
Software Design Quality: Style and Substance

Position Paper

James M. Bieman
Roger Alexander

P. Willard Munger III
Erin Meunier

Computer Science Department
Colorado State University

Fort Collins, Colorado 80523

bieman@cs.colostate.edu

ABSTRACT
Many software development texts� references� tools� and au�
thorities provide advise on good software design and pro�
gramming styles� Unfortunately� most of the evidence to
support the value of this advise consists of intuition and
anecdotes� We are working to objectively determine the
value of recommended style guides on large�scale real world
software systems� we are studying both proprietary commer�
cial and open source systems� Our work involves determin�
ing whether or not style recommendations are followed� and
how these styles a�ect external quality factors such as fault�
and change�proneness� and maintainability� Early results in�
dicate that style guidelines are often violated� In addition�
we have found that� in contrast with common claims� one
design recommendation � the use of design patterns � can
lead to more change prone � rather than less change prone
classes�

1. INTRODUCTION
From early in the history of computer software� a variety

of sources have provided guidance on how to design and code
to improve program understandability and adaptability and
decrease faults� Dijkstra�s �Go To Statement Considered
Harmful� letter to CACM� is probably the most cited early
programming style advice 	
�� Marshall and Webber point
out other common �programmer�s taboos� including avoid�
ing �
� low level programming� ��� the use of �owcharts� ���
pointers� and �
� platform speci�c programming 	���
Additional style advise is speci�c to the object�oriented

�OO� paradigm� For example� OO developers are urged to
apply design patterns 	��� Fowler� in his popular refactor�
ing book� recommends that programmers look for �� �bad
smells� in their code� and refactor the code to remove them 	���

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoSQ - Workshop on Software Quality 2001 Orlando, USA
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...�5.00.

A number of available tools can �nd style violations� Jstyle�
from Man Machine Systems� can identify at least 
� distinct
style �errors� in Java programs� Together� from Together�
Soft� can identify at least 
� �high severity�� 
� �normal
severity�� �� �low severity� style violations� You can �nd a
long lists of style recommendations by searching google�com
using the keywords �java programming style��
Marshall and Webber 	�� are concerned that such style

�taboos� can �needlessly restrict programming options� Ac�
tually the bene�ts� and costs� of following recommended
styles are unknown�
In addition to the many guidelines concerning good pro�

gram style� there is a commonly�held belief that most soft�
ware is of low quality 	���
Our work focuses on assessing the quality of software de�

signs� as well as developed software� Ultimately� we are
concerned with external quality factors such as reusabil�
ity� maintainability� testability� and adaptability� These are
the factors that are visible to either or both software users
and developers� We want to determine the relationship be�
tween design structures and external quality factors such as
reusability� maintainability� testability� and adaptability�
The underlying objective of our ongoing research is to

answer� in an objective manner� two key questions�


� What are good ways to structure software�

�� How is real�world software structured� and what can
we say about its �structural quality��

We look for answers� in large part� by examining real soft�
ware systems � systems that people actually use and have
evolved over a signi�cant period of time�

2. DESIGN STRUCTURE AND QUALITY
We have been studying the relationship between design

structure and external quality of proprietary as well as open
source software systems� Some of the work is descriptive in
nature� other work focuses on identifying the relationships
between structure and external qualities�
In one case study 	
�� we analyze �� versions of an evolv�

ing industrial OO software system to see if there is a rela�
tionship between patterns� other design attributes� and the
number of changes� We found a strong relationship between

bieman
Published in Proc. ICSE 2002 Workshop on Software Quality, 2002.



class size and the number of changes � larger classes were
changed more frequently� We also found two relationships
that we did not expect� �
� classes that participate in design
patterns are not less change prone � these pattern classes
are among the most change prone in the system� and ���
classes that are reused the most through inheritance tend
to be more change prone� These unexpected results hold
up after accounting for class size� which had the strongest
relationship with changes� In follow�up work� we developed
a change architecture which models the relationships among
the most change prone system components�
This work is continuing with a study of a much larger

industrial OO system � a multi�version system with more
than ��� classes� We will see if the results from the �rst
study 	
� are repeated with the new data�
We have applied the Jstyle and Together style analyzer

tools to both proprietary and open source code� We have
found large numbers of style �violations� in this code� The
impact of these violations on external quality is an open
question� which will require further study� Our aim here
is to demonstrate the value or lack of value of the style
guidelines and structuring rules�

3. SOFTWARE ENGINEERING ARTIFACTS
AS DATA

Studies of software structure� style� and quality depend
upon having real�world software development artifacts avail�
able for study� This software engineering data can include
program code� designs� speci�cations� models� etc� In the
past� such data has been very di�cult to obtain� Propri�
etary concerns prevent many organizations from giving re�
searchers access�
We have had some success in obtaining proprietary soft�

ware artifacts� However� with the growth of the web and
open source software� software artifacts �at least code� are
widely available� The Web contains at least ��
 million �les
containing either Java� C��� or Perl source code� and at
least ��� million �les contain executable code 	��� Much of
this software can be classi�ed as open source� which means
that it is freely available for both use and research� Open
source software often includes multiple versions which are
managed by the Concurrent Version System �CVS�� CVS
supports the analysis of transitions between software ver�
sions�
The following lists some commonly available large sized

systems� with the storage required for their CVS systems�

� NetBeans� � 
�� GByte�

� Jakarta� � ��
 GByte�

� Linux Kernel� � 

 GByte�

� KDE� � ��
 GByte�

The foregoing software artifacts are all program code with
change information and trouble reports that are logged on
the CVS system�

4. IS OPEN SOURCE SOFTWARE HIGH QUAL-
ITY?

A common belief in the software development community
is that open source software is better than proprietary code�

We intend to examine this question� Our investigation will
help to determine whether or not open source software is
error prone� easy to understand and maintain�
One key concern is how open source software ages� As

software evolves� the entropy tends to increase� Dependen�
cies between components can increase� making it more dif�
�cult to make changes� and allowing errors to propagate�
There is some evidence that coupling in open source code

can increase dramatically� Schach et al studied the evolution
of the open source Linus kernel through ��� versions 	���
They found that common coupling between kernel modules
is growing at an exponential rate� while the kernel module
size is growing linearly� Eventually the kernel may become
unmaintainable� requiring a major redesign e�ort�
We plan to examine the Linux kernel and other open

source systems to further examine whether coupling� and
other negative properties� are increasing at an alarming rate�

5. CONCLUSIONS
Advise on good program design structure and good pro�

gramming practice should be based on objective studies�
Such studies depend upon large sets of data consisting of
software artifacts� These software artifacts should be gen�
erally available so that the research community can use the
same benchmarks to evaluate new tools� techniques� and
advise� We are working towards developing a software en�
gineering research repository by collecting and cataloging
software artifacts� The repository will be available as a re�
source for the software engineering research and practitioner
community�

Acknowledgements
This work is partially supported by U�S� National Science
Foundation grant CCR��������� and by a grant from the
Colorado Advanced Software Institute �CASI�� CASI is spon�
sored in part by the Colorado Commission on Higher Edu�
cation �CCHE�� an agency of the State of Colorado�

Author Information
Jim Bieman is the Editor�in�Chief of the Software Qual�
ity Journal and Associate Professor of Computer Science at
Colorado State University� His work is focused on the eval�
uation and improvement of software design quality�
Roger Alexander is an Associate Professor of Computer

Science at Colorado State University� He spent many years
in industry as a software developer �and researcher� includ�
ing experience at the Software Productivity Consortium�
Michael Jackson Systems� and Cigital �formerly Reliable
Software Technologies��
Willard Munger has taught Computer Science at in Rwanda

and Camaroon� he was the founding President of Adventist
University Cosendai in Camaroon� He is now on sabbatical
at Colorado State University�
Erin Meunier is an undergraduate Research Assistant at

Colorado State University� She will soon receive her B�S� in
Computer Science and will be joining IBM�

6. REFERENCES
	
� J� Bieman� D� Jain� and H� Yang� Design patterns�

design structure� and program changes� an industrial
case study� Proc� Int� Conf� on Software Maintenance
�ICSM ������ ���
�



	�� J� Bieman and V� Murdock� Finding code on the world
wide web� a preliminary investigation� Proc� Int�
Workshop on Source Code Analysis and Manipulation
�SCAM ������ November ���
�

	�� C� Connell� Most software stinks� URL
http���www�chr���com�pub�beautifulsoftware�htm�
���
�

	
� E� Dijkstra� Go to statement considered harmful�
Communications of the ACM� 

����

��

�� 
����

	�� M� Fowler� Refactoring� Improving the Design of
Existing Code� Addison�Wesley� Reading MA� 
����

	�� E� Gamma� R� Helm� J� R�� and J� Vlissides� Design
Patterns� Elements of Reusable Object�Oriented
Software� Addison�Wesley� Reading MA� 
����

	�� L� Marshall and J� Webber� Gotos considered harmful
and other programmers� taboos� Proc� ��th Workshop
Psychology of Programming Interest Group �PPIG�����
�����

	�� S� Schach� B� Jin� D� Wright� G� Heller� and J� O�utt�
Maintainability of the linux kernel� IEE Proceedings
Journal� Special Issue on Open Source Software
Engineering� �����




