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Abstract

To find out what kind of design structures programmers
really use, we need to examine a wide variety of programs.
Unfortunately most program source code is proprietary and
is unavailable for analysis. The World Wide Web (Web) po-
tentially can provide a rich source of programs for study.
The freely available code on the Web, if in sufficient qual-
ity and quantity, can provide a window into software design
as it is practiced today. In a preliminary study of source
code availability on the Web, we estimate that 4% of URLs
contain object-oriented source code, and 9% of URLs con-
tain executable code — either binary or class files. This
represents an enormous resource for program analysis. We
can, with some risk of inaccuracy, conservatively project
our sampling results to the entire Web. Our estimate is that
the Web contains at least 3.4 million files containing ei-
ther Java, C++, or Perl source code, 20.3 million files con-
taining C source code, and 8.7 million files containing exe-
cutable code.

Keywords: Design, source code analysis, World Wide Web
estimation, code on the World Wide Web.

1. Introduction

One reason to analyze program source code is to learn
more about the kinds of programs that programmers actually
write. We can learn how they actually structure their code, to
see what design structures are actually used in practice. For
example, object-oriented software can be characterized by
design properties that include the distribution of function-
ality across classes, the distribution of the size of classes,
methods, and interfaces, and even the number and quality of
comments. We can determine the extent that programmers
actually apply current recommended design practices such

as the use of design patterns [5] or the use of short methods
with minimal comments [4].

Studies of the design structure of actual programs can po-
tentially lead to the discovery of some observation based
“natural laws” of programming. For example, empirical
studies may show that certain design structures are more or
less adaptable or error prone. We may find that programs in
one application domain have different structures that those
in other application domains. Only observational studies
can discover relationships that are not expected.

Observational studies require data. Ideally, we would
like to sample a wide-range of applications in different do-
mains. And the samples should be representative of the
universe of all programs. Unfortunately, defining the no-
tion of a universe of application domains is an elusive goal.
We can list many application domains such as graphical
user interfaces (GUI’s), language processing (i.e., compil-
ers), telecommunications software, embedded systems, etc.
However, any classification is likely to be incomplete and
the relative amount and distribution of software in the dif-
ferent domains is unknown.

Even if we can define a universe of application domains,
obtaining a reasonably random sample of actual applications
is just about impossible. Most companies are not willing
or able to share their source code for the purpose of study
due to proprietary concerns. Companies occasionally pro-
vide source code for studies, but such source code is usually
of just one or two systems. This data is very useful, but its
usefulness is limited to case studies that do not easily give
generalizable results [3].

Although it may never be possible to characterize all pro-
grams, we can study one large universe of readily avail-
able programs: the program code that is posted to the World
Wide Web (Web). Our conjecture is that there is a large
quantity of analyzable program code on the Web. In this pa-
per, we provide an initial characterization of this code. We
use sampling techniques to estimate the relative amount of



program code on the Web, and generate initial descriptive
metrics to characterize this sample.

Prior studies have estimated the amount of specific kinds
of information on the Web. Lawrence and Giles [8] used
randomized internet addresses to estimate the number of
Web servers, and content of various general classifications:
scientific/educational, pornography, government, health,
personal, community, religion, and societies. The main-
stream media frequently quotes this study’s estimate of the
distribution of pornographic sites on the Web. Grefenstette
and Nioche [6] used the frequency of language-specific
words to estimate the growth of content of non-English
based natural language sites on the Web. Lawrence and
Giles [7] also used real queries, queries of employees of
the NEC Research Institute, to estimate the coverage (of the
Web) of 11 major search engines, and the overlap between
them. They have also studied the organization of informa-
tion access on the Web [9], and mechanisms for automating
Web-based citation indices [10].

We did not find any prior work that focused on estimating
the amount of program code, whether source or executable
code, that is available on the Web. In this study, we make an
initial attempt to determine how much code is posted to the
Web. Our general approach is to generate randomly selected
URLs, and then examine the referenced Web pages to deter-
mine which ones contain downloadable code. We develop a
rough characterization of the code and estimate the relative
amount available on the entire Web.

2. Study Method

The first step is to estimate the required sample size, the
number of web pages that must be examined to accurately
determine the proportion containing program code. The es-
timates are based on the relative number of pages that con-
tain the following keywords: “download”, “source code”,
or “ftp”. The initial rough estimate determines the required
sample size.

We query four search engines to generate the required
number of web pages. That is, we generate a number of web
pages equal to the required sample size from each of the four
search engines — HotBot, Lycos, Altavista, NorthernLight.
We identify pages containing the same keywords (“down-
load”, “source code”, or “ftp”). We conduct an in depth hand
analysis of a relatively small subset of the pages with the
key words to help us to design an automated search of the
full sample. Then we conduct a search of the full sample
and extract any downloadable files and analyze what they
contain. We count the number of pages that actually con-
tain code rather than just mentioning the word “download”
or containing non-code downloadable files.

We identify the language, the number of lines of code,
and the number of classes. We did not specifically target any

of the commonly known sources of code, such as the Perl
modules or the Netscape source code, as our purpose was to
explore less obvious sources of code. However, we did not
exclude these sources, and if they appeared in our sample
they were counted.

2.1. Estimating the Required Sample Size

In 1999, Lawrence and Giles [8] estimated that the Web
contained 800 million indexable web pages. Bharat and
Broder [1] estimate that the Web is growing at a rate of 20
million pages a month. The total number of pages indexed
by any of the search engines in this study so greatly outnum-
bers pages containing source code that for the purposes of
sampling, we can assume the total population is infinite.

To obtain an initial estimate of how many pages contain
source code, we generate 10 groups of 100 random URLs,
and counted the pages that contained the words “download”
“source code” or “ftp”. We compute the required sample
size using the proportion of source code web pages in the
group with the largest proportion, because that value will
require the largest sample size. Using a larger sample than
needed will produce more accurate results.

The following commonly used formula expresses the re-
lationship between the sample size, N , and the desired ac-
curacy, d:

d = zc �

r
pq

N
�

s
Np �N

Np � 1

where zc is the confidence level found on a z-table, p is the
estimated proportion of pages in the sample that contain pro-
gram code, q is 1 � p, and Np is the total number of web
pages in the universe.

We can assume that Np is very large, for our purposes it
approaches infinity. Then the last subexpression approaches
1 — the sample size N is negligible compared to Np; Thus

we can remove the subexpression
q

Np�N

Np�1
from the equa-

tion. Solving for N , we get the following:

N =
z2cpq

d2
(1)

From a z-table, setting zc = 1:96 gives a 95% confidence
level. Setting d = :01 gives a 1% accuracy.

2.2. Generating the Sample

Search engines use deterministic algorithms to index and
rank pages, and each engine uses a different algorithm. We
must ensure the randomness of any sample of search engine
results.

The approach used by Lawrence and Giles [7] was to
gather queries from their colleagues used in the course of
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their daily work. This approach is practical and appropriate
because Lawrence and Giles were studying the accessibil-
ity of scientific information on the web. To account for the
different ranking systems used by search engines, Lawrence
and Giles gathered the entire result of each query from the
search engine. We did not use this approach in our study,
since it does not produce a random sample. It is likely that
research scientists use similar queries.

The approach used by Bharat and Broder [2] was to use
a lexicon of common internet terms as queries, and then
to randomly sample from the results. We do not have a
lexicon of common internet terms, thus we took 1.5 mil-
lion queries from the peek page of the meta-search en-
gine AskJeeves, and the meta-spy page of MetaCrawler.
AskJeeves is a natural language meta-search engine, while
MetaCrawler is a typical meta-search engine. Using queries
from both AskJeeves and MetaCrawler include a wider vari-
ety of queries than only using queries from our colleagues,
and provide more realistic “real world” queries than using
a list of common internet keywords. To compensate for the
different ranking systems of the search engines, we took the
entire set of results returned from each query. This approach
is consistent with the work done by Lawrence and Giles [7].

To randomize the query set, the queries are read into a
hash table (since hash tables do not preserve order) and then
into an array so that we could access them by index. The
sample is generated from the array using a random number
generator to generate the array indices to be selected. The
queries are posed to AltaVista, Lycos, HotBot and Northern-
Light separately over the course of several days, since search
engines are known to return different results depending on
internet traffic, and traffic varies at different times of day. To
generate the sample, the resulting URLs are randomized and
selected in the same way as the queries.

2.3. Examining A Portion of The Sample By Hand

We conduct a hand-analysis of a subset of the sample
URLs to better understand how downloadable source code is
referenced and distributed among web pages. The objective
is to determine how many of the sample URL’s that contain
the keywords “download”, “source code”, or “ftp” actually
contain source code. This exercise gives us further insights
into how to design an automated search of the full sample.

2.4. Finding Source Code in the Full Sample

From each of the samples of queries from the four search
engines, we downloaded any pages that contained the words
“download”, “source code”, or “ftp”. We examine these
files and download any links that had the following file ex-
tensions: .tar, .jar, .gz, .zip, .pl, .java, .tgz, .z. We also down-

loaded any publicly accessible files from any URL con-
tained in the pages that began with “ftp://”.

To ftp all the publicly available files, we follow the direc-
tory structure indicated by the ftp address, and store any file
listed in that directory. In the case of URLs and links that
used http, we download only those files available from that
specific link — we do not follow any links that redirect a
browser to another location. The limitation of the search to
the top layer in the sample of web sites provides a conserva-
tive estimate, and demonstrates what is practically available.

In order to process the large number of pages in a sample,
the search must be automated. We encode the search process
using Perl scripts.

3. Results

3.1. Required Sample Size

Our first estimate was taken from ten samples of 100 ran-
dom URLs generated from AltaVista. Our objective here
is to get a rough estimate of the required sample size, not
the estimate of the amount of code. We need to determine
how many URLs to generate from each search engine for the
purpose of estimating the amount of code to ensure a 95%
confidence level and �1% accuracy. We need to use only
one search engine here and we chose AltaVista because of
claims that it indexes the most pages. Using the search en-
gine that indexes the greatest number of pages should pro-
duce the highest estimate of required sample size.

Between 6% and 19% of the samples contain download-
able programs. We used the 19% estimate because it re-
quires a larger sample which should give us the most accu-
rate estimate. Plugging this estimate into Equation (1) gives
a sample size of 5920. That is, a sample of 5920 URLs is
large enough to ensure that our estimate is within 1% with a
95% confidence level.

3.2. The Sample

We took samples of 5920 URLs from each of four differ-
ent search engines. Thus the sample included 23,680 URLs,
although they were not all distinct, since the search engines
have a small overlap. Only three URLs produced in the four
samples from AltaVista (685 URLs), Lycos (867 URLs),
HotBot (865 URLs), and NorthernLight (789 URLs) were
exact matches. Bharat and Broder [2], in estimating the size
and overlap of search engine coverage, estimated average
overlap of any two search engines to be 8%, the estimated
overlap of any three search engines to be 4% and the esti-
mated overlap of any four search engines to be 1.4%.

AltaVista produced 685 pages, or 11% that contain the
keywords “download”, “source code”, or “ftp”. Northern-
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Table 1. Hand analysis of 225 randomly gener-
ated links from AltaVista that match the key-
words “download”, “source code”, or “ftp”.
Some links refer to more than one download-
able file, or a file that matches more than one
classification.

Number of
Links Referencing

File Type Downloadable Files
Executable files 53

Source code 9
Sound, video, or image 46

Freeware 5
Shareware 11

Commercial demos 9
Commercial repositories 18
Text or no download files 123

Light produced 789 pages, or 13%, HotBot produced 865 or
14.6%, and Lycos produced 867 or 14.6%.

AltaVista, HotBot, Lycos and NorthernLight produced
3203 unique pages containing the significant keywords. Al-
though the number of pages containing source code is a
small fraction of the total Web, most of these pages contain
multiple files. Thus a relatively small number of sites can
produce many downloadable files.

3.3. Hand Analysis Results

Of the 5920 AltaVista URLs in the sample, 685 URLs
reference pages contain the keywords “download”, “source
code”, or “ftp’. We examined 225 of these pages by hand to
see how many contained source code. Table 1 displays the
results of this analysis.

The web sites contained content in the following cate-
gories: executable files, source code, images, video, sound,
and games. In addition, we noted software that is identi-
fied as “freeware”, “shareware” or “demo”. We identified
any download link that led to larger commercial repositories
(such as zdnet or cnet), because a number of pages, although
they claim to contain downloadable files, actually refer to
common download points.

Pages containing downloadable copies of Internet Ex-
plorer, Linux, Netscape, winamp, realtime player and sim-
ilar widely available free commercial executables were not
counted in the list of downloadable files to avoid unfairly
skewing the estimate. Many pages that contain no down-
loadable files have links to download Netscape or Adobe
Acrobat so that their material can be viewed or heard cor-
rectly. These links do not indicate that the body of code

available is larger, since they all point to the same product.
Of the 225 links containing the keywords “download”,

“source code” or “ftp” from AltaVista, 53 contained exe-
cutable files, 9 contained source code, 46 contained sound,
video, or image files, 19 contained games, 18 pointed to
commercial repositories. Five of the links contained code
explicitly labeled “freeware”, 11 contained code explicitly
labeled “shareware” and 9 contained commercial demos.
Most sites (123) contained either no downloads at all, or
contained text downloads, or widely available commercial
downloads as discussed above. Based on the number of sites
containing at least one source code file (9 in 225), 4% of the
web sites contain at least one source code file.

Examining a number of web pages by hand made it ob-
vious that many pages returned by the search engine do not
contain downloadable files themselves, rather they contain
links, in some cases several pages deep, to downloadable
files. Many of the links are not identified by keywords that
could be used to automate the parsing of the page. In or-
der to get every downloadable file, an exhaustive search of
all links would be necessary. Such a search would be in-
tractable. Even limiting the search to follow only those links
identified by keywords as containing downloadable files is
impractical.

We are interested in a rough, but conservative estimate
of available source code, and we want to obtain results in a
timely fashion. Thus, the full search can be safely limited
to one level — search the parent page returned in the full
sample, but not its children or grandchildren. The results of
such a search will be conservative; many more pages actu-
ally contain source code than our estimate.

3.4. What We Found in the Full Sample

To distinguish between an individual file, and the collec-
tion of files contained in one download, we refer to the col-
lection of files contained in one download as a download
bundle and an individual file as a file. We downloaded 5767
bundles containing 125,011 files. The average number of
files per bundle was 28.22. The bundles represent 426 or
13% of the URLs. The vast majority of source code files
were c files, also represented were java source files and java
class files, perl files, tcl files and c++ files. Table 2 shows
the number of files with each extension in this sample.

Because of the time it takes to process all of the files, and
because the files can contain absolutely anything we find on
the Web, we were not able to process all of the files. We
had a total of 5767 bundles, and of those we were able to
examine 4430 bundles, around 77%. From these URLs we
obtained 38,124 source code files in C, C++, Java, Tcl, and
Perl, mdl and xml.

Of the total set of files in the sample, the average num-
ber of lines per file was 469, with a range from 1 line to
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Table 2. Types of program and program de-
sign files found in the sample of 5,767 bun-
dles containing 125,011 files.

Number % of Files
File Type Found Dowloaded

C++ (.cc, .c++, .cpp) 1,560 1:25%
C (.c) 25,836 21%

java source (.java) 1,633 1:3%
java class (.class) 9,134 7.3%

binary executables (.o or .exe) 2,675 2.1%
C/C++ headers (.h) 7,210 5.8%

Perl (.perl, .pl, .pm, .pml) 1,169 .9%
Tcl (.tcl) 659 .5%

XML (.xml) 22 –
Object model (.mdl) 17 –

Table 3. Unique classes found in the program
files contained in the sample.

Language Number of Classes
Java 6,112
C++ 5,639
Perl 1,867

2,781,535 lines. The average number of bytes was 37701
with a range from 0 to 189,531,985 bytes.

We identified the unique classes written in the object-
oriented languages. For Java bundles the unique file names
were counted without the .java or .class extensions. Thus, all
public classes and interfaces are counted as classes. For C++
or Perl, we counted the occurrences of the keyword “class”
in the .h files or “package” in Perl files. Table 3 shows the
number of classes found in each language.

4. Code on the Web

We can conservatively project the results from the sample
to the entire Web.

The 4430 bundles that we examined produced a total of
125,011 files, of which 38,124 were source code files. This
means that 30% of the files downloaded from the sample
contained source code. We can be 95% sure that 30%� 1%
of files containing the words “download”, “source code”, or
“ftp” will contain actual source code.

Our original sample included 5920 URLs from each
search engine. It yielded between 11% (AltaVista) and
14.6% (HotBot and Lycos) web pages that contained the
keywords “download”, “source code” or “ftp”, and 30% of
files downloaded from those pages (�1%) contain source

code. The Web is estimated to be 800 million pages, and a
conservative estimate is that 11% of those contain the down-
load keywords that corresponds to 88 million pages. In our
sample, 13% of the URLs, or 3,203 of the pages that contain
the keywords representing 426 URLs, actually had some-
thing to download. If we assume the same proportions in
the entire Web, then 88 million pages out of 800 million
have the keywords. Of those 88 million pages, 11.4 million
pages actually have something to download. Since the av-
erage download yields 28.2 files, the 11.4 million pages will
yield on average 323 million files. Of the 323 million files,
30% � 1% will contain source code, giving an estimate of
�97 million source code files that are available for down-
load on the Web.

The total representation of source code written in object
oriented languages (Java, C++, and Perl) includes 4362 or
3.5% of the files downloaded. Note that we did not include
C++ header files since we did not distinguish between C++
and C headers (both have .h suffixes). Assuming that the
same proportions hold over the entire Web, we can estimate
that 3.4 million files (3.5% of 97 million) on the Web contain
source code in C++, java, or perl.

The total number of executable files (including .exe,
.class, .o files) represent 11,809 files or 9% of our sample
files. Again, assuming that the same proportions apply to
to the entire Web, 9% of the downloadable files on the Web
(9% of 97 million) gives an estimate of 8.7 million files on
the Web containing executable files.

5. Conclusions and Future Work

We sampled the Web to estimate the amount of code that
is available for analysis. Our random sample of 23,680
URLs, we were able to download 4430 bundles of informa-
tion. The bundles contain 125,011 files. In these files, we
found 38,124 source code files in various languages includ-
ing C, C++, Java, Perl, and others. This sample represents
a statistically significant, but tiny fraction of the estimated
800 million URLs in the entire Web. Clearly, there is a large
amount of program code that is available on the Web.

We are planning further analyses of the content and struc-
ture of the programs in our sample. This analyses will in-
clude studies of the class dependencies and use of design
patterns in object oriented code. We also plan to conduct a
more exhaustive search for program by following links to
files with downloadable code more than two pages deep in
any given site. Future work will include evaluations of other
search engines. Larger search engines that index more of
the Web, or search engines known for indexing scientific or
technical information may prove worthwhile.

The estimates of available program code are conserva-
tive. The search aimed for a limited set of file extensions and
a limited set of keywords to identify potential source code.
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We did not include known sources of code, and code reposi-
tories. Thus, there may be much more code on the Web than
indicated by our study.

One of our long term research objectives is to build a
repository of actual software designs, code, and other arti-
facts. We are encouraged to find that so much code is avail-
able from the Web to populate the repository.
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