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ABSTRACT
Many software development texts� references� tools� and au�
thorities provide advise on good software design and pro�
gramming styles� Unfortunately� most of the evidence to
support the value of this advise consists of intuition and
anecdotes� We are working to objectively determine the
value of recommended style guides on large�scale real world
software systems� we are studying both proprietary commer�
cial and open source systems� Our work involves determin�
ing whether or not style recommendations are followed� and
how these styles a�ect external quality factors such as fault�
and change�proneness� and maintainability� Early results in�
dicate that style guidelines are often violated� In addition�
we have found that� in contrast with common claims� one
design recommendation � the use of design patterns � can
lead to more change prone � rather than less change prone
classes�

1. INTRODUCTION
From early in the history of computer software� a variety

of sources have provided guidance on how to design and code
to improve program understandability and adaptability and
decrease faults� Dijkstra�s �Go To Statement Considered
Harmful� letter to CACM� is probably the most cited early
programming style advice 	
�� Marshall and Webber point
out other common �programmer�s taboos� including avoid�
ing �
� low level programming� ��� the use of �owcharts� ���
pointers� and �
� platform speci�c programming 	���
Additional style advise is speci�c to the object�oriented

�OO� paradigm� For example� OO developers are urged to
apply design patterns 	��� Fowler� in his popular refactor�
ing book� recommends that programmers look for �� �bad
smells� in their code� and refactor the code to remove them 	���
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A number of available tools can �nd style violations� Jstyle�
from Man Machine Systems� can identify at least 
� distinct
style �errors� in Java programs� Together� from Together�
Soft� can identify at least 
� �high severity�� 
� �normal
severity�� �� �low severity� style violations� You can �nd a
long lists of style recommendations by searching google�com
using the keywords �java programming style��
Marshall and Webber 	�� are concerned that such style

�taboos� can �needlessly restrict programming options� Ac�
tually the bene�ts� and costs� of following recommended
styles are unknown�
In addition to the many guidelines concerning good pro�

gram style� there is a commonly�held belief that most soft�
ware is of low quality 	���
Our work focuses on assessing the quality of software de�

signs� as well as developed software� Ultimately� we are
concerned with external quality factors such as reusabil�
ity� maintainability� testability� and adaptability� These are
the factors that are visible to either or both software users
and developers� We want to determine the relationship be�
tween design structures and external quality factors such as
reusability� maintainability� testability� and adaptability�
The underlying objective of our ongoing research is to

answer� in an objective manner� two key questions�


� What are good ways to structure software�

�� How is real�world software structured� and what can
we say about its �structural quality��

We look for answers� in large part� by examining real soft�
ware systems � systems that people actually use and have
evolved over a signi�cant period of time�

2. DESIGN STRUCTURE AND QUALITY
We have been studying the relationship between design

structure and external quality of proprietary as well as open
source software systems� Some of the work is descriptive in
nature� other work focuses on identifying the relationships
between structure and external qualities�
In one case study 	
�� we analyze �� versions of an evolv�

ing industrial OO software system to see if there is a rela�
tionship between patterns� other design attributes� and the
number of changes� We found a strong relationship between
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class size and the number of changes � larger classes were
changed more frequently� We also found two relationships
that we did not expect� �
� classes that participate in design
patterns are not less change prone � these pattern classes
are among the most change prone in the system� and ���
classes that are reused the most through inheritance tend
to be more change prone� These unexpected results hold
up after accounting for class size� which had the strongest
relationship with changes� In follow�up work� we developed
a change architecture which models the relationships among
the most change prone system components�
This work is continuing with a study of a much larger

industrial OO system � a multi�version system with more
than ��� classes� We will see if the results from the �rst
study 	
� are repeated with the new data�
We have applied the Jstyle and Together style analyzer

tools to both proprietary and open source code� We have
found large numbers of style �violations� in this code� The
impact of these violations on external quality is an open
question� which will require further study� Our aim here
is to demonstrate the value or lack of value of the style
guidelines and structuring rules�

3. SOFTWARE ENGINEERING ARTIFACTS
AS DATA

Studies of software structure� style� and quality depend
upon having real�world software development artifacts avail�
able for study� This software engineering data can include
program code� designs� speci�cations� models� etc� In the
past� such data has been very di�cult to obtain� Propri�
etary concerns prevent many organizations from giving re�
searchers access�
We have had some success in obtaining proprietary soft�

ware artifacts� However� with the growth of the web and
open source software� software artifacts �at least code� are
widely available� The Web contains at least ��
 million �les
containing either Java� C��� or Perl source code� and at
least ��� million �les contain executable code 	��� Much of
this software can be classi�ed as open source� which means
that it is freely available for both use and research� Open
source software often includes multiple versions which are
managed by the Concurrent Version System �CVS�� CVS
supports the analysis of transitions between software ver�
sions�
The following lists some commonly available large sized

systems� with the storage required for their CVS systems�

� NetBeans� � 
�� GByte�

� Jakarta� � ��
 GByte�

� Linux Kernel� � 

 GByte�

� KDE� � ��
 GByte�

The foregoing software artifacts are all program code with
change information and trouble reports that are logged on
the CVS system�

4. IS OPEN SOURCE SOFTWARE HIGH QUAL-
ITY?

A common belief in the software development community
is that open source software is better than proprietary code�

We intend to examine this question� Our investigation will
help to determine whether or not open source software is
error prone� easy to understand and maintain�
One key concern is how open source software ages� As

software evolves� the entropy tends to increase� Dependen�
cies between components can increase� making it more dif�
�cult to make changes� and allowing errors to propagate�
There is some evidence that coupling in open source code

can increase dramatically� Schach et al studied the evolution
of the open source Linus kernel through ��� versions 	���
They found that common coupling between kernel modules
is growing at an exponential rate� while the kernel module
size is growing linearly� Eventually the kernel may become
unmaintainable� requiring a major redesign e�ort�
We plan to examine the Linux kernel and other open

source systems to further examine whether coupling� and
other negative properties� are increasing at an alarming rate�

5. CONCLUSIONS
Advise on good program design structure and good pro�

gramming practice should be based on objective studies�
Such studies depend upon large sets of data consisting of
software artifacts� These software artifacts should be gen�
erally available so that the research community can use the
same benchmarks to evaluate new tools� techniques� and
advise� We are working towards developing a software en�
gineering research repository by collecting and cataloging
software artifacts� The repository will be available as a re�
source for the software engineering research and practitioner
community�
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