MODELING AND MEASURING SOFTWARE
DATA DEPENDENCY COMPLEXITY

by

James Michael Bieman
and

William R. Edwards

June 1985

TR #85-18

F— }

DEPARTMENT OF COMPUTER SCIENCE
IOWA STATE UNIVERSITY/AMES, IOWA 50011

MODELING AND MEASURING SOFTWARE
DATA DEPENDENCY COMPLEXITY

by

James Michael Bieman
and

William R. Edwards

June 1985

TR #85-18

Modeling and Measuring Software
Data Dependency Complexity

James Michael Bieman
and
William R. Edwards

Abstract

We have developed a model of the data dependencies within a program - the
data dependency graph (DDG). The DDG is a directed graph: nodes represent
variable definitions and edges represent possible data dependencies. A data
dependency exists when the value stored in a variable may be directly affected
by the value of another variable or an earlier value of the same variable.
For example, after an assignment Y := f(X) is executed, the new value of Y
depends on the current live definitions of X and the control variables that
determine whether the assignment 1s executed. We present algorithms to
generate DDG's from arbitrary programs written in procedural languages, use
the DDG to develop measures of software complexity, and report the results of
an initial validation effort. The complexity measures proposed are the

cyclomatic complexity and the rooted spanning tree complexity of a DDG.

-1 -

Index Terms

data dependency, software structure, software complexity measurement,

programmer/program interface, software reliability, software engineering tools

-2 -

I. Introduction

The objective of this research effort is to construct a data dependency
model of program complexity that is viewed from the programmers perspective
and is automatable. Most of the research directed towards measuring the
complexity of the programmer/program interface has centered on the measurement
of flow of control complexity. McCabe's presentation of cyclomatic complexity

is an example of the modeling and measurement of flow of control complexity

{13].

Weiser found that programmers seem to work backwards when debugging,
examining only instructions that affect the variables in error [19]. Weiser's
results demonstrate the importance of data dependencies and indicate that a
measure of data dependency complexity would be a useful tool for the

development of reliable and maintainable software.

A model of the data dependencies within a program is required before
measures of data dependency complexity can be derived. The model developed in

this research effort is the data dependency graph (DDG) {2].

The DDG is a directed graph, with each node representing a variable
definition and each edge representing a possible data dependency. A variable
definition is considered live at a specified statement if it is possible for
the value placed in the variable at the definition to be referenced at the
statement. When constructing a DDG, live definitions are collected from
alternate pathways in the program to determine possible dependencies of a
given variable definition. The algorithms for generating a DDG recognize
variable definitions and flow of control constructs, and use knowledge of the

live definitions and the variable definitions that determine control flow.

The algorithms can generate DDG's from programs with unstructured
constructs such as GOTO statements, multiple entry/exit points, and global
variables. Good programming practices should preclude the use of unstructured
code. However, addressing the problems involved in constructing a DDG from
unstructured code is justified. The model can be most generally applied if
there are minimal restrictions on code structure. Furthermore, the metrics
based on the DDG may help quantify and support subjective judgments concerning
the merits of structured programﬁing. Also, there are pragmatic reasons for
including unstructured programs in the model. A large amount of software
currently in use is not structured or is written in languages such as FORTRAN
66 where structured constructs must be simulated. The model can be applied to
existing unstructured code since the issues associated with unstructured

programs are addressed.

Certain general measures of DDG complexity are proposed as software
complexity measures. These measures are the cyclomatic complexity and rooted

spanning tree complexity of the DDG.

The DDG models program complexity from the programmers point of view, and
is an abstraction of the complexity that the programmer must deal with. The
programmer views a program as a static representation of a dynamic entity, a
program in execution. The program specifies more than what will occur during
an individual execution, rather the program specifies the possible actions
during all executions. Weiser defines a slice to be a program after the
deletion of all statements that do not affect the value of a specified
variable at a given statement [18]. A slice is one representation of the
search space that the programmer must examine in detecting the source of an

error and is created by using a subset of the data dependencies in a program

segment. The DDG is a representation of all of the possible data dependencies

-4 -

that may exist during any execution. The more complex the data dependencies
in a program, the larger the search space that the programmer must contend
with when trying to comprehend the program for the purpose of enhancement or

when searching for the source of a bug.

II. The Data Dependency Graph

The DDG <N,E> is a directed graph representation of the possible data
dependencies in a program. N is a set of nodes where each node denotes a
variable definition and E is a set of edges in NxN. If (a,b) is a member of E
then the definition represented by b is possibly dependent on the definition

represented by a.

A variable definition is a statement that may modify the value of a
variable, such as assignment statements, procedure calls, and input
statements. Initialization, or the initial state of a variable even when
undefined, is assumed to be a definition. For convenience, we label each node
with a name identifying the variable that the node represents and a subscript.
The subscripts distinguish between nodes representing different definitions of
the same variable and are sequentially numbered based on the relative position

of the definition in the source code.

DDG edges represent possible dependencies between definitions. Consider a
statement S, in program P of the form Y := f(A). S, is a definition of
variable Y and would be represented by a node Y, in the DDG. The definition
represented by Y, is directly dependent on each definition of variable A that
can reach S,, and each of the dependencies is represented in the DDG by an
edge of the form (Ay,Y,). A definition can reach a statement if there 1is a
path clear of redefinition in the control flow graph from the definition to

the statement. Oviedo used similar notions to develop a measure of data flow

complexity [14]; however, he did not represent the complexity of the entire

program with a graph.

A. Dependency Sources.

A variable definition may depend on the value of several variable
definitions for a variety of reasons. A dependency can be (1) a direct
dependency that can be determined by evaluating an individual statement in

context or (2) a control dependency that results from the definitions that

determine the flow of control.

Direct dependencies can be determined by examining an individual
statement. Every possible data dependency resulting from the execution of the
statement is represented by an edge. Statements that cause a change 1in the
value of variables include assignment statements, procedure calls, and

iterative control structures.

For the most obvious case, consider an assignment statement of the form
Y := f(4,B,C)
where Y, A, B, and C are variables and f represents some combination of
operations on A, B, and C. Assuming only one definition of A, B, and C can
reach the statement, three dependencies are evident in the statement - the

assignment to Y depends on the values of A, B, and C.

The actual data dependencies that may result from an external procedure
call cannot be determined. Therefore, all possible data dependenciles
resulting from an external procedure call are included in the DDG. The direct
data dependencies that may result from an external procedure call statement
depend on the modifiability of the procedure arguments. For example, if the
parameters are called by reference and not protected from modification by the

called procedure, then each argument may be affected by the value of the

-6 -

arguments. Consider the procedure call statement of the form

CALL P (X, Y)
Assume that each argument may be modified by procedure P and only one
definition of X and Y can reach the statement. Figure 1 illustrates the DDG

for the external procedure call statement, isolated from the remainder of the

program.

(X (19

>

FIGURE 1. External Procedure Call DDG

Note that in Figure 1 the new definitions of X and Y are represented by
duplicate nodes with incremented subscripts. Also, note that, because
definitions X and Yq are possible definitions and not absolute, Xp and Yg

remain live after the procedure call.

Global variables that may be referenced or modified by a called procedure
are implicit arguments of a procedure call and therefore result in additional
data dependencies. To include the influence of global variables in the model,
global variables referenced or modified by the procedure are treated as if

they are explicit arguments of the procedure call.

All of the dependencies resulting from one specific statement cannot be
determined by examining the statement in isolation. An assignment to a
variable in statement S is dependent on the variables used in the control

constructs that determine whether or not S will be executed. The effect of

-3

control constructs on the DDG, in particular the effect of IF-THEN-ELSE and

loops, can be illustrated with an example.

Consider the if-then-else construct

IF X
THEN
E

Y
ELS :

<
A
A

ae se ee

B
C

£ W N -

13
=

: D
Because the assignments to A are within the range of the effect of the boolean
expression in the IF statement, the assignments to A are dependent on the
variables in the boolean expression in addition to the variables in the
expression-side of the assignments. The assignment of a value to D is not
directly dependent on the variables in the boolean expression follow;ng the IF
because the assignment is out of range of the IF-THEN-ELSE construct.

However, because of the possibility that A received its value in either the
IF-THEN branch or the IF-ELSE branch, D is dependent on both assignments to A.
The DDG representation of the above code segment is shown in Figure 2. In
Figure 2, the subscripts represent the source code line number of the
definition. Xgp, Yo, Bg & Cp represent the initial definition of X, ¥, B, & C.
(We assume only one definition of the variable can reach the if-then-else

statement.)

FIGURE 2. IF-THEN-ELSE DDG

Loop control structures require special examination. Consider the

following code segment

B
E DO

> A
F(A,B)
E

= |
g

s+ A
:+ WHI

Fwh -

END WHIL

All variable assignments in the body of the loop are dependent on the
variables X and A within the boolean expression, in that these variables
determine how many times the body of the loop 1s executed. The assignment to
A is considered to be dependent on both assignments to A, since it is
possible, at that point, that the value of A could have been set either before
or within the body of the loop. The DDG of the code segment above is
illustrated in Figure 3. Again, we assume only one definition of each

variable can reach the loop; these definitions have a 0 subscript in Figure 3.

Gy G)—=9
3)

FIGURE 3. WHILE loop DDG

The statement executed immediately after a loop terminates is a common
successor to all paths from the decision that controls the loop exit. Thus,
the range of the effect of the variables in the loop exit controlling boolean
expression is limited to the body of the loop. A detailed discussion of the

i{nfluence of a decision will follow in a later section of this paper.

B. Live Definitions

One must know which definitions of Y can reach D in order to use the
correct independent definitions of variable Y as the source node at variable
definition D if D is dependent on Y. A definition is considered live at

statement S if the value assigned may still be present on execution of S.

There are three control constructs that must be considered in determining
which variable definitions are live at any particular statement - branches,

joins, and sequentlal code.

Usually a variable definition for x kills all definitions that were live
for the straight line code just before the new definition. A previous
definition for x may remain live when the new definition is a probable
definition such as a procedure call parameter. Since a procedure parameter
might not be modified, earlier definitions for the parameter remain live. At

a branch point all live definitions remain live on the branches until

- 10 -

redefined. The live definitions after a join point consist of the union of

all of the definitions that were live on each predecessor of the join.

Loops are special cases of branches and joins. The loop exit is a branch,
with one successor being the loop entrance and one successor being the code
following the loop. The loop entrance is a join, where one predecessor 1is the

code for the first entrance and the other predecessor is the loop exit.

An assignment to an array element must be considered. Assume that the
array, rather than its elements, 1s the data object of interest. Since an
assignment to an array element modifies the contents of the array, the
assignment creates a new definition and kills the old definition. However,
since the values of many of the array elements remain unchanged after the
assignment, the new definition 1s dependent on the old definition. Complex

data objects other than an array would be treated similarly.

C. Determining Live Definitions

A program can be viewed as a sequence of statements Sy, Sp; eesy Sy oOr as
a control flow graph which can be formally defined as a flowgraph. A
flowgraph is a Y-tuple F = (N, E, s, f). N is the set of nodes where each
node n is an element of N and represents a basic block of the program. A
basic block B consists of an ordered set of statements, s{, sp, ..., S such
that si is the only statement in B to which control can be transferred. Once
sq 1s executed all of the statements in B will be executed sequentially. The
final statement in a basic block is a decision statement which can transfer
control to other basic blocks. E is a set of ordered pairs (i, j) where
i, j € N and E represents the possible transfers of control from one basic
block to another. There is an initial node s and a final node f where s and f

are elements of N such that there is a path from s to every node in {N - s}

and there is a path from every node in {N - f} to f. 1If a program has more
than one entry point, a single start node can be added to the graph with edges
leading to nodes representing each entry point. Should a program have more
than one terminal node (return statement), a final node can be added with
edges from all terminal nodes. Any node that cannot be reached from the start

node is dead code and can never be executed and therefore can be removed from

the graph.

Associated with each statement Sy of program P is a pair Ly = (1y i,
ly,r) where 1y 3 1s the set of all variable definitions in P that are live
just prior to the execution of Sy and 1y r is the set of all variable
definitions that are live just after the execution of Sy. The 1y 3 of each
statement Sy of a program must be determined before a data dependency graph

can be constructed.

Hecht presents algorithms for determining the definitions that reach each
node in a flowgraph [10]. Hecht describes the algorithms as solutions to the
"reaching definition" problem. The solution for the reaching definition
problem can be transformed into a solution for the live definition problem by
treating each statement as a basic block. Consider successive statements S,
and Sp,q within the same block: 1, ¢ is the same as lp,.q,4. Using one of the
reaching definition algorithms, one can determine the 1y i and 1y ¢ for each
statement x in a program. Hecht's "interval analysis" algorithm has a worst
case complexity for "anomalous flowgraphs" of O(r¥**2), where r is the number

of edges, and an average complexity of 0(r).

D. The Influence of a Decision

Consider decision node D in a flowgraph, where the next node to be

executed after D depends upon the evaluation of a boolean expression B in D.

- 12 -

The resulting path taken is determined by the value of the variables in B.
The definitions of variables in B that are live when D is evaluated influence

all definitions on the alternative paths from D, at least until the node where

all paths from D merge.

A node S is defined by Carre to be an (a,b)-separating node when every

path from node a to node b passes through $ [5]. Consider a decision node D

in flowgraph F. Node T is a D-decision terminator if T is a (D,f)-separating

node where f 1is the final node in F and T 1s a predecessor of every other

(D,f)-separating node in F.

The D-decision terminator is the node where all paths from D merge and is
the inverse dominator of D. The D-decision terminator can be simply
determined for structured control constructs. Structured control constructs
always have one exit node which 1is also the decision terminator. The exit
from a structured control construct can be easily determined from one pass
through a program. Unstructured control constructs resulting from the use of
GOTO statements complicate matters. However, Targin has published an
algorithm for finding dominators in an arbitrary directed graph with a time

bound of 0(n log n + r), where n is the number of nodes and r is the number of

edges in the graph [15].

In this model, a decision D influences all successor nodes of D in the
flowgraph that are predecessors of the D-decision terminator. The algorithm
for determining control influence uses an annotated flowgraph as input. The
flowgraph 1is annotated with live definition information associated with each
statement. The algorithm will associate with each statement n a set of

control influence definitions C,. The algorithm follows.

- 13 -

Find Control Influence (F)

A. For each decision node D, identify and mark the D-decision terminator.
Tarjan's algorithm for finding immediate dominators (in this case inverse
dominators) can be used [15].

B. TFor each decision node D of statement d with boolean expression B
containing variables V,

1. let S consist of the live definitions of variables in V from 14, 1
2. follow all paths from D until the D-decision terminator is reached

and for each statement n in nodes passed, let Cy := Ch U S.

Theorem 1 The worst case time complexity of the Find Control Influence

algorithm is O (r**2) where r is the number of edges in the input flowgraph.

Proof:
Tarjan shows that Step A can be completed with a time bound of

0(V logV + r) where V is the number of nodes [157.

Step B can be completed via a maximum of m passes through the flowgraph
where m is the number of decision nodes. During each pass every edge is
visited at most once. So Step B can be completed in a maximum of r ¥ m steps.

The limiting complexity of Step B is of 0(r*#*2) should m approach r.

Combining the complexity of Step A and B, the worst case complexity is

O(r¥%2),

III. DDG Algorithm

The input to the Construct DDG algorithm is the flowgraph F of a program
and the output of the algorithm is a set Edges of ordered pairs of
definitions. For simplicity, assume all procedures are external - the actual

data dependencies of called procedures is unknown.

- 14 -

Construct DDG (F)

A. For each statement x in the program annotate flowgraph F with
(lx,i’ lx’f) where ly 5 is the set of definitions that are live before
execution of x and 1y ¢ is the set of definitions that are live after
execution of x. One of the algorithms of Hecht can be used to determine
14 for each statement x [10].
B. Use the Find Control Influence (F) algorithm to annotate each statement x
in F with Cy.
C. For each definition statement n in F use the appropriate routine below
depending on the type of definition statement:
(1) Scalar assignment, Y := £(X{, X2, ees, X{)¢
- Using the 1j i determine the live definitions L for x4 to xj.
- For all elements v of L U C, add (v, Y,) to Edges.
(2) Array assignment, Y(x1, ..., xj) 1= f(xj+1, caey X{)@
- Use case (1) above to process as if the assignment were:
Y := £(Y, X1, +oey X{)
(3) Procedure call statement,
CALL P(X1y ooy X ¢ Y1y oeey Yn):
(Note: x1, ..., Xk are input arguments and Yq, ..., Yn are output
arguments)
- Using 1,4 determine the live definitions L for xq1, ..., Xg.
- For each element u of Yj U...U Yp,

For all elements t of L U C, add (t, u) to Edges.

Theorem 2. The worst case complexity of the Construct DDG algorithm 1s

O0(r**2) where r is the number of edges in the input flowgraph.

- 15 =

Proof':

The worst case complexity of Step A is 0(r*#2) [10]. Theorem 1 shows that
the worst case complexity of Step B is O(r**2). Since only one pass through
the input flowgraph is required to complete Step C, each edge 1is traversed
once. Therefore the worst case complexity of Step C is 0(r). Combining the

complexity of Step A, B, and C the complexity of the entire algorithm is

O(r#%2),

IV. DDG Complexity Measurement

The DDG is an abstract model of the data dependency complexity of a
program. Using modified versions of the algorithm presented, a DDG can be

constructed for arbitrary programs written in most procedural languages.

As the control flow graph has been used as a basis for deriving control
complexity measures [13, 6, 8], the DDG can be used to derive data dependency
complexity measures. All possible data dependencies in a program are modeled
by its DDG and, since the DDG is a graph, measurable graph features of the DDG

are candidates for complexity measures.

We propose the use of rooted spanning tree complexity (RSTC) along with

the cyclomatic number to determine the complexity of the DDG.

The cyclomatic number can be simply calculated from the number of
nodes(N), arcs(E), and connected components(N) by the formula:
Cyclomatic Number = E - V + N
It is well known, for example Berge's text, that the cyclomatic number is the
maximum number of linearly independent circuits in a strongly connected graph

[1]. The tree complexity measure is based on techniques for determining the

number of spanning trees contained in a graph.

- 16 -

We define a tree to be a connected graph with no cycles and the root node
of a tree 1s a node that is a predecessor of all other nodes in the tree.
Consider a directed graph G = (V, E), where V 1s the set of nodes and E is the
edge set of G. A spanning tree of G is a graph ST(G) = (V, E'), where E' is a
subset of E and ST(G) is a tree (that is, a tree that includes every node in

G). We define the rooted spanning tree complexity with root node x (RSTC(x))

of graph G as the number of distinct spanning trees with root x that can be
constructed from the graph consisting of the nodes and arcs of G that are
successors of x. The notion of using the number of spanning trees in a graph
as a measure of complexity has been described in graph theory literature

[4,16].

The following theorem shows how to calculate the number of distinect rooted
spanning trees with a specified root contained in a directed graph [17, as

cited in 1].

Theorem. Let G = (X,U) be a directed graph, and let xq7 be a member of X.
The number of trees with root x4q contained in G equals the determinant of

a matrix A where

Lai,2) -a(2,3) . . . -a(2,n)
i-=2
det (A) =
-a(3,2) Za(i,3) . . . =a(3,n)
i-=3
—a(n,2) -a(n,3) Y a(i,n)
i~=n

where a(i,j) is the number of edges directed from node xi to node X5

- 17 -

By including the number of rooted spanning trees in a graph along with
cyclomatic complexity we incorporate a measure of both the noncyeclical and

cyclical complexity of a graph.

We define the definition slice graph of a DDG of program P at node X to be

a subgraph of the DDG of P that includes node X and all nodes in the DDG of P
that are predecessors of node X. Edges of the definition slice graph include
all paths from predecessors to X. Because programmers appear to decompose
programs into slices when debugging, we hypothesize that the RSTC of the
definition slice graph of a specified node in a DDG is a significant measure.
We take the definition slice graph of the specified node and reverse the
directions of the edges and then determine the RSTC of the definition slice.
To calculate the RSTC of an entire program we use the definition that
represents the output of the program as a root. Should there be more than one
output node, a node R, with edges directed from each output node to R, is

added to the DDG. R is then used as the root for calculating the RSTC.

V. Example Complexity Calculation

To illustrate the procedure for calculating the RSTC and the cyclomatic
number of the DDG of a program, we present the process as performed on a

segment of a FORTRAN program designed to calculate the sine function:

SIN = X
TERM = X
DO 20T =3, 100, 2
IF (DABS(TERM) .LT. E) GO TO 30
TERM = -TERM * X#%2 / FLOAT(I * (I - 1))
SIN = SIN + TERM
20 CONTINUE
30 RETURN

et we se s

es es ae

O &ZWw N -

Using the DDG algorithm, we construct the DDG for the program. The DDG

cyclomatic number is calculated as 10 by counting the number of nodes (N) and

- 18 -

edges (E) in the DDG. To calculate the RSTC of the example, we examine the
code to determine which of the definitions represent possible outputs of the
program segment. The variable SIN is the only output variable and at the end
of the code segment there are 2 live definitions of SIN. We add an output
node to the DDG and construct edges for the nodes representing the 2 live
definitions of SIN to the output node. The modified DDG is illustrated in

Figure 4 below.

4

*‘l /:-,

OUTPUT

FIGURE 4. DDG of Example Program Segment With Output Node

To calculate the RSTC of the DDG the direction of the edges is reversed and
the matrix described in Section IV is constructed using the output node as the
root. The determinant of the matrix is the RSTC of the graph. The matrix and

determinant for the example program is

- 19 -

SINg 1 =1 -1 =1 0 =1 -1
SINY o 2 o0 0 -1 0 O
TERMs o 0 2 -1 -1 -1 -
TERM, o o o0 3 -1 0 0 |=162
Xo o o o o 3 0 0
I3 o o0 -1 -1 0 2 -1
Eg o o o o o0 0 3

VI. Initial Validation

A series of tests were conducted to provide initial experimental support
of the DDG model and the associated measures [3]. Each test compared a set of
measures applied to two or more program segments that represent solutions to
the same problem. The measures applied were the RSIC and cyclomatic
complexity of the DDG representation of the program, the software science
effort measures [9], the flow of control cyclomatic complexity {13], and a
subjective ranking of program clarity. The program segments included in the
tests were selected from the set of programs that Gordon used in his effort to
validate software science measures [7]. Gordon reported software science
measures and the clarity rankings of two or more implementations of 46
problems from the 1iterature. In the effort to validate the DDG model and
measures, nineteen program segments that are solutions to nine problems were

gselected from Gordon's testbed.

Table 1 summarizes the results of the validation. In each test, version A
is described as less clear than the version B. For Test 1, which has three

program versions, version B is described as less clear than version C.

- 20 -

Relative clarity is the reported subjective judgment of Kernigham, Wirth, or

Knuth [11,20,12].

Program | Halstead Control DDG RSTC
Segment Effort Cyclo. Cyclo.
Number Comp. Comp.
1a 2008 R 6 N
1b 300 3 1 6
le 54 1 0 1
2a 1869 5 26 77,760
2b 1020 3 9 384
3a 6263 1 25 2100
3b 4833 y 14 240
bg 4507 3 10 96
Up 3485 3 10 162
5a huns) 17 300
5b 2931 4y 16 480
6a 4275 5 26 1260
6b 1974 y 20 320
Ta 3447 3 9 32
7b 2821 3 12 80
8a 952 3 7 9
8b 620 3 6 uy
9a 2605 5 9 360
9b 2160 Yy 5 4o

Table 1. Metrics From Testbed Program Segments

In each case the Halstead E measure distinguished between clear and less
clear implementations. However, one must keep in mind that the purpose of

Gordon's study was to support the software science metrics.

The RSTC was unable to match the reported subjective clarity ranking in
Test U4, Test 5, and Test 7. The DDG cyclomatic complexity measure was unable
to match the clarity ranking in Test 4 and Test 7. A close look at the
reasons given for the clarity judgments in the experiment reveals the

subjective nature of "clarity" and provides explanations for the inability of

the DDG based metrics to match the human ratings.

- 21 =

In the three cases of disagreement the reported rankings are a result of
semantic differences rather than clarity or readability differences. Program
4a, which is designed to calculate the sine function, fails to initialize
three of the variables. Program Segments 5a and 5b are designed to input a
sequence of numbers, select the first n distinet numbers, and assign the
numbers to an array with n elements. Program Segment 5b is described as "more
economical® than Program Segment 5a because, in Program Segment 5a, a loop
exit test 1s not always necessary [20]. Program Segments Ta and Tb are
designed to multiply two nonnegative integers using only addition, doubling,
and halving. Program Segment 7a is eriticized because the program segment may

cause a semantic error on some machines in the form of numerical overflow

[20].

The flow of control cyclomatic complexity fails to distinguish relative
complexity in half of the cases, probably because of its small range of
values. Recall that the value depends only on decision count. Out of all
nineteen testbed programs and program segments the flow of control cyclomatic

complexity only had four different values.

Note that the value of the RSTC for Program Segment 2a is very high while
the E measure is relatively low. An investigation of Program Segment 2a may

explain the discrepancy:

Do 10 I=1,M
IF(BP(I)+1.0)19,11,10

11 IBN1(I)=BLNK
IBN2(I)=BLNK
GO TO 10

19 BP(I)=-1.0
IBN1(I)=BLNK
IBN2(I)=BLNK

10 CONTINUE

- 22 -

Because of the computed go to statement in the program segment, the data

dependency complexity is high. Each variable definition is dependent on many
other definitions because of the complex flow of control. Since the E measure
is based only on the counts of operators and operands it does not account for

the added complexity resulting from the complex interactions among variables.

The subjectivity of human judgment of program clarity was a serious
problem in the validation effort. However, the results show that DDG based
measures are sensitive to some aspect(s) of complexity that E is not. A short
program with few operators and operands can be complex. Program Segment 2a is
one case where E is relatively low and RSTC and DDG cyclomatic complexity are
extremely high for a short nine line program. The flow of control cyclomatic

complexity measure appears to be relatively insensitive to clarity.

VII. Summary and Conclusion.

In this paper, the data dependency graph was described, aspects of DDG
construction were discussed, algorithms for building the DDG were outlined,
measures of DDG complexity were introduced, and the results of an initial

validation effort were presented.

The DDG represents a model of software complexity that is necessary in
order to measure the complexity of the data dependencies of software. By
transforming a program into a graph theory based abstraction of the program's
data dependencies, we are able to examine data relationships without
unnecessary details. We can then apply the ideas, theorems, and algorithms
from graph theory. Since a graph can be converted into a matrix
representation of a graph, we can apply the tools of linear algebra to a

matrix that is an abstraction of a program.

- 23 -

The DDG forms the basis for a set of complexity measures that should prove

valuable in learning how to algorithmically identify troublesome programs.

The algorithm for constructing a DDG from a program demonstrates that a
DDG can be produced automatically. Thus, data dependency measures may be
taken from large numbers of programs and, if future empirical studies verify

the validity of the metrics, aid in the development of more reliable software.

The initial validation demonstrates that data dependency graphs from
actual programs can be built and the DDG based measures can be calculated.
The results show that the interdependency of variable definitions is a
component of program complexity. However, the initial validation was limited

and the subjectivity of clarity judgments was a problem.

This research effort suggests future research in empirical, theoretical,

and applied areas.

Additional empirical work is necessary to verify the model and associated
metrics and to learn more about the complexity of existing software.
Empirical work may be performed by studying large samples of industry software

and through controlled experiments.

The model and metrics developed in this research could be refined further.
A theoretical study of data dependency graphs will help us learn more about
the programs that the graphs represent. For example, if we can see how to
modify a DDG to reduce complexity, we may learn how to map the change in the
DDG to a change in the program. We also feel that additional studies of graph
complexity measures will lead to a greater knowledge of how to derive more

meaningful program complexity measurement tools.

24 -

Finally, we see numerous application areas to be explored. The DDG could
be used as a basis for providing a rich set of programming tools. Cross
reference lists, produced from a DDG at compile time, could show a programmer
exactly which statements could have affected the value of a variable at a
particular statement. The DDG could be produced at run time and include only

actual dependencies as edges. Such a run time DDG could allow for much more

powerful debugging tools.

AFFILIATION OF AUTHORS

James M. Bieman is Assistant Professor, Department of Computer Science,
Iowa State University, Ames, Iowa 50011. William R. Edwards is Associate

Professor, Computer Scilence Department, University of Southwestern Louisiana,

Lafayette, Louisiana 70504.

REFERENCES

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, The

Netherlands, 1973.

(2] J.M. Bieman, Measuring Software Data Dependency Complexity, Ph.D.

Dissertation, Computer Science Department, University of Louisiana,
Lafayette, Louisiana, 1984.

[3] J.M. Bieman and W.R. Edwards, "Experimental Evaluation of the Data
Dependency Graph For Use in Measuring Software Clarity", Proc. of 18th
Hawaii Conf. on Systems Science, Vol. 2, pp. 271-276, 1985.

(4] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.

[5] B. Carre, Graphs and Networks, Clarendon Press, Oxford, 1979.

(6] E.T. Chen, "Program Complexity and Programmer Productivity", IEEE Trans.

on Software Eng., Vol. SE-4, No. 3, pp. 187-194, May 1978.

- 25 -

L7l

(8]

(9]
{10]

(1]

[12]

(13]

[14]

(15]

[16]

(171

(18]

R.D. Gordon, "Measuring Improvements in Program Clarity", IEEE Trans.

on Software Eng., Vol. SE-5, No. 2, pp. T#-90, March 1979.

W. Harrison, K. Magel, R. Kluczny, and A. DeKock, "Applying Software
Complexity Metrics to Program Malntenance", Computer, Vol. 15, No. 9,

M.H. Halstead, Elements of Software Science, Elsevier, New York, 1977.

M.S. Hecht, Flow Analysis of Computer Programs, Elsevier North-Holland,

1977.

B.W. Kernighan and P.J. Plauger, "Programming Style: Examples and

Counterexamples", ACM Computing Surveys, Vol. 6, No. 4, pp. 303-319,

Dec. 1974,

D.E. Knuth, "Structured Programming With Go-To Statements", ACM

Computing Surveys, Vol. 6, No. 4, pp. 261-301, Dec. 1974,

T. McCabe, "A Complexity Measure", IEEE Trans. on Software Eng.,

Vol. SE-2, No. 4, pp. 308-320, July 1976.
E. Oviedo, "Control Flow, Data Flow and Program Complexity", Proc.

of the IEEE Computer Society's 4'th Int. Computer Software and

Applications Conf. (COMPSAC80), pp. 146-152, Nov. 1980.

R. Tarjan, "Finding Dominators in Directed Graphs", SIAM J. Computing,
Vol. 3, No. 1, pp. 62-89, March 1974.

H.N.V. Temperly, Graph Theory and Applications, Ellis Horwood Limited,

1981,

W.T. Tutte, "The Dissection of Equilateral Triangles into Equilateral

Triangles", Proc. of the Cambridge Philosophical Society, Vol. i,

pp. 203-217, 1948.

M. Weiser, "Program Slicing", Proc. of the 5th Int. Conf. on Software

Eng., 1981, pp. 439-4u9,

- 26 -

[19] M. Weiser, "Programmers Use Slices When Debugging", Communications of

the ACM, Vol. 25, No. 7, July 1982, pp. 4U46-452.
[20] N. Wirth, "On the Composition of Well-Structured Programs", ACM

Computing Surveys, Vol. 6, No. 4, pp. 247-260, Dec. 1974.

- 27 -

