initial population (set of variants). A selection
algorithm is used to select the best variants. Then a crossover
operator combines information from the best variants to
create a population for the next generation. A fitness function
is computed for each variant until a repair that maximizes

the fitness function is found. Equal probability is assigned to
all mutation operators and one of them is selected randomly.

Algorithm describes how the genetic algorithm fixes
faults. MUT-APR applies the set of mutation operators
described in Table [l MUT-APR takes a faulty C program,
a set of tests, a weighted path, and a set of parameters
(population size, number of generations, and maximum
fitness). The initial population is created by mutating the
faulty statements (line 3). If no repair is found in the
initial population, variants with zero fitness are discarded
(line 6). If the number of remaining variants is less than
half the population size pop_size/2 (line 7), variants are
duplicated (line 8) so that the number of variants is equal
to a pop_size/2 for use by the crossover operator (line
10-13). We applied the one-point crossover, which selects
a random cut-off point, and swaps the parents statements
after the selected point to create children variants. For all
variants, a mutation operator is picked randomly (line 15)
to create a new population (line 16). The process continues
until a variant that maximizes the fitness is found (line 19),
or until the process exceeds the upper bound set as a system
parameter.

Algorithm 2 Genetic programming Pseudocode: MUT-APR
: Inputs: Program P, max, pop_size
: Output: variant
: let pop = initial_pop(P,pop_size)
. let fitness = ComputeFitness (pop)
repeat
let variants = select (pop)
if size(variants) < pop_size/2 then
let variants = double(variants)
end if
for all two variants p/ and p2 € variants do
let newVariants(cl,c2) = crossover(pl,p2)
12: let newPop = cl, c2, pl, p2
13: end for
14: for all variant in newPop do

R i A A R ol S

—_—
- o

15: let mutOp= choose(mutationOperator)
16: let pop = apply(variant,mutOp)
17: let fitness = ComputeFitness (pop)

18: end for
19: until fitness = max
20: return variant

C. Motivation example

We use a faulty Euclid’s greatest common divisor adapted
from an example used by Weimer et al. [7] to illustrate our
approach. The original fault was a missing statement (line
3). We inserted the missing statement and seeded a fault in
the if statement in line 1.

The ged program in Figure [3|has three relational operators
and two arithmetic operators: line 2: if(a <0), line 6: while(b

!=0), line 7: ifla>b), line 8: a = a - b, and line 10: b =
b - a. The faulty operator is in the first if statement (line
1). In order to fix the fault, the operator in line 1 must be
switched to ==.

1. void gcd (int a , int b) {

2. 1if (a < 0) //fault, should be ==
3. { printf ("%g\n", b);

4. return 0;

5. }

6. while (b != 0)

7. if (a > b)

8. a=a - b;

9 else

10. b=Db - a;

11. printf ("%g\n", a);
12. return 0;

Figure 3. gcd.c

To generate a repair for the gcd program, a mutation
operator is selected randomly, and all statements in the
weighted path are considered sequentially for modification.
If the statement includes an operator that matches the
selected mutation, a new variant with a new operator is
created.

The faulty statements are identified by the fault localiza-
tion technique. We assume that all three relational operator
statements and the two arithmetic operators are identified
as faulty locations plus two other statements. Since the
statement in line 1 is the first statement, it is selected first
for mutation. A mutation operator is selected randomly to
modify the code. The faulty operator in the statement is <,
MUT-APR checks the operator in the statement. If the tool
selects the mutation operator that changes < to > for line 1,
a new variant is created by constructing a new operator for
line 1. The variants are compiled and executed against the
tests. This variant fails two test inputs: (0,55) and (55,0).
Since the variant did not pass all tests, it is not a repair
and the process continues. Another statement and mutation
operator are selected. MUT-APR will successfully repair the
fault in line 1 when it selects the correct mutation operator.

D. Implementation

Our implementation of MUT-APR was built by adapting
the GenProg Version 1 framework, which is implemented
in OCaml. Like GenProg, MUT-APR requires a faulty C
program and a set of test inputs (passing and failing tests).
We turned off the original GenProg mutation operators and
inserted fifty-eight new mutation operators that represent all
binary operator transformations. For each operator (e.g., >),
we implemented an OCaml class for each alternative. Each
class changes the operator into one of its alternatives (e.g.,
>=, <, <=, ==, |=). Therefore, each class checks the type
of the statement that contains the operator. If the statement
type is supported by our tool, a new statement is constructed
with a new operator.

Table II
BENCHMARK PROGRAMS. EACH Program 1S AN ORIGINAL PROGRAM
FROM THE SIEMENS SUITE [22]]. LOC IS THE NUMBER OF LINES OF
CODES. #Faulty Versions 1S THE NUMBER OF FAULTY VERSIONS. #Tests
IS THE NUMBER OF REGRESSION TESTS.

[Program [LOC | # Faulty Versions | # Test |

tcas 173 14 1608
replace 564 21 5542
schedule2 374 8 2650
tot_info 565 11 1052

A fitness function is computed for each variant to deter-
mine if the generated variant is a repair or not. It is computed
by running all tests against the created variant, and the fitness
value is cached.

MUT-APR changes only one statement in each iteration to
create a new variant. If a variant is similar to a previously
created variant, the fitness will not be recalculated. Thus,
MUT-APR reduces the number of fitness evaluations during
the process.

IV. EVALUATION

Our evaluation study is designed to answer the following
research questions:

o RQ1 Repair correctness of a test suite: Does the
selection of test suite type (branch coverage, statement
coverage, and random test) affect repair correctness?

+ RQ2 Repair correctness of an APR: Does the nature
of mutation operators used to modify the program
improve repair correctness?

« RQ3 Repair maintainability of an APR: Does the na-
ture of mutation operators used to modify the program
improve repair maintainability?

A. Evaluation Design

To validate our approach, we used subject programs from
the Siemens Suites in the Software artifacts infrastructure
repository [22]. Since the ability to fix faults depends on
the type of mutation operators that are supported by the
approach, we only included programs with operator faults.
For example we excluded print-tokens from our study be-
cause the seeded fault can be fixed by inserting or deleting a
statement. We found different versions of each program with
the fault of interest. We created additional faulty versions
for each subject program by using Proteum/IM 2.0 [23],
which is a C mutation tool, to inject additional mutations.
The faults in the subject programs are seeded in different
statements types: if statements, return statements, loops, and
assignments. Table [[I| consists of the benchmarks and the
number of faulty versions for each program after removing
equivalent mutants. This evaluation only deals with binary
operator faults, and it includes four subject programs with
54 faults.

We compared the results of using three test selection
methods: branch coverage, statement coverage, and random
testing. Branch coverage and random test suites are from the
SIR repository [22]. Gcov [24] is used to create statement
coverage test suites. Test suites that satisfy both branch and
statement coverage reached between 90% to 100% of the
branches/statements of the programs under test, and each test
suite contains 5-30 test cases. To study the effect of three test
methods on the repair process, we selected the benchmark
programs from Table [[If that include randomly generated test
suites. We included 25 faulty versions in total, and we ran
MUT-APR on the selected programs.

MUT-APR takes the same set of parameters as GenProg.
We used the default parameters from Weimer et al. [[7]]. Since
MUT-APR and GenProg are random techniques, we ran each
tool 100 times to ensure that it will generate a repair in
at least one execution for each subject program. In each
execution, the genetic loop runs for 10 generations, and each
generation consists of a population size of 40 versions. The
weights for the passing and the failing tests are 1 and 10
respectively.

Although we built our tool by adapting GenProg ver-
sion.1, we also studied the ability of the latest version of
GenProg version.2 to fix the faulty operators. For a valid
comparison, we ran GenProg.v2 100 times on each subject
program, and each run consists of 10 generations and a
population size of 40. We set parameters in GenProg.v2
using the values specified in Le Goues et al. [25], [26].

B. Evaluation Results

We analyzed our results to answer the three research
questions. To assess repair correctness, we executed the
generated repair on regression tests that are taken from
repository [22]]. If the repair failed at least one regression
test, that means the generated repair introduced new faults.
To study repair maintainability, we compare the changes
made by the mutation-based APR technique (MUT-APR)
and the APR that uses existing code (GenProg) to fix faults.

As expected MUT-APR successfully repaired the faulty
operators in 47 out of 54 (87.03%) of the programs. GenProg
fixes many faults that MUT-APR cannot fix. However, Gen-
Prog repaired only 17 (31.48%) of the faulty operators (we
excluded the faulty versions that GenProg could not repair).
GenProg can only work if the original source code contains
a fix for the fault. GenProg can fix faults in tcas-vl and
replace-v6 because they contain the correct code somewhere.
However, GenProg fixed faults in only one version (v0) of
replace-v6; it failed to fix faults in all other versions even
though the original source code contains a fix. We included
54 faulty programs in our study; however, only 17 of them
were fixed by both techniques.

Table shows the number of repairs found for each
benchmark by running each faulty program on both MUT-
APR and GenProg. MUT-APR was able to repair more

Table III
MUT-APR vS. GENPROG: NUMBER OF OPERATOR FAULTS FIXED FOR
EACH SUBJECT PROGRAM.

Program ‘ tcas ‘ replace | schedule2 | tot_info
Total # of faults 14 21 8 11
MUT-APR 14 18 6 9
GenProg.v2 10 2 5

operator faults than GenProg for each subject program. The
number and the types of faults fixed depend on the mutation
operators supported by the tool. Since this is an initial study
of repair quality, we limit our tool to support a subset of
mutation operators as shown in Table |l However, we plan
to support more mutations (unary operators, and constants)
to fix more faults.

We studied why MUT-APR did not fix faults in some
faulty versions of replace.c, schedule2.c, and tot_info.c. We
suspected that the reason might be the randomness of MUT-
APR; we executed the faulty versions using an exhaustive
search method (brute-force). We found these faults were
not fixed by brute-force. We looked at the list of faulty
statements and found that the faults were in statements
that did not appear in the weighted path, and thus, were
not treated as potentially faulty. A better fault localization
technique would improve the effectiveness of our approach;
we leave this for future work.

1) Repair Correctness depends on test suite type: Test
coverage criteria specify the test requirements (e.g. branch
coverage) that need to be satisfied during testing [27].
Coverage criteria can reduce testing cost by requiring an
adequate set of tests that cover most parts of the program
under test without the need to generate a large number of
test inputs. We examine the use of the branch coverage
and statement coverage criteria to select a small set of test
inputs to generate higher quality repairs without the need to
use all regression tests. Branch coverage test criteria require
testing all feasible edges, and statement coverage test criteria
require testing all feasible nodes in a control flow graph of
the program under test.

To study repair correctness for repairs that are gen-
erated by the mutation-based approach (MUT-APR), we
follow the steps described by Figure [We execute all
repairs (Possible_Repair) that are generated using branch
coverage (Test_Repairl), statement coverage (Test_Repair2),
and random tests (7est_Repair3) on regression tests (Eval-
uation_Tests). Then we compute the percentage of failed
repairs (PFR) for each subject program, and the average
percent of failed regression tests (PFT) for individual repair.
This evaluation includes 765 repairs that are generated using
branch coverage test suites, 1234 repairs that are generated
using statement coverage test suites, and 986 repairs that are
generated using random tests (in total 2985 repairs).

Table summarizes the results of repairs that are gen-

Table IV
RESULTS SUMMARY OF REPAIRS THAT ARE GENERATED BY BRANCH
COVERAGE, STATEMENT COVERAGE, AND RANDOM TEST SUITES ON
BENCHMARKS.

Branch Coverage | Statement Coverage | Random Tests

PFR mean 12.77 26.58 24.04
PFR std 18.32 31.94 28.46
PFT mean 3.2 4.9 4.8

erated using different test suite types. We found that an
average of 12.77% of repairs that are generated using branch
coverage test suites failed regression tests, while 26.58%
and 24.04% of repairs that are generated using statement
coverage and random test suites failed regression tests,
respectively. For 38% of repaired faults, branch coverage
test suites generate repairs with lower PFR than statement
coverage test suites, and for 57% of repaired faults, branch
coverage test suites generate repairs with lower PFR than
random tests. For 50% of repaired faults, branch coverage
test suites generate repairs that did not fail any regression
test (with zero PFR). The largest PFR value using branch
coverage test suites to produce repairs is 50%, while state-
ment coverage and random test suites generate repairs that
failed all regression tests (with PFR equal to 100).

Repairs that are generated using branch coverage failed
in an average of 3.2% of regression tests, while repairs
generated using statement coverage failed in an average of
4.9% of regression tests, and repairs generated using random
test suites failed in an average of 4.8% of regression tests.

We applied Paired T-Test [28] to analyze the improve-
ments of repair correctness when different test suite types
were used. The difference is statistically significant between
branch coverage and statement coverage (p-value = 0.03),
and between branch coverage and random tests (p-value =
0.04) at the 0.95 confidence level. However, the difference is
not statistically significant between statement coverage and
random tests.

These results indicate that repairing faults can introduce
new faults when the selected tests do not provide good
coverage. Using branch coverage tests in the repair process
can improve the quality of generated repairs significantly
by generating more correct repairs (reduce PFR and PFT)
compared to statement coverage and random tests.

2) Repair Correctness depends on the nature of mutation
operators: To compare repairs correctness by two APR
techniques, we only include subject programs that have a
repair by both the mutation-based approach (MUT-APR)
and the use of existing code to repair faults (GenProg). We
include 648 repairs that are generated by MUT-APR, and
475 repairs that are generated by GenProg.

To determine which technique produces more correct
repairs, we executed the generated repairs on a set of

regression tests, and computed the PFR and PFT. As shown
in Figure] the PFR for repairs that are generated by MUT-
APR is less than the PFR of repairs that are generated by
GenProg. For ten out of 17 programs, all GenProg repairs
failed regression tests.

We found that, for all the benchmarks, 27.36% of repairs
that are generated by the MUT-APR technique failed re-
gression tests (PFR=27.36%), while 96.94% repairs that are
generated by GenProg failed regression tests (PFR=96.94%).
We studied the difference between MUT-APR and GenProg
using Paired T-Test. The PFR difference is statistically
significant (p-value = 0.00) for all benchmarks at the 0.95
confidence level.

We also computed the percent of failed tests for each
repair. Repairs that are generated by MUT-APR failed in an
average of 6.65% of regression tests (PFT=6.65%), while
repairs that are generated by GenProg technique failed in an
average of 19.05% of the tests (PFT=19.05%).

In summary, repairs of operator faults produced by muta-
tions (MUT-APR) tend to be correct more often than those
produced by the use of existing code (GenProg).

3) Repair Maintainability: A study by Fry et al. [29]
compares the software maintainability of human-written
and machine-generated patches. They found that machine-
generated patches reduce software maintainability by mak-
ing the program less understandable. Maintainability is
measured in terms of acceptability [S] and readability [30].
Buse and Weimer [31]] found a correlation between software
readability and its quality. Le Goues et al. [20] identify the
need to develop more measures for maintainability.

To measure repair maintainability, we propose a com-
bination of different measures since the use of multiple
measures is a better approach than using a single measure
for software maintainability [30]. We define two metrics to
estimate repair maintainability. First, we define a static code
measure for repair maintainability based on the size of a
repair. The number of lines of code changed (LOCC) counts
the number of LOC modified, deleted, and/or added to fix
a fault. A second attribute relevant to repair maintainability
is the distribution of modifications. A wider distribution of
repair modifications can have a negative impact on software
maintainability.

To measure repair maintainability we compare the modifi-
cations made by the mutation-based repair technique (MUT-
APR) and to those using existing code (GenProg). Fewer
and smaller modifications will make the software easier
to understand and maintain, and will also improve repair
correctness [31]].

Since we only modify an operator, our repair minimizes
the changes inserted into the code which makes it similar to
repairs done by humans, and should not reduce software
maintainability. In contrast, the use of existing code to
repair faults makes many irrelevant changes to the code
which reduce maintainability [25]. When GenProg generates

a repair, it makes many extraneous changes to the code
that obfuscate the change that fixed the fault. In addition,
GenProg actually does not change the faulty operator to
correct an operator fault.

For example, the gcd program in Figure [3| was repaired
by both MUT-APR and GenProg. MUT-APR changed one
statement as shown in Figure[5} On the other hand, GenProg
fixed the faults by making three changes (Figure [6): (1) it
added a-=b after declaring variable a (line 3), (2) it added
an empty else block after the faulty if statement (line 9 and
10), and (3) it copied the whole if block after statement
a-=b (lines 14-18).

if (a == (double)O0)

Figure 5. MUT-APR repair for the fault in Figure [3]

1. void gcd (int a, int b) {

2. { a = (double)tmp;

3. a -=Db; } //inserted a -= b
4. b = (double)tmp_0;

5. if (a < (double)0) {

6. printf ("$g\n", b);

7. return (0);

8. }

9. else { //inserted empty block
10. }

11. while (b != (double)0)

12. { if (a > Db)

13. { a—-—=Db;

14. if (a > b) //inserted if block
15. a —= b;

16. else

17. b —= a;

18. }

19. else

20. b —= a;

21. }

22. printf ("$g\n", a);
23. return (0);}

Figure 6. GenProg repair for the fault in Figure [3]

We compared LOCC when both MUT-APR and GenProg
generated repairs. We used the Linux diff command to count
the LOCC, and we checked the changes distributions. If
changes are scattered in the code, the code will be harder
to understand and read.

We compare the differences between the original code,
and repairs generated by MUT-APR and by GenProg. We
include 648 repairs that are generated by the MUT-APR,
and 475 repairs that are generated by GenProg for the faulty
subject programs. MUT-APR repairs change an average of
1.72 LOC in all subject programs, while the GenProg repairs
change an average of 28.68 LOC. In addition, GenProg
changes code in many locations, which will tend to make
the code less readable and maintainable.

120

100

Percent of Failed Repair (PFR)
2

o

A A A A o &
o
- =5 =5

BO
40
20
R o o o
A N S o

e A A
i =1 =1 =1 3 =1 =1 =1 &
& & < \(‘1;’ & & & < P
A5 \Q:Q

& MUT-APR B GenProg.wv2

> & P ™
el T C T o G

A =
A{l’ ¢°’A “,P 4@ A A A A
& & & v o¥ v v ov
3@ F S § &
\2, 2
AN

Subject Program

Figure 4.

V. LIMITATIONS AND THREATS TO VALIDITY

Although our tool fixes faults in binary operators, we were
not able to fix faults in Logical Operators due to MUT-
APR’s use of CIL [32]. CIL is an intermediate language
for C programs. It is used to manipulate source code and
generate a simplified version of source code. It transforms
logical operators into if-then and if-else blocks. Fixing faults
in logical operators w.r.t. CIL would require making changes
to the generated if blocks rather than the operators. Thus to
use CIL to fix logical operators, we need to change generated
if blocks. An alternative is to use a different framework
that does not depend on CIL. Then we can change logical
operators as we do with other binary operators.

The proposed strategy fixed single faulty operators that
are related to the supported mutation operators. However,
MUT-APR is limited to fix faults requiring one line modifi-
cation, and to repair faults in relational operators, arithmetic
operators, shift operators, and bitwise operators in most
statement types. We will expand the capabilities of MUT-
APR by adding additional mutation operators to fix faults
in other program constructs such as constants and unary
operators. We also plan to add mutation operators to support
the transformation between different binary operators (e. g.,
convert relational operators into arithmetic operators).

Although our results show that faulty operators can be
automatically fixed, there are threats to validity. All the tool
parameters are set heuristically as done by Weimer et al. [[7]
and represent a threat to internal validity. To mitigate this
threat we selected the parameters that improved the success
rate and the repair time in previous work [26], [25]. The
selection of faulty versions with operator faults can bias
the apparent effectiveness of fault repair approaches. To
reduce this bias we used a C mutation tool to seed faults.
In addition, to improve internal validity we selected the test

Percent of Failed Repairs (PFR) by mutation-based technique (MUT-APR) and the use of existing code (GenProg).

inputs randomly from the set of tests that satisfies the test
methods of interest. An important external threat to our study
is the use of small programs. Four different C programs with
different faulty versions were used. The results might not
generalize to larger programs. To mitigate external threats,
we selected different faulty versions in which faults were
seeded in different statement types. We also seeded faults
with a C mutation tool to create additional benchmarks with
different faulty operators. To mitigate threats to external
validity, we used large numbers (thousands) of generated
repairs.

One threat to construct validity relates to the test set
used to produce repairs by different APR techniques. The
selection and properties of test sets determine the number
of generated repairs and their correctness. To mitigate this
threat we used test inputs that satisfy branch coverage
which decreased the introduction of new faults. PFT does
not directly measure the number of introduced new faults.
Rather it identifies failures caused by introduced new faults.
A single fault can cause multiple tests to fail. Also, the
accuracy of PFT depends on the quality of the regression
tests. Thus, PFT is only an estimate. The use of the number
of changes and LOCC as surrogate measures for maintain-
ability also represent threats to construct validity. These
measures quantify important aspects of maintainability, but
they are not complete and comprehensive maintainability
indicators.

Another threat is conclusion validity. We applied Paired
T-Tests to study the relation between the variables. To limit
this threat we studied the relation between variables using
the same set of parameters to decrease the error variance. In
addition, we ensured randomness in the experimental setting
when selecting benchmarks and tests inputs.

VI. RELATED WORK

Automated fault fixing has attracted considerable atten-
tion [33], [13], [4], (340, (30, (350, [20, [16], [36], [S]. Our
work is based on GenProg, a tool developed by Weimer
et al. 6], [7], [8l, [9], which uses genetic programming to
repair faults in C programs. GenProg modifies a program
until it passes all tests using small test sets.

In 2012, Le Goues et al. [9] reported results showing
that GenProg can fix additional faults including remote
heap buffer overflow to inject code and conduct denial of
services attacks. In further work, Le Goues et al. [25], [26]
improved GenProg (version 2) to scale to larger programs
by representing repairs as patches rather than modification
to the AST. They also changed the mutation operators,
introduced fix localization (a list of statements used as the
source of the fix w.r.t the faulty statement), and applied
different weighting schemes and crossover operators. These
improvements increased the success rate, decreased repair
time, and fixed faults that were not fixed by the original
work. Fast et al. [[19] defined a new fitness function, which
evaluates each variant against a sample of the passing tests
and all failing tests, to efficiently apply the fitness function
using larger test suites. A variant that passes all the selected
tests is tested against the entire test suite. GenProg fixes
a variety of faults; however, the generated “repairs” failed
other test inputs (other than the one used to generate repairs).

The pyEDB tool [12] automates repairs of Python soft-
ware. It modifies a program as patches rather than changing
the whole program. Possible changes for a location are
chosen from look-up tables that are created before the
evolutionary process based on general rewrite rules that
map each value to all possible modifications. The pyEDB
tool can fix faults in relational operators and constants. It
differs from our approach in many ways: (1) pyEDB selects
mutations sequentially while we use random selection, (2)
we fix faults in C programs while pyEDB fixes faults in
Python applications, (3) pyEDB creates look-up tables to
determine the possible changes for each program beforehand
but we select a change randomly during execution, and (4)
pyEDB uses Tarantula [37] to locate the faults while we use
the weighting scheme used by the original GenProg team [[7]].
The repairs that are generated pyEDB repairs can introduce
new faults.

SemFix [18]] is a tool for fixing faults through semantic
analysis. Faulty statements are ranked using Tarantula [37]];
highly ranked statements are selected first. Then, constraints
are derived for statements using symbolic execution, and a
repair is generated through program synthesis. The main
different between their approach and ours is how they
repair the faults. We apply a genetic algorithm while they
use semantic analysis. SemFix successfully fixed faults in
constants, mathematical operators, and relational operators
in conditional statements and assignments. However, it does

not fix relational faults in return statements and loops, and
it does reduce APR performance.

Debroy and Wong [2] applied a brute-force search method
to repair faults. Tarantula [37], computes a suspiciousness
score for each statement and ranks them. First-order muta-
tion operators are applied one by one starting with the higher
rank statement to create a unique mutant. Each mutant is
checked through string matching. If a mutant matches the
original program, it is considered a ‘“potential fix”, then
the potential fix is re-tested against all tests. This work
supports a number of mutation operators, which include
arithmetic, increment/decrements, and logical operator re-
placement. The evaluation used the Siemens Suite. Only
18% of the faults were fixed. No evaluation of repair quality
was included.

Repair quality is one of the challenges of the APR
process. To the best of our knowledge, none of the prior
work identified quantitative measurements of repair quality.
In addition, no prior study addressed the use of different
coverage test inputs to generate repairs with higher quality.

VII. CONCLUSION

Quantitative measurements can compute repair correct-
ness and maintainability of APR methods. We studied repair
correctness when using branch coverage, statement cover-
age, and random test suites to generate a repair. We found
that using branch coverage test suites improved the quality
of generated repairs by reducing PFR and PFT values.

We then compared repair correctness and maintainability
when using two automated repair techniques: use of existing
code (GenProg) versus use of mutations (MUT-APR). We
found that 27.36% of repairs that are generated by the
mutation-based repair technique failed regression tests, while
96.94% repairs that are generated by using existing code
failed regression tests.

Unlike the use of existing code, using mutations to fix
faults changes only a single operator in each run. Therefore,
program repair is similar to repairs done by humans. Thus,
the repair should not reduce maintainability.

We plan to identify additional measurements of repair
quality, and use them to evaluate the repair quality of other
automated repair techniques. We are studying techniques that
can be adopted by automated program repair techniques to
improve the quality of generated repairs.

ACKNOWLEDGMENT

This project was supported by the Ministry of Higher
Education, Saudi Arabia. The authors would like to thank
Westley Weimer and Claire Le Goues for their help with
GenProg.

REFERENCES

[1] B. Hailpern and P. Santhanam, “Software debugging, testing,
and verification,” IBM Systems Journal, vol. 41, no. 1, pp.
4-12, 2002.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

(15]

(16]

[17]

(18]

V. Debroy and W. E. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Proc. of the 3rd Intl.
Conf. on Software Testing, Verification and Validation, 2010,
pp. 65 -74.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller, “Automated fixing of programs with contracts,”
in Proc. of the 19th Int. Symp. on Software Testing and
Analysis, 2010, pp. 61-72.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sul-
livan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard,
“Automatically patching errors in deployed software,” in
Proc. of the ACM SIGOPS 22nd Symp. on Operating Systems
Principles, 2009, pp. 87-102.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch
generation learned from human-written patches,” in Proc. of
Int. Conf. on Software Eng., 2013, pp. 802-811.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A ge-
netic programming approach to automated software repair,” in
Proc. of the 11th Annual Conf. on Genetic and Evolutionary
Computation, 2009, pp. 947-954.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Au-
tomatically finding patches using genetic programming,” in
Proc. of the 31st Int. Conf. on Software Eng., 2009, pp. 364—
374.

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Auto-
matic program repair with evolutionary computation,” Com-
mun. ACM, vol. 53, no. 5, pp. 109-116, 2010.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Gen-
prog: A generic method for automatic software repair,” IEEE
Trans. Software Eng., vol. 38, no. 1, pp. 54 =72, 2012.

A. Arcuri, “On the automation of fixing software bugs,” in
Companion of the 30th Int. Conf. on Software Eng., 2008, pp.
1003-1006.

C. Kern and J. Esparza, “Automatic error correction of Java
programs,” in Proc. of the 15th Int. Conf. on Formal Methods
for Industrial Critical Systems, 2010, pp. 67-81.

T. Ackling, B. Alexander, and I. Grunert, “Evolving patches
for software repair,” in Proc. of the 13th Annual Conf. on
Genetic and Evolutionary Computation, 2011, pp. 1427-
1434.

A. Arcuri and X. Yao, “A novel co-evolutionary approach to
automatic software bug fixing,” in Proc. of the IEEE Congress
on Evolutionary Computation, 2008, pp. 162 —168.

D. White, A. Arcuri, and J. A. Clark, “Evolutionary improve-
ment of programs,” IEEE Trans. on Evolutionary Computa-
tion, vol. 15, no. 4, pp. 515-538, 2011.

“Microsoft Zune affected by ’bug’,” December 2008.
[Online]. Available: http://news.bbc.co.uk/2/hi/technology/
7806683.stm

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Au-
tomated atomicity-violation fixing,” in Proc. of the 32nd
ACM SIGPLAN Conf. on Programming Language Design and
Implementation, 2011, pp. 389—-400.

P. Liu and C. Zhang, “Axis: Automatically fixing atomicity
violations through solving control constraints,” in Proc. of the
Int. Conf. on Software Eng., 2012, pp. 299-309.

H. D. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in Proc. of
the Int. Conf. on Software Eng., 2013, pp. 772-781.

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing
better fitness functions for automated program repair,” in
Proc. of the 12th Annual Conf. on Genetic and Evolutionary
Computation, 2010, pp. 965-972.

C. Le Goues, S. Forrest, and W. Weimer, “Current challenges
in automatic software repair,” Software Quality Journal, pp.
1-23, 2013.

R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer,
vol. 11, no. 4, pp. 34-41, 1978.

Software-artifact infrastructure repository. [Online]. Avail-
able: http://sir.unl.edu/php/previewfiles.php

M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi,
“Proteum/im 2.0: An integrated mutation testing environ-
ment,” in Mutation Testing for The New Century, 2001, pp.
91-101.

gcov: A test coverage program. http://www.linuxcommand.
org/man_pages/gcov l.html,

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A systematic study of automated program repair: fixing 55
out of 105 bugs for $8 each,” in Proc. of the Int. Conf. on
Software Eng., 2012, pp. 3-13.

C. Le Goues, W. Weimer, and S. Forrest, “Representations
and operators for improving evolutionary software repair,”
in Proc. of the 14th Int. Conf. on Genetic and Evolutionary
Computation, 2012, pp. 959-966.

P. Ammann and J. Offutt, Introduction to software testing.
Cambridge University Press, 2008.

H. Hsu and P. A. Lachenbruch, “Paired t Test,” Wiley Ency-
clopedia of Clinical Trials, 2008.

Z. P. Fry, B. Landau, and W. Weimer, “A human study of
patch maintainability,” in Proc. of the Int. Symp. on Software
Testing and Analysis, 2012, pp. 177-187.

K. Aggarwal, Y. Singh, and J. Chhabra, “An integrated
measure of software maintainability,” in Proc. of Reliability
and Maintainability Symp., 2002, pp. 235-241.

R. P. Buse and W. R. Weimer, “A metric for software
readability,” in Proc. of the Int. Symp. on Software Testing
and Analysis, 2008, pp. 121-130.

[Online].

CIL Intermediate Language. Available:

/lkerneis.github.io/cil/

B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. Rinard, “Inference and enforcement of data
structure consistency specifications,” in Proc. of the Int. Symp.
on Software Testing and Analysis, 2006, pp. 233-244.

V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from
object behavior anomalies,” in Proc. of the IEEE/ACM Int.
Conf. on Automated Software Eng., 2009, pp. 550-554.

J. L. Wilkerson and D. Tauritz, “Coevolutionary automated
software correction,” in Proc. of the 12th Annual Conf. on
Genetic and Evolutionary Computation, 2010, pp. 1391-
1392.

R. Konighofer and R. Bloem, “Automated error localization
and correction for imperative programs,” in Formal Methods
in Computer-Aided Design, 2011, pp. 91-100.

J. A. Jones and M. J. Harrold, “Empirical evaluation of the
Tarantula automatic fault-localization technique,” in Proc. of
the 20th IEEE/ACM Int. Conf. on Automated Software Eng.,
2005, pp. 273-282.

http:

http://news.bbc.co.uk/2/hi/technology/7806683.stm
http://news.bbc.co.uk/2/hi/technology/7806683.stm
http://sir.unl.edu/php/previewfiles.php
http://www.linuxcommand.org/man_pages/gcov1.html
http://www.linuxcommand.org/man_pages/gcov1.html
http://kerneis.github.io/cil/
http://kerneis.github.io/cil/

	Introduction
	The GenProg Approach
	Prototype Tool: MUT-APR
	Mutation Operator
	The Repair Algorithm
	Motivation example
	Implementation

	Evaluation
	Evaluation Design
	Evaluation Results
	Repair Correctness depends on test suite type
	Repair Correctness depends on the nature of mutation operators
	Repair Maintainability

	Limitations and Threats to Validity
	Related Work
	Conclusion
	References

