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Abstract Automated program repair (APR) tools apply fault localization
(FL) techniques to identify the locations of likely faults to be repaired. The
effectiveness, performance, and repair correctness of APR depends in part on
the FL method used. If FL does not identify the location of a fault, the appli-
cation of an APR tool will not be effective– it will fail to repair the fault. If FL
assigns the actual faulty statement a low priority for repair, APR performance
will be reduced by increasing the time required to find a potential repair. In
addition, the correctness of a generated repair will be decreased since APR
will modify fault-free statements that are assigned a higher priority for repair
than an actual faulty statement. We conducted a controlled experiment to
evaluate the impact of ten FL techniques on APR effectiveness, performance,
and repair correctness using a brute force APR tool applied to faulty versions
of the Siemens Suite and two other large programs: space and sed.

All FL techniques were effective in identifying all faults; however, Wong3
and Ample1 were the least effective FL techniques since they assigned the low-
est priority for repair in more than 26% of the trials. We obtained the worst
APR performance significantly when Ample1 was used since it generated a
large number of variants in 29.11% of the trials, and took the longest time
to produce potential repairs. Jaccard FL improved repair correctness by gen-
erating more validated repairs–potential repairs that pass a set of regression
tests, and generating potential repairs that failed fewer regression tests. Also
Jaccard’s performance is noteworthy in that it never generated a large number
of variants during the repair process compared to the alternatives.
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1 Introduction

Debugging is an expensive process [22] that includes locating software faults
and fixing them. Automated program repair (APR) refers to techniques that
locate and fix software faults automatically, and thus promise to dramatically
reduce debugging costs. APR techniques apply fault localization (FL) to guide
a repair tool towards code segments that are more likely to contain faults. Then
an APR tool can modify the code most likely to contain faults. FL techniques
compute a suspiciousness score to indicate the likelihood that each statement
contains a fault. A list of potentially faulty statements (LPFS), ordered by
their suspiciousness, is created for use by the repair tool.

The effectiveness, performance, and repair correctness of APR can be im-
pacted by the selected FL technique. APR effectiveness is the ability to fix
faults, while performance is the time or number of steps required to find a po-
tential repair, and repair correctness indicates how well a potentially repaired
program retains the required functionality. An ineffective fault localization
technique might mislead the repair process by missing the statements where a
fault hides, assigning a low score to the actual faulty statement, or identifying
too many statements that might contain the faults. Missing faulty statements
will lower APR effectiveness by failing to find a potential repair. Assigning
a low score to a faulty statement will not decrease APR effectiveness, but
it will reduce APR performance and generate an incorrect repairs since the
APR will unproductively modify many fault-free statements before reaching
an actually faulty statement. On the other hand, identifying too many state-
ments might improve APR effectiveness by increasing the chance of finding a
potential repair, but with potentially poor performance and incorrect repair.
In the worst case, a fault localization technique can mark all statements in
a program as potentially faulty, which can decrease the performance of APR
dramatically especially with large programs. Le Goues et al. [27] found that for
APR “time is governed” by the number of potentially faulty statements rather
than program size. Thus, a fault localization technique that marks fewer state-
ments, and/or places an actually faulty statement at the head of the LPFS
will decrease the number of variants generated by an APR technique to find a
potential repair, thus improving APR performance. It also will improve repair
correctness by guiding the APR to actually faulty statements and reduce the
chances of modifying non-faulty statements.

Different FL techniques have been used with APR to locate potential faults.
Weimer et al. [21,39] apply a simple Weighting Scheme that assigns weight val-
ues to statements based on their execution by passing and failing tests. Higher
weights are assigned to statements that are executed only by failing tests, and
lower weights are assigned to statements that are executed by both passing
and failing tests. They excluded statements that are only executed by passing
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tests to prevent changing correct statements. Our previous paper [11], which
evaluated the correctness of generated repairs, uses the Weighting Scheme fol-
lowing the Weimer et al. approach. Nguyen et al. [33] use the Tarantula fault
localization technique [25,24,23]. Debroy and Wong [18,19] use Tarantula and
Ochiai fault localization techniques to rank program statements based on their
likelihood of containing faults. Using better fault localization techniques can
identify actual faulty statements more quickly, thus improving APR effective-
ness, performance, and repair correctness.

The effectiveness of different fault localization techniques on automated
program repairs has been evaluated by Qi et al. [35]. Their evaluation used
GenProg, an APR that implements a genetic algorithm to find the optimal so-
lution from the solution space. Genetic algorithms employ randomness through
the selection of program modification operators (PMOs) and a crossover oper-
ator; the randomness of the search algorithm might affect the accuracy of the
reported results since there is dependency between the accuracy of the fault
localization technique and the randomness of the search algorithm. The FL
technique might accurately locate the actual faulty statement, but the search
algorithm can select a PMO that does not fix the fault. A brute-force algorithm
is guaranteed to fix a fault if a repair is feasible. Therefore, a failure to find
a potential repair can be related to the selected FL technique. On the other
hand, Debroy and Wong evaluated the impact of Tarantula and Ochiai with an
APR technique that applies a brute-force search method. The effectiveness of
different FL techniques is measured in terms of the number of PMOs applied
until a fault is fixed, and they found that Ochiai fixed more faults with fewer
PMOs compared to Tarantula.

In this paper we do not propose a novel approach; rather, we designed and
conducted a controlled experiment to accurately evaluate the effect of FL on
APR effectiveness, performance, and repair correctness. There was a study by
Qi et. al. [35] to evaluate the impact of different FL techniques when used for
APR effectiveness and performance. However, to the best of our knowledge,
we are the first to study the impact of different fault localization techniques
within APR on the correctness of generated repairs. We evaluate FL techniques
with an APR that applies a brute-force search algorithm to eliminate the
randomness of a genetic algorithm that might affect the accuracy of the results
reported by Qi et al. [35].

Even though Debroy and Wong applied a brute-force search method to
evaluate FL techniques when used for APR, the differences between their eval-
uation and our evaluation are as follows: 1) Debory and Wong compared the
effectiveness of two FL techniques (Tarantula and Ochiai) while we compared
the effectiveness of ten of the most recent FL techniques in the literature,
2) Debroy and Wong use a brute-force search method that applies PMOs in
a random order; however, we order PMOs so that PMOs with the greater
chance of fixing faults are applied earlier, 3) Our study measures APR effec-
tiveness, performance, and the correctness of generated repairs when using
different FL techniques, while their approach only measured the effectiveness
of FL techniques, and 4) We measured APR effectiveness when different FL
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techniques are used as the ability of an FL technique to identify actual faulty
statements, while they measured effectiveness as the number of PMOs applied
until a repair is produced.

We studied the impact of ten well known fault localization techniques:
Jaccard, Optimal, OptimalP, Ochiai, Ochiai2, Tarantula, Ample1, Ample2,
Wong3, and Zoltar. Our evaluation was conducted on six subject programs
that include large programs (more than 12K LOC). Our results show that all
ten fault localization techniques successfully identified actually faulty state-
ments. Ample1 decreased APR performance significantly since it assigned
faulty statements low priority for repair, which caused the APR process to
generate a large number of variants, and took a greater amount of time to
produce potential repairs. Jaccard produced more validated repairs–potential
repairs that pass a set of regression tests. In addition, Jaccard always assigned
faulty statements a high priority for repair. It took an average of 43.28 seconds
to produce potential repairs, which was the best performance of the tested FL
techniques.

The main contributions of this paper are the following:

– A framework for comparing FL techniques in terms of their impact on the
effectiveness, performance, and repair correctness when used for automated
program repair. The MUT-APR evaluation framework is built by adapt-
ing GenProg to (1) fix operator faults, (2) use a brute-force search, and
(3) apply ten FL techniques.

– A determination of the impact of FL techniques on an APR tool’s abil-
ity to repair a faulty statement. We found that all studied FL techniques
identified actually faults statements.

– Our results show that Ample1 decreased APR performance significantly
compared to the alternative FL techniques, while differences between the
alternatives are not always statistically significant at the 0.95 confidence
level.

– Jaccard produced more repairs (%70.88) that were validated by passing all
regression tests compared to all alternative FL techniques. Also, Jaccard
generated potential repairs that rarely failed regression tests (an average
of 2.57%).

2 Background

2.1 Fault Localization Techniques (FL)

Fault localization techniques were introduced in order to guide developers to-
wards the most suspicious statements to check during debugging. Lately, FL
techniques are employed by APR to guide search algorithms towards state-
ments that are more likely to hide faults than other statements (step 1 in
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Table 1: The dynamic behavior of the faulty program gcd when executed
against tests in T1, ..., T5. Sus. Score is the suspiciousness score computed
using Tarantula.

Stmt ID Stmt T1 T2 T3 T4 T5 Sus. Score

gcd (int a, int b) {
1 if(a < 0) //fault X 1.00
2 { printf(“%g \n ”, b) ; 0.00
3 return 0 ; } 0.00
4 while(b ! = 0) X X X X X 0.50
5 if(a > b) X X X X 0.57
6 a = a − b ; X X 0.00
7 else X X X X 0.57
8 b = b − a ; X X X X 0.57
9 printf(“%g \n ”, a) ; X X X X 0.00
10 return 0 ; X X X X 0.00

}

Figure 1). Thus, applying FL helps to fix faults faster without breaking other
required functionality.

FL techniques locate potentially faulty statements in the source code by
computing a suspiciousness score for each statement that indicates its likeli-
hood of containing a fault. Then, statements are ordered based on their sus-
piciousness. Developers can use the suspiciousness score to order their search
for a fault to debug. Spectrum-based fault localization (SBFL) [7,12,16,24,
36,5,15] is a common FL approach; it compares the program behavior of a
passing execution to that of a failing execution. SBFL collects information on
the dynamic behavior of program statements when they are executed against
each test in a test suite. SBFL methods record the number of passing and fail-
ing tests executed for each statement, and compute a suspiciousness score for
each statement. Statements that are executed more often during a failing run
are considered to be more likely to contain faults, thus are assigned a higher
suspiciousness score than other statements in the program. Many heuristics
have been proposed to compute statement suspiciousness scores [7,25,24,36,
5,5,32].

To illustrate how FL techniques rank program statements using the com-
puted suspiciousness scores, we used the C program adapted from an example
used by Weimer et al. [39] (Table 1), which computes Eculid’s greatest com-
mon divisor. FL techniques count the number of passing and failing tests for
each statement. Each FL technique uses a formula to compute suspiciousness
scores. This example uses five test inputs TS = T1, T2, T3, T4, T5 in which T1,
T2, T3, and T4 are passing tests, and T5 is a failing test, and Tarantula com-
putes suspiciousness score for each statement using equation from Table 2. A
list of potentially faulty statement (LPFS), which consists of statement IDs
and their suspiciousness scores is created and sorted (Table 3). The LPFS
contains all statements with a suspiciousness score greater than zero, and will
be used by the APR tool to locate the fault.
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Table 2: Fault Localization Heuristics

FL Formula

Jaccard
Testsef (s)

Testsep(s)+Teststotf

Optimal

{
−1 if Testsnf (s) > 0
Testsnp(s) otherwise

OptimalP Testsef (s)− Testsep(s)

Teststotp+1

Ochiai
Testsef (s)√

Teststotf×(Testsep(s)+Testsef (s))

Ochiai2
Testsef (s)∗Testsnp(s)√

(Testsef (s)+Testsep(s))∗(Testsnp(s)+Testsnf (s))∗(Teststotf )∗(Teststotp)

Tarantula

Testsef (s)

Teststotf

Testsep(s)

Teststotp
+

Testsef (s)

Teststotf

Ample |Testsef (s)

Teststotf
− Testsep(s)

Teststotp
|

Ample2
Testsef (s)

Teststotf
− Testsep(s)

Teststotp

Wong3 Testsef − h, where h =

 Testsep if Testsep ≤ 2
2 + 0.1 ∗ (Testsep − 2) if 2 ≤ Testsep ≤ 10
2.8 + 0.001 ∗ (Testsep − 10) if Testsep > 10

Zoltar
Testsef (s)

Teststotf+Testsep(s)+
10000∗Testsnf (s))∗Testsep(s)

Testsef (s)

Table 3: List of Potentially Faulty Statements (LPFS) in format used by the
APR tool

Statement ID Suspiciousness score

1 1.00
5 0.57
7 0.57
8 0.57
4 0.50

2.2 Automated Program Repair (APR)

Automated program repair (APR) techniques locate and fix faults. APR tech-
niques take a faulty program and a set of repair tests, and produce a repaired
program. APR techniques consist of three main steps: fault localization (Step
1), variant creation (Step 2), and variant validation (Step 3). Figure 1 describes
the overall organization and activities of APR techniques.

First, an APR technique locates faults (Step 1 in Figure 1) by applying
a fault localization technique creating the LPFS as explained in the previous
section. Then, an APR technique fixes faults (Step 2 in Figure 1) by modify-
ing a faulty program using a set of program modification operators (PMOs)



Fault Localization Techniques for Automated Program Repair 7

Fig. 1: Overall Automated Program Repair (APR) Process

that change the code in the faulty statement to generate a new version of the
faulty program, which is called a variant. An APR technique applies a search
algorithm to create variants by selecting and applying a PMO; some search
algorithms run for multiple iterations and in some cases APR techniques gen-
erate a variant from a variant produced in prior iterations. The variant is
validated (Step 3 in Figure 1) by executing it against a set of repair tests. The
variant is called a potential repair or potential repaired program if it passes
all of the repair tests. The repair process stops when it finds a potentially
repaired program, or when the number of iterations have reached a limit. A
potential repair is considered a validated repair when it passes a set of tests
(often regression tests) that were not included in repair tests.

3 Automated Program repair (APR) Framework

To fix faults, we used our MUT-APR repair tool [11]. MUT-APR was built
by adapting the GenProg version 1 framework [21,39,38,27]. Unlike GenProg
which makes use of existing code in the subject program to repair faults, MUT-
APR applies a set of PMOs that construct new operators to replace faulty ones
creating new variants within a genetic algorithm. For this paper, we replaced
the genetic algorithm in MUT-APR with a brute-force search algorithm, and
added support for the use of different FL techniques applying the changes
developed by Qi et al. [35].
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Table 4: Program Modification Operators (PMOs) Supported by MUT-APR.

PMOs Description

ROR Relational Operator Replacement
AOR Arithmetic Operator Replacement
BWOR BitWise Operator Replacement
SOR Shift Operator Replacement

3.1 Program Modification Operators (PMOs)

MUT-APR makes use of a mutation-based technique adapted from Debroy and
Wong [18,19] to fix simple faults. Simple operator faults are common mistakes
made by developers. For example, relational operator faults, such as the use
of > instead of >=, can produce off-by-one errors, and many operator faults
are security vulnerabilities [1]. Many faults can be fixed by one-line modifi-
cations [34,17]. In addition, our previous study shows that the use of simple
PMOs improves the correctness of generated repairs by generating more vali-
dated repairs and generated repairs are similar to repairs done by humans [11].

Faults are fixed in source code by constructing new operators. PMOs are
applied to change a faulty operator into a set of alternatives until finding the
correct operator. For example, MUT-APR can generate five different variants
when changing a mutable statement (a mutable statement is a program con-
struct that can be changed by one of the supported PMOs) that contains
the > operator. We apply PMOs to fix faults in all statements that contain
relational operators, arithmetic operators, bitwise operators, and shift oper-
ators (Table 4). The PMOs are as follows: (1) change relational operators
in if statements, return statements, assignments, and loops, (2) change arith-
metic operators, bitwise operators and shift operators in return statements,
assignments, if bodies, and loop bodies.

Although MUT-APR supports PMOs to fix faults in binary operators,
MUT-APR does not apply PMOs to fix faults in Logical Operators due to
MUT-APR’s use of CIL [32]. CIL is an intermediate language for C programs
to manipulate source code and generate a simplified version of source code.
It transforms logical operators into if -then and if -else blocks. Therefore, in
order to fix faults in logical operators w.r.t. CIL would require making changes
to the generated if blocks rather than the operators. We left this for future
work.

3.1.1 PMO Algorithm

Algorithm 1 is used in the implementation of our PMOs. MUT-APR selects
the first potentially faulty statement from the LPFS. If the statement contains
an operator (Line 4), the operator is checked (line 5). Then, a PMO, that is
one of the alternatives of the potential faulty operator, is selected (line 6 )(e.g.,
stmti contains >, and PMO that is change > operator into an alternative is
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selected), the statement type is checked (line 7), and a new statement stmtj
is created (line 8). Then stmti is substituted by stmtj (line 9) creating a new
variant.

Algorithm 1 PMOs Pseudocode to Modify Simple Operators

1: Inputs: Program P and List of Potentially Faulty Statements LPFS
2: Output: mutated program
3: for all statements stmti in the LPFS do
4: if stmti contains an operator then
5: let stmtOp = checkOperator(stmti)
6: let pmo = choose(ChangestmtOpToOp),
7: let stmtType = checkStmtType(stmti)
8: let stmtj = apply(stmti,pmo)
9: substitute stmti with stmtj in program P

10: end if
11: end for
12: return P with stmti substituted by stmtj

3.1.2 Illustrated Example

A faulty Euclid’s greatest common divisor adapted from an example used by
Weimer et al. [39] illustrates our approach. The original fault was a missing
statement (line 3), which cannot be fixed by MUT-APR’s PMOs. In order
to demonstrate how MUT-APR fixes binary operator faults, we inserted the
missing statement and seeded a fault in the if statement in line 1 as shown in
Table 1.

The gcd program in Table 1 has three relational operators and two arith-
metic operators: line 1: if(a <0), line 4: while(b !=0), line 5: if(a>b), line 6: a
= a - b, and line 8: b = b - a. The faulty operator is in the first if statement
(line 1). In order to fix the fault, the operator in line 1 must be switched to
==.

We assume that all three relational operator statements and the two arith-
metic operators are identified as potentially faulty statements plus two other
statements, and the statement in line 1 is the first statement in the LPFS,
thus it is selected first for modification. MUT-APR checks the operator in the
statement and selects one of its alternatives (based on the predefined order).
The faulty operator in statement 1 is <. If the tool selects the PMO that
changes < to > , a new variant is created by constructing a new operator
for line 1. The variants are compiled and executed against repair tests. This
variant fails two test inputs: (0,55) and (55,0). Since the variant did not pass
all repair tests, it is not a potential repair and the process continues. Another
statement and PMO are selected. MUT-APR will successfully repair the fault
in line 1 when it selects the correct PMO.
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3.2 Search Algorithm

APR applies a search algorithm to select a program modification operator
(PMO) from a pool of PMOs to modify a suspicious statement (step 2 in
Figure 1). PMOs can be selected in a predefined order as done in a brute-force
search method, or randomly as done in stochastic search. Brute-force requires
an exhaustive search that applies all possible changes to the program until a
potential repair is found, which is inefficient and can be infeasible with large
programs. In contrast, a genetic algorithm applies mutation and crossover
operators to modify a faulty program. A genetic algorithm randomly selects
PMOs from a pool of operators, and a crossover operator combines changes
from two parent variants to generate a new child variant. A genetic algorithm
does not guarantee a potential repair due to its randomness. In this study,
we apply a brute-force APR process to eliminate the randomness of a genetic
algorithm, and to guarantee a potential repair when the FL technique identifies
the faulty statements and the repair is supported by the set of PMOs.

A brute-force algorithm applies all possible PMOs for each mutable state-
ment from the LPFS. PMOs are applied in a predefined order; we order rela-
tional PMOs to apply operators with a greater chance to fix the faults before
other operators; thus, decreasing the number of PMOs applied in the exhaus-
tive search to find potential repairs (the ordering mechanism is beyond the
scope of this paper, for more details look at the dissertation manuscript [10]).

3.2.1 Brute-force Algorithm

Algorithm 2 describes how the brute-force algorithm fixes faults within MUT-
APR. The algorithm modifies statements sequentially. It takes the first state-
ment in the LPFS, and checks if it contains an operator (line 4). If the operator
is mutable, it applies all possible alternatives (line 5-10). Each change creates
a variant (line 7). The fitness value is computed for each generated variant
(line 8) by executing it against the repair tests (one of the inputs to the repair
process in Figure 1). If a variant that passes all repair tests is found (in other
words, the variant has a fitness value equal to the maximum fitness value), a
potential repair is found. If not, the process continues with the next statement
in the LPFS until a potential repair is found (line 9) or the algorithm reaches
the last statement in the LPFS without a potential repair.

3.3 Fitness Function

Fitness values are computed for each generated variant to determine its good-
ness. The fitness function, adapted from GenProg [39], is given in Equation 1.
Testspass and Testsfail are the number of passing and failing tests respec-
tively, and Wpass and Wfail are positive constants that represent the weights
of passing and failing tests respectively. Failing tests are assigned a weight
of 10 and passing tests are assigned a weight of 1 following the approach by



Fault Localization Techniques for Automated Program Repair 11

Algorithm 2 Brute-Force Pseudocode

1: Inputs: Program P , List of Potentially Faulty Statements LPFS, and maximum fitness
value

2: Output: Variant
3: for i=0 to length(LPFS)-1 do
4: let stmtOp = checkOp(stmti)
5: for all program modification operators pmo for stmtOp do
6: repeat
7: let variant= apply(stmti, stmtOp, pmo)
8: let variant fitness= computeFitness(variant)
9: until variant fitness= maximum fitness || mOp is the last PMO for stmti

10: end for
11: if i != last index in the LPFS then
12: i++
13: end if
14: end for
15: return variant

Weimer et al. [39]. A variant (v1) that passes failing tests will have a higher
fitness value than another variant (v2) that passes all passing tests but not
failing tests. Thus, v1 will be more likely to be used for the next generation
than v2. If a variant that maximizes the fitness function (equal to max, which
is one input to the algorithm) is found, a potential repair is identified and the
process stops. Different weights can be assigned to repair tests. Weimer et al.
[28] studied the impact of assigning different weights to passing and failing
tests on APR effectiveness; however, this is beyond the scope of this paper.

fitness = |Testspass| ∗Wpass + |Testsfail| ∗Wfail (1)

4 Fault Localization Techniques (FL)

We used ten well known fault localization techniques proposed in the litera-
ture: Jaccard, Optimal, OptimalP, Ochiai, Ochiai2, Tarantula, Ample1, Am-
ple2, Wong3, and Zoltar. We selected these ten FL techniques for the follow-
ing reasons: (1) they have been proposed recently (between 2002 and 2007),
(2) Ochiai was identified as a highly effective FL technique from a developer
point of view [5,30], and Debory and Wong’s [18,19] results showed that more
faults were fixed with fewer PMOs using the Ochiai FL technique with their
APR approach, (3) Jaccard was identified as the most effective FL technique
with GenProg [35], (4) Tarantula was used in prior work with APR tech-
niques [18,33], and (5) Optimal and OptimalP were found to be more effective
than Ochiai and Jaccard from a developer point of view [32].

We implemented the selected fault localization techniques using about 649
LOC of OCaml code. Each FL technique applies a different heuristic; Table 2
shows the formula to compute the suspiciousness score for each fault local-
ization technique; where Testsep(s) is the number of passing tests that are
executed for statement s, Testsef (s) is the number of failing tests that are
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executed for statement s, Testsnp(s) is the number of passing tests that are
not executed for statement s, Testsnf (s) is the number of failing tests that
are not executed for statement s, and Teststotp and Teststotf are the total
number of passing and failing tests respectively in the test suite.

5 Study Method

In this section we describe research questions and metrics used to answer each
question, study data, and the evaluation design to study the impact of different
FL techniques on APR effectiveness, performance, and repair correctness.

5.1 Research Questions and Evaluation Metrics

Our evaluation study is designed to answer the following research questions:

RQ1: What is the relative APR effectiveness when different FL techniques
are employed?

APR effectiveness is the ability to fix faults. An FL technique that success-
fully determines the actual faulty statements improves APR effectiveness. On
the other hand, an FL technique that fails to identify actual faulty statements
limits APR effectiveness.

RQ2: Which FL technique give faulty statements the highest priority for
repair?

We are concerned with the accuracy of FL techniques in identifying actual
faulty statements from an automated program repair point of view. APR se-
lects statements sequentially from the LPFS, thus their position in the LPFS
is essential to the APR. A fault localization technique that places the actual
faulty statement at the head of the list prevents unwanted modifications by
changing statements that hold program functionality. Therefore, we measure
the priority of a statement by its position in the LPFS produced by the FL
technique. The position of a statement in the LPFS is its LPFS rank. State-
ments with higher suspiciousness scores are placed near the head of the list,
thus have a lower LPFS rank (higher priority for repair) compared to other
statements. For example, in Table 3 statement ID 1 has the lowest (best)
LPFS rank (LPFS rank =1) since it has the highest suspiciousness score. On
the other hand, statement ID 4 has the highest (worst) LPFS rank (LPFS
rank = 5).

We compared the LPFS rank of the actual faulty statement using the LPFS
that is created by each FL technique. An FL technique that assigns a higher
suspiciousness score to the actual faulty statement, placing it near the head of
the LPFS (lower LPFS rank), improves APR performance and repair correct-
ness compared to another FL technique that places the actual faulty statement
far from the head of the LPFS (higher LPFS rank).
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RQ3: How does the use of different FL techniques affect the number of
generated variants (NGV) until a potential repair is found?

In order to repair faults, APR tools apply PMOs to modify a location in
the faulty program to generate variants. Modifying a non-faulty statement
generates an invalid variant (a variant that does not pass all repair tests).
If the actual faulty statement is placed earlier in the LPFS, then the APR
will change the faulty statement and produce fewer invalid variants. NGV,
defined by Qi et al. [35], measures the number of generated variants until a
potential repair (a variant that passes all repair tests) is found. We compared
NGV when applying a brute-force APR using different FL techniques (lower
NGV is better). An FL technique that assigns a low LPFS rank to actual
faulty statement requires fewer statements to be modified, thus creating fewer
variants (reducing NGV).

Consider List 2 from Table 5b, NGV is the sum of possible changes for
each statement from the head of the list until producing a potential repair.
A potential repair is found by changing the operator in the faulty statement
(statement ID = 1) into a correct operator. Thus, for this particular example,
NGV is sum of the possible changes for statements ID 5, statement ID 8,
and statement ID 1. Statement ID 5 contains the > operator, which has five
possible changes, statement ID 8 contains the − operators, which has four
different possible changes, and statement ID 1 contains the < operator, which
has 5 different changes. However, changes will be applied to statement ID 1
until a repair is found; thus possible changes to statement ID 1 to produce a
potential repair can be a value between 1 and 5. The NGV for this example
NGV can be a minimum of 10 and a maximum of 14.

The difference between the LPFS rank metric (used for RQ2) and NGV is
that the LPFS rank metric is totally dependent on the FL technique; however,
NGV can be influenced by the number of mutable statements with lower LPFS
ranks than the actual faulty statement. For example, consider the use of two
FL techniques (FL1 and FL2) to identify the actual faulty statement in the
gcd program. FL1 creates List1 (Table 5a), and FL2 creates List2 (Table 5b).
Both techniques assign the same LPFS rank for the actual faulty statement
(the actual faulty statement, statement ID 1, in both lists has an LPFS rank
= 3). However, NGV depends on the number of mutable statements prior to
the actual faulty statement. List1 consists of two statements prior to the ac-
tual faulty statement (statement ID 2 and 3) but neither can be mutated by
MUT-APR PMOs; thus NGV can be equal to any value between 1 and 5 (de-
pending on the order of the application of alternative PMOs that transform
faulty operator < into the correct one ==). On the other hand, List2 consists
of two mutable statements prior to the actual faulty statement (statement 5
and 8), thus NGV can be equal to any value between 2 and 10.

RQ4: Does the use of different FL techniques affect the total time required
to find a potential repair?

We computed the total time required to find a potential repair. Total time
is the sum of the time needed to generate a new variant, compile and execute
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Table 5: List of Potentially Faulty Statements (LPFS) for gcd created by two
FL techniques: LPFS1 is created by FL1 and LPFS2 is created by FL2

(a) LPFS1

Statement ID Suspiciousness score LPFS rank
2 0.96 1
3 0.91 2
1 0.80 3
5 0.71 4
7 0.68 5
8 0.57 6
4 0.5 7

(b) LPFS2

Statement ID Suspiciousness score LPFS rank
5 0.96 1
8 0.91 2
1 0.80 3
2 0.72 4
3 0.6 5
4 0.5 6
10 0.5 7

each generated variant on the repair tests, and compute its fitness values for
all variants until producing a potential repair. We compared the total time,
measured in seconds, when each FL technique is used.

RQ5: Does the use of different FL techniques affect the correctness of gen-
erated repairs?

Repair correctness concerns how well a potential repair retains the required
functionality. To measure repair correctness, we defined PFR, which is the
percentage of failed potential repairs, and PFT, which is the percentage of
failed regression tests for each potential repair. PFR measured the percent
of potential repairs that failed at least one regression test (Equation 2). In
other words, it measured the percent of validated repairs (validated repair is
a potential repair that passes a set of regression tests), which is 100 − PFR,
and PFT measures how far each failing potential repair from being a validated
repair which is computed by Equation 3.

PFRFLTechnique =
PotentialRepairsfailed
TotalPotentialRepairs

∗ 100 (2)

PFTPotentialRepair =
RegressionTestsfailed
TotalRegressionTests

∗ 100 (3)

Figure 2 describes steps that we use to study repair correctness. APR
requires a set of repair tests generating one or more potential repairs, then we
execute potential repairs on a set of regression tests, and compute PFR and
PFT.
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Fig. 2: Steps to study repair correctness.

Table 6: Benchmark programs. Each Program is an original program from the
SIR [2]. LOC is the number of lines of codes. #Faulty Versions is the number
of faulty versions. Average # Repair Tests is the average number of repair
tests for each faulty version.

Program LOC # Faulty Versions Average # Repair Tests

tcas 173 4 6.4

replace 564 5 19

schedule2 374 2 9

tot info 406 4 8

space 6195 2 38.4

sed 12062 2 28

Total 19774 19 108.9

5.2 Study Data

5.2.1 Subject Programs

To evaluate our approach, we used six C programs from the Software artifacts
Infrastructure Repository (SIR) [2] along with a comprehensive set of test
inputs. We used the Siemens Suites: tcas, replace, schedule2, and tot info. We
also used two larger programs: space and sed. We found different versions of
each program with the fault of interest.

Even though many benchmarks are available in the SIR, we excluded faulty
versions which have no tests to execute the fault. We excluded other faulty
versions with faults other than operator faults (print-tokens, print-tokens2,
and schedule) since the ability to fix faults depends on the set of PMOs that
are supported by the approach. For example we excluded print-tokens from
our study because the seeded fault can be fixed by inserting or deleting a
statement and it cannot be fixed by our PMOs. We also excluded grep and
gzip because they could not be compiled within our framework.
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Subject programs have sizes ranging from 173 to 12K lines of code; each
program is seeded with a single fault. We used multiple faulty versions for
each subject program. Faulty versions are taken from the SIR. We also used
Proteum/IM 2.0 [20], which is a C mutation tool, to create additional faulty
versions that are seeded with single operator faults. We seeded subject pro-
grams with only single operator faults to guarantee finding a potential repair
w.r.t to the selected PMOs if the FL technique localizes a fault. This approach
controls for other factors that can impact the effectiveness of MUT-APR.

Our study includes nineteen faulty versions with a total of 19,774 lines
of code are used in our evaluation. Table 6 identifies the subject programs
along with their size, the number of faulty versions (after removing equivalent
mutants), and the average size of repair tests.

5.2.2 Repair Tests

One of the inputs to an APR tool is a set of repair tests. We selected a set
of repair tests that have at least one failing test, and one passing test. Failing
tests execute faults, and passing tests protect program functionality. Repair
tests for the Siemens Suites are taken from the SIR repository. Test suites
for the large programs provided by the SIR contain too many test inputs,
which will slow the APR process, since repair tests are used to validate each
generated variant. We created repair tests for each large program containing at
least one failing test and 20 passing tests following Qi et al.[35]. In addition, a
study by Abreu et al. [5] found that fault localization techniques give a stable
behavior when no less than 20 test inputs are used. To validate our results, we
repeated the study for each faulty version using five different repair tests that
are selected/created randomly using test data provided by the SIR except for
two versions of tcas program (tcas-v5 and tcas-25), which used three and one
repair tests, respectively, since there are no other test suites that execute faults.
We only used five different test suites due to the unavailability of different
branch repair tests that include at least one passing and one failing tests for
each faulty version in the SIR repository. The average number of repair tests
can be found in the last column of Table 6.

5.3 Evaluation Design

For each faulty version, we used each FL technique to create an LPFS. Then
the list is used by MUT-APR to find potential repairs. We executed each FL
technique five times on each faulty version with five different repair tests except
for tcas. On one version of tcas we used three different repair tests, and on the
other version of tcas we used one repair test. We excluded the two versions of
the replace program in which the actual faulty statements were not identified
by all FL techniques when analyzing the results for RQ2, RQ3, and RQ4 (only
17 faulty versions were used). In total, our evaluation includes 79 trials (faulty
versions × number of test suites for each faulty version). We compute the
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average and median values of our measurements for each faulty version across
the multiple test suites, and the average value across all trials. We excluded
the trials in which at least one FL technique did not identify actual faulty
statement. To measure PFT, we exclude trials in which a potential repair
passes all regression tests. In other words, we excluded trials with PFR = 0.

We compared the distributions of the measurements for the raw data and
the transformed data using the sqrt function to make the data more normal.
Then, to measure the statistical difference we applied Mixed Model [13], which
is preferable over ANOVA, to study the effect of many measurements using
the same subject program. We studied the difference at the 0.95 confidence
level. Our experiments were conducted on a fedora Linux machine with an
Intel Xeon R 2.67GHz CPU and 7.7 GB memory size. MUT-APR source code
and experiments data can be found at http://fyassiri.wix.com/mutapr

6 Results

6.1 RQ1: Relative APR Effectiveness

To compare APR effectiveness when different FL techniques are used, we stud-
ied the ability of FL techniques to identify actual faulty statements. If an FL
technique fails to identity the actual faulty statement, APR will fail to repair
the fault. All ten FL techniques successfully identified actual faulty statements
for all faulty versions except for two faulty versions of replace (version 25 and
version 31) in which all FL techniques failed to identify faulty statements.

We checked these two versions of replace to investigate why FL techniques
failed to identify actual faulty statements. In both versions, faults were in an
if statement nested inside a switch statement. When the program is executed
against the failing tests, the if statement is checked and it returns false. Thus,
the execution jumps to the default statement, which caused failures. However,
the faulty if statements were not recorded as one of the executed statements
(when the if statement evaluated to false, the coverage tool did not add it to the
list of executed statements). This problem is due to the coverage code that
creates the instrumented version of faulty programs which records coverage
information. The coverage code is adapted from GenProg, and modifying the
code is left for the future.

6.2 RQ2: Which FL Technique Gave Actual Faulty Statements the highest
priority (lowest LPFS rank) for Repair?

We evaluated the accuracy of FL techniques in identifying actual faulty state-
ments by comparing the LPFS rank of the actual faulty statement produced
by each FL technique. We compared the LPFS rank of faulty statements using
seventeen faulty versions (79 trials).

First, we compared the LPFS rank of actual faulty statements across all
of the trials. We found that in one out of 79 (1.27%) of the trials Ochiai2 and
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Table 7: LPFS Rank, NGV, and Total Time of different FL techniques.

LPFS Rank NGV Total time
FL Mean Median Std Mean Median Std Mean Median Std

Jaccard 29.26 24.00 22.59 38.34 26.50 37.09 43.28 10.33 78.03
Optimal 35.72 23.50 70.18 45.47 28.00 78.29 40.38 10.28 110.6
Ochiai 28.87 24.00 22.84 38.07 26.50 37.77 42.61 10.20 75.81
Tarantula 28.75 24.00 23.12 38.27 26.50 38.49 42.74 10.35 75.82
OptimalP 28.59 23.00 34.35 40.83 25.50 61.05 46.64 10.31 90.06
Ochiai2 30.38 24.50 22.71 40.21 33.00 36.52 42.22 11.61 74.41
Wong3 38.14 27.00 50.13 48.21 29.50 78.35 50.82 10.42 108.9
Ample1 36.43 28.00 27.69 49.59 36.00 44.05 71.205 15.19 117.1
Zoltar 30.82 24.00 35.07 41.75 26.50 60.87 46.45 10.23 89.55
Ample2 27.24 23.50 21.08 38.50 26.50 36.23 36.01 10.20 63.50

Ample2 assigned the lowest priority for repair (highest LPFS rank) to actual
faulty statements, in two out of 79 (2.53%) of the trials Jaccard assigned the
lowest priority for repair to actual faulty statements, and in four out of the 79
(5.06%) of the trials Optimal assigned the lowest priority for repair to actual
faulty statements. On the other hand, Wong3 and Ample1 assigned a lowest
priority for repair (highest LPFS rank) to actual faulty statements in 21 and
26 trials out of the 79 trials, respectively. In other words, Wongs3 assigned
lowest priority for repair to actual faulty statements in 26.59% of the trials,
and Ample1 assigned lowest priority for repair to actual faulty statements
in 32.91% of the trials. However, Wong3 and Ample2 assigned acutal faulty
statements the highest priority for repair in on trial, Ample1 assigned actual
faulty statements the highest priority for repair in two trials, and Optimal
assigned actual faulty statement the highest priority for repair in four trials.

We compared the average LPFS rank for all FL techniques (Table 7). On
average, Ample2 assigned the highest priority for repair (an average LPFS rank
of 27.24) to actual faulty statements, followed by Ochiai and Tarantula which
assigned an average of 28.87 and 28.75 LPFS ranks to actual faulty statements.
Wong3 assigned the lowest priority for repair to actual faulty statements (an
average LPFS rank of 38.14), followed by Ample1 (an average LPFS rank of
36.43). Then, we compared the medians. We found that Ample1 assigned the
lowest priority to actual faulty statements compared to all other FL techniques
(28 LPFS rank).

Figure 3a shows the distributions of raw LPFS rank data, and Figure 3b
shows the distributions of transformed LPFS rank data. Boxes represent the
distribution of the LPFS data when each FL technique was used, the middle
line represents medians, and the dots represent mean values. The top whisker
represents the maximum value, and bottom whisker represents the minimum
value. Box plots show that most of the FL techniques have similar distributions
with slight differences, except Wong3 and Ample1 in which most LPFS ranks
data are distributed at higher values (lowest priority for repair). In addition,
Optimal assigned very high LPFS ranks to some faulty statements, which is
shown by the top whisker.
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(a) Raw LPFS Rank Data

(b) Transformed LPFS Rank Data

Fig. 3: LPFS rank for faulty statements for each FL technique. Lower LPFS
rank is better.

We studied the statistical difference between Wong3, Ample1 and all other
FL techniques, and we found that the different is significant between Ample1
and Ample2 (p-value = 0.04) and between Wong3 and Ample2 (p-value =
0.01 ), Jaccard (p-value = 0.03), Ochiai (p-value = 0.03), OptimalP (p-value
= 0.03), and Tarantula (p-value = 0.03) at the 0.95 confidence level.

One thing to notice here is the large average and standard deviation values,
as shown in Table 7. These values relate to the size of programs used in our
evaluations. The data set includes large programs that required checking more
than one thousand statements before reaching faulty statements, thus a very
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high LPFS rank was assigned to actual faulty statements which skew the av-
erage and the standard deviation values of LPFS rank, NGV, and TotalTime.

In summary, all FL techniques assigned the same LPFS ranks to actual
faulty statements except Wong3 and Ample1 which assigned the lowest prior-
ity for repair (highest LPFS rank) to actual faulty statement in 26.59% and
32.91% of trials, respectively. The difference is statistically significant between
Ample1 and Ample2, and between Wong3 and Ample2, Jaccard, Ochiai, Op-
timalP, and Tarantula at the 0.95 confidence level.

6.3 RQ3: Number of Generated Variants (NGV)

We compared the number of generated variants (NGV) until a potential repair
is found to determine the most effective FL technique for use in APR. An FL
technique that gives lower NGV is better since it decreases the chances of
producing invalid variants before finding the correct one. We compared the
NGV for all FL techniques across all trials; in one out of 79 (1.27%) of the
trials Ochiai, Ochiai2, and Ample2 generated the largest number of variants
until producing potential repairs compared to other FL techniques, in four out
of 79 (5.06%) of the trials Optimal has the largest NGV, in six trials out of 79
(7.59%) of the trials Wong3 produced the largest NGV until a potential repair
is found, and in 23 trials out of 79 (29.11%) of the trials Ample1 generated
the largest number of variants until a potential repair is found.

Table 7 shows the average and median NGV for each FL techniques across
all trials. Ample1 generated an average of 49.59 variants until a potential
repair is found, which is higher than all other FL techniques. In addition, the
median value for Ample1 is the highest (36 variants) compared to all other FL
techniques. Figures 4a and 4b show the distributions of the raw NGV data and
transformed NGV data for each FL technique. NGV are distributed at higher
values with slightly higher median and mean values when Ample1 was used
compared to all alternatives. The top whisker shows the maximum value of
NGV, and Optimal have the highest maximum value compared to all other FL
techniques. The difference is significant between Ample1 and Ample2, Jaccard,
Ochiai, Ochiai2, and Tarantula at the 0.95 confidence level (p-values between
0.01 and 0.05)

In summary, Ample1 reduced APR performance since it generates a large
number of variants in 29.11% of the trials, and the difference between Ample1
and most of alternative FL techniques is significant.

6.4 RQ4: Total Time

We compared the total time required until a potential repair is found when each
FL technique is used to generate the LPFS. First, we compared FL techniques
across all trials (79 trials). Jaccard, Ochiai, OptimalP, Zoltar, and Ample2 took
the longest time to produce potential repairs for one trial out of 79 (1.27%
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(a) Raw NGV Data

(b) Transformed NGV Data

Fig. 4: NGV required to find potential repairs for each FL technique. Lower
NGV is better.

of the trials), Ochiai2 took the longest time in four out of 79 (5.06%) of the
trials, Wong3 and Ample1 took the longest time for 13 and 26 trials out of 79
(16.46% and 32.9%) of the trials; respectively.

Then, we compared the average and the median total time for each FL
technique. Table 7 shows that Ample1 required the longest average and median
time (71.79 seconds and 15.19 seconds, respectively) to repair faults, followed
by Wong3 which required an average of 50.87 seconds. All other FL techniques
required similar times. Figure 5a shows the distribution of the raw total time
data required to repair faults and Figure 5b shows the distributions of the
transformed total time data when each FL technique was used to identify
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(a) Raw Total Time Data

(b) Transformed Total Time Data

Fig. 5: Total time required to find potential repairs for each FL technique.
Lower NGV is better.

actual faulty statements. Ample1 took the longest time to produce potential
repairs for most of the trials as shown by the box plots, with the largest
median and mean values. Wong3 has a slightly higher mean value; however,
its median value is similar to the other FL techniques. We found that the
difference is statistically significant between Ample1 and all alternative FL
techniques, except Wong3, at the 0.95 confidence level (p-values between 0.00
and 0.05) .

To conclude, Ample1 decreases APR performance since it required the
longest total time (an average of 71.02 seconds) to produce potential repairs
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Table 8: Repair correctness of different FL techniques. PFR is the percentage
of failing potential repairs, and PFT is the percent of failing regression tests
for each potential repair.

FL Technique PFR (%) Validated Repairs (%) Average PFT (%) Median PFT (%)

Jaccard 29.11 70.88 2.57 0.09
Optimal 34.18 65.82 9.68 0.09
Ochiai 32.91 67.08 2.65 0.09
Tarantula 32.91 67.08 2.55 0.09
OptimalP 31.65 68.35 2.65 0.09
Ochiai2 32.91 67.08 2.65 0.09
Wong3 31.65 68.35 2.48 0.09
Ample1 32.91 67.08 2.62 0.09
Zoltar 32.91 67.08 2.65 0.09
Ample2 31.65 68.35 2.61 0.09

compared to all alternative FL techniques. The difference between all FL al-
ternatives, except Wong3, is significant at the 0.95 confidence level.

6.5 RQ4: Repair Correctness

To measure the impact of different FL technique on repair correctness, we mea-
sured the percent of failing potential repairs (PFR) when each FL technique is
used. Jaccard produced more validated repairs (70.88% of potential repairs are
validated) compared to all alternative FL techniques, which produced between
68.35% and 67.08% validated repairs (Table 8).

Then, we compared the PFT for all trials with failing potential repair; we
excluded trials with potential repairs that pass all regression tests (PFR = 0).
Thus 25 trials are included for replace, tcas, and sed programs. The results
showed that PFT is similar across all trials for all FL techniques except Jac-
card, which produced potential repairs that failed more regression tests com-
pared to all alternative FL techniques in one trial of sed program, and Optimal
which generated repair that failed more regression tests compared to all FL
techniques in three trials of sed program.

We compared the mean and the median of PFT. We found that Optimal
reduced repair corretness since it generated potential repairs that failed an av-
erage of 9.68% of regression tests. All other FL techniques generated potential
repairs that failed an average of 2.48% to 2.65% of regression tests. However,
the median value of PFT is similar for all FL techniques. Figure 6a and 6b
show the distributions for raw PFT data and transformed PFT data, respec-
tively. Optimal has the largest PFT values as shown by the top whisker, and
the largest mean but similar median compared to alternatives. We analyzed
the statistical difference using the Mixed Model, we we found the difference
between Optimal and all alternative FL techniques is statistically significant
(p-values between 0.02 and 0.03) at the 0.95 confidence level.
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(a) Raw PFT Data

(b) Transformed PFT Data

Fig. 6: Total time required to find potential repairs for each FL technique.
Lower NGV is better.

In summary, Jaccard produced a higher proportion of correct potential
repairs with APR since it generated more validated repairs (validate repairs
= 70.88%) and generated potential repairs failed few regression tests (PFT =
2.57%). On the other hand, Optimal produced the lowest proportion of correct
potential repairs since it generated potential repairs that failed an average of
9.68% of regression tests compared to all alternative FL techniques.
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Table 9: Correlation results between performance metrics: LPFS Rank, Num-
ber of Generated Variants (NGV), and Time of different FL Techniques.

FL Technique LPFS Rank - NGV LPFS Rank - Total Time NGV - Total time

Jaccard 0.78 0.13 0.19
Optimal 0.96 0.91 0.91
Ochiai 0.78 0.15 0.22
Tarantula 0.79 0.17 0.24
OptimalP 0.95 0.53 0.54
Ochiai2 0.78 0.11 0.17
Wong3 0.95 0.75 0.74
Ample1 0.86 0.08 0.09
Zoltar 0.91 0.49 0.54
Ample2 0.87 0.23 0.26

7 Discussion

7.1 Correlation between Performance Metrics

We evaluated the impact of different FL localization techniques on the effec-
tiveness, performance, and repair correctness of APR techniques. We compared
APR performance when different FL techniques are used in terms of three met-
rics: LPFS rank, NGV, and time. We studied the relationship between these
metrics. There is a high correlation between the LPFS rank of actual faulty
statements and the NGV until a potential repair is found (Table 9). FL tech-
niques that assigned lower LPFS ranks to actual faulty statements decreased
the NGV until a potential repair is found. Decreasing the NGV improved APR
performance in terms of time.

The correlation between time and other two metrics: LPFS rank and NGV
is weak. This might be due to the influence of other factors that affect the
time to find a potential repair such as the number of repair tests, and the
compilation and execution time of variants. In addition, time can be affected
by the resources used to run the experiments.

7.2 Fixing Multiple faults or single faults on multiple lines

Fixing multiple faults or single faults that are spread across multiple lines
requires applying more than one PMOs for each variant. Our current APR
approach cannot fix multiple faults, but it can be extended to target these type
of faults. Fixing multiple faults can be implemented by applying all possible
combinations of single PMO in which each combination fixes a single fault as
proposed by Debroy and Wong [19]. However, this approach can be infeasible
since the number of combinations can increase exponentially as the number of
PMOs increase. Another approach to fixing multiple faults is to apply PMOs
with a search algorithm that runs for multiple iterations, or a search algorithm
that applies a crossover operator to combine the changes from two variants
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into one. In addition, properties of repair tests suites need to be investigated
when fixing multiple faults. For example, repair test suites must contain at
least one failing test that executes each fault, and the passing and failing tests
should not overlap. We demonstrated this idea using the tcas subject program.
In a preliminary study, we injected two operator faults, and we created repair
test suites following the provided criteria. MUT-APR successfully fixed both
faults. More studies are needed to fix multiple faults with APR techniques.

8 Threats to Validity

Internal Validity: Our evaluation studied the impact of different FL tech-
niques on the performance, effectiveness, and repair correctness of automated
program repair. Qi et al. [35] evaluated APR effectiveness and performance
using different FL techniques with GenProg. We argue that the randomness
of the genetic algorithm used by GenProg might affect the accuracy of the
reported results. Even if an FL technique accurately locates an actual faulty
statement, a search algorithm can randomly select PMOs that do not fix the
fault. In this case, faults are not fixed due to the randomness of the search
algorithm, not the fault localization technique. To mitigate this threat to inter-
nal validity, we applied a brute-force APR to remove the dependency between
FL technique accuracy and the randomness of search algorithms.

External Validity: This relates to the ability to generalize the results. MUT-
APR fixed single operator faults that are related to the supported PMOs. In
addition, MUT-APR is limited to fixing faults requiring a one line modifica-
tion, and to repair faults in relational operators, arithmetic operators, shift
operators, and bitwise operators in different statement types. Therefore, our
results might not generalize to other fault types, programs from other domains,
or programs with real-world faults. To mitigate external threats, our evalua-
tion consists of programs of different sizes including two large C programs
(more than 12K LOC). However, the results of our experiments are impacted
by the length of the LPFS and the position of the actual faulty statements in
the LPFS, not the program size. Thus, the use of mostly small programs does
not affect the accuracy of our results. Jaccard was found to be the best FL
with GenProg [39] and MUT-APR [11], However, these results might not gen-
eralize to other APR techniques. Thus, the experiment needs to be replicated
using other APR techniques.

Construct Validity: The accuracy of FL techniques depends in part on the test
inputs used to identify actual faulty statements, which is a threat to construct
validity. To mitigate this threat we used five different sets of repair tests (test
inputs). For the small programs, we selected test suites randomly from the set
of suites provided by the SIR. For the large programs, we created independent
repair tests for each faulty version with no less than 20 passing test cases to
achieve the best accuracy as reported by Abreu et al. [5].
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In addition, properties of repair tests determine the correctness of gen-
erated potential repairs [11]. We could not mitigate this threat due to the
unavailability of five branch coverage test suites that execute the faults for
each faulty version in the SIR repository. In addition, the accuracy of PFR
and PFR depends on the quality of regression tests. We used regression tests
that satisfy branch coverage; however, different regression tests might produce
different results. Thus, PFR and PFT are only estimates and do not directly
measure the number of failures caused by the introduction of new faults. A
single fault can cause multiple tests to fail.

Total time was used to measure APR performance, but time can be af-
fected by other factors such as the number of repair tests, and the execution
time for individual variants. Therefore, total time is another threat to con-
struct validity. To mitigate this threat we ran the experiments using the same
machine.

Conclusion validity: This relates to the statistical significant of the results.
We applied statistical tests to measure the consistency of the results across all
faulty versions, and to measure the statistical difference. Program size varia-
tions can be a threat to conclusion validity. To mitigate this threat we trans-
formed our data using the sqrt function to make the data more normal. To
limit other threats to conclusion validity, we ensured randomness in the ex-
perimental setting when selecting/creating tests inputs, and we used the same
trials (combination of faulty versions and repair tests) with all FL techniques.

9 Related Work

Fault localization tools are introduced to decrease the cost of finding faults
and improve software quality. These tools are based on spectrum-based fault
localization (SBFL) techniques to identify actual faulty statements in source
code. The Tarantula tool [23] was developed to locate faults in C programs,
and AMPLE [16] is an Eclipse plug-in for object-oriented software. Ochiai is
used in the molecular biology domain [31], and Jaccard is used in the Pinpoint
tool [14].

FL techniques have been evaluated in terms of their accuracy to locate
faults. Abreu et al. [4] evaluated the effectiveness of four FL techniques (Pin-
point, Ochiai, Tarantula and AMPLE) in terms of the LPFS rank of the ac-
tual faulty statement. Experiments conducted on the Siemens Suites and space
program showed that the Ochiai FL technique is the most effective of those
evaluated. Abreu et al. [5,3] studied the impact of the quality and the quantity
of passing and failing tests on the accuracy of FL techniques. They found that
Ochiai, Jaccard, and Tarantula provide accurate results with low quality tests
that include only 1% of failing tests that propagate faults to the outputs. They
studied the impact of the number of passing and failing tests on the accuracy
of FL techniques, and found that adding more failing tests will always improve
the accuracy of FL techniques. Adding more than 6 failing tests has a minimal
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affect but it does not lower the accuracy of fault diagnosis. On the other hand,
adding more than 20 passing tests decreased the accuracy of FL techniques.
Lee et al. [29] and Naish et al. [32] conducted a more comprehensive study
to compare the accuracy of the formulas used to locate faults. Naish et al.
also proposed two Optimal metrics to locate faults, which outperform other
metrics. The latest study by Xie et al. [40] performed a theoretical analysis to
evaluate FL techniques, and found that the Optimal metrics by Naish et al.
have similar behaviors.

Lately, research has been directed toward automated program repair (APR)
techniques to reduce debugging costs. GenProg is a well known APR technique
developed by Weimer and his colleagues [21,39,38,27]. It uses a genetic pro-
gramming algorithm to fix faults automatically in C programs. GenProg can fix
a variety of faults including segmentation faults and infinite loops. Arcuri [8,
9] proposed an approach and tool, called JAFF, that use genetic program-
ming for automatic bug fixing for Java programs. Ackling et al. [6] developed
pyEDB tool to automate repairs of Python software. SemFix [33] is a tool for
fixing faults through semantic analysis; Debroy and Wong [18,19] applied a
brute-force search method to repair faults using first order progam modifica-
tion operators. Wei et al. [37] developed a tool, called AutoFix-E, to automate
fault fixing in Eiffel programs equipped with contracts. Kim et al. [26] describe
the Pattern-based Automatic program Repair tool (PAR), which repairs faults
by generating patches using fix patterns. Ten patterns are created based on
patches commonly written by humans.

APR techniques must locate faults in order to fix them. Existing FL tech-
niques are employed by APR tools to locate and fix faults automatically.
Nguyen et al. [33] use Tarantula heuristics to identify actual faulty statements.
They compared the impact of Ochiai on SemFix, and found that Ochiai only
fixed two more faulty versions of the tcas program. Debroy and Wong [18,19]
compared APR efficiency using Tarantula and Ochiai heuristics, and found
that Ochiai is a better FL technique that allowed more faults to be fixed with
fewer PMOs. However, they used a large number of test inputs to evaluate the
effectiveness of FL heuristics; using a large number of test inputs might affect
the accuracy of their results since Abreu et al. [5,3] found that using more
than 20 passing tests has a negative impact on FL techniques.

GenProg uses a basic Weighting Scheme to locate faults, and some APR
techniques [11,26] apply the Weighting Scheme following the GenProg ap-
proach. Only one prior study evaluates the effectiveness of different FL tech-
niques employed by APR techniques [35]. Qi et al. found that APR had the
best performance when applying the Jaccard heuristic. They investigated why
Jaccard produced the best results, and found that Jaccard assigned very low
scores (high LPFS rank) to non-faulty statements and very high scores (low
LPFS rank) to actual faulty statements, which decreased the chances of pro-
ducing invalid potential repairs, even though some other FL techniques as-
signed higher scores (lower LPFS rank) to actual faulty statements. However,
this work evaluates the effectiveness of FL techniques using the GenProg ran-
dom search algorithm, which can affect the accuracy of the results.
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Our results show that all studied fault localization techniques have similar
impact on APR, except Jaccard, which improved repair correctness compare
to alternatives. The FL technique is not the only factor that can impact APR
effectiveness, performance, and repair correctness. To ensure the accuracy of
our results, we control all other factors, such as repair test suites and PMOs
that are used in the repair process. In addition, we used an exhaustive search
to remove the dependency between the search algorithms and fault localization
techniques.

10 Conclusion and Future work

Fault localization (FL) techniques are employed by APR tools to reduce the
number of potentially faulty statements to be modified in order to find a
potential repair. FL techniques that identify faulty statements will improve
APR effectiveness. An FL technique that places actual faulty statements at
the head of the list of potentially faulty statements (LPFS), will improve APR
performance and repair correctness since fewer statements will be modified
until a potential repair is found, thus decreasing the time required to fix faults
and preventing unwanted modification to non-faulty statements.

Our evaluation shows that all ten FL localization techniques identified
actual faulty statements. Wong3 and Ample1 assigned the lowest priority for
repair (highest LPFS rank) to actual faulty statements in 26.59% and 32.91%
of the trials, and Ample1 generated the largest number of variants (49.59
variants) until producing potential repairs in 29% of the trials. In addition,
Ample1 took the longest time to generate a repair (an average of 71.02 second).
Ample1 decreased APR performance because it assigned the lowest priority
for repair to actual faulty statements, which increased the NGV and total time
required to find potential repairs. On the other hand, Jaccard produced more
correct repairs, and generated potential repairs that failed fewer regression
tests.

Our results contribute towards improving effectiveness, performance, and
repair correctness of APR techniques. We provide a framework for evaluating
alternative FL techniques along with an evaluation of these techniques. We
plan to combine the results from this study to evaluate the impact of different
search algorithms to improve the performance of APR techniques without
decreasing their effectiveness and repair correctness.
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