
Software Quality Journal Vol. 10 No. 1, 2002 
 
 

Editorial: Risks to Software Quality 
 
 
As a software engineering researcher and teacher, I frequently hear comments about how 
awful our software is. Such comments come from both computer science and engineering 
academics, and practitioners. We all hear complaints about failures of commonly used 
applications such as browsers, word processors, presentation software, etc. 

From my experiences collaborating with industry, I know that many, if not most, 
software systems are developed in a very ad hoc manner. We professors know many 
students who are convinced that our lectures on software development techniques are 
irrelevant. Thus, I have ample reason to believe that most software is likely to be of low 
quality. 

Yet, I am continually impressed by how well our software actually works. My bank 
statements are correct, the phone system rarely crashes (such crashes make the news), 
fly-by-wire airplanes do fly, point-of-sale terminal systems work, I can usually make 
purchases using the Internet. I can go on and on. Our software usually works well, in 
spite of our expectations. Of course, the software that is of the highest quality is the 
software that must be of high quality. 

Although software does generally work well, in spite of how it is developed, there are 
serious threats to future quality. These threats come from at least three interconnected 
sources: 

1. The problems that we use software to solve have become much more 
complex. Years ago, we wrote software to automate a companies payroll. 
Today, we write software to automate an entire business. The domain 
knowledge and complexity of the relationships in the problem space of 
enterprise software ensures that our software will be incorrect, at least in the 
details. The trend towards increasingly complex problems that must be solved 
via software seems to be accelerating, at least at a pace that matches 
improvements in hardware. 

2. The fast pace of development in our highly competitive business environment 
puts enormous pressure on procedures to assure quality. Warren Harrison 
described this problem in a recent editorial1.  

3. The methods that we use to solve software problems are evolving at a rate that 
is almost as fast as the increasing complexity of the problem space (source 1, 
above). New methods are adopted on the basis of the enthusiasm of the 
proponents of the methods, rather than on careful studies of effectiveness. 
These new development methods and tools may solve particular development 
problems, but they can have a negative impact on long-term quality. 

                                                 
1 See Harrison, W. 2001. Editorial: software quality and internet time, Software Quality 
     Journal  9(2):77-78, June 2001. 



We have little control over the first two sources; our employers and clients bring the 
problems to us, and “internet time” is a result of the competitive business environment. 
However, we do have some control over what development methods we adopt. 

We can trace the history of software development, in particular the techniques adopted 
in industry. Structured programming replaced unstructured programming in the 1970’s; 
structured design replaced structured programming in the 1980’s, to be replaced by 
object-oriented methods. During the last decade, developers started to use object-oriented 
design patterns, and now Extreme Programming methods. 

Each of these developments does solve problems with the prior methods, but they can 
have a negative impact on long-term quality. Object-oriented software has added 
complexity over procedural code --- maintainers must understand complex relationships 
between objects with many identities unknown at compile time, since they involve 
dynamic binding. Object-oriented software systems tend to have many small classes with 
short methods. Control flow complexity and intra-module complexity is reduced, while 
the connections between modules is increased. Design patterns add indirection with 
additional abstractions, additional classes, and associations between objects. We still do 
not know whether object-oriented systems will be easier or harder to maintain and adapt 
than “old fashioned” procedural programs. The claimed benefits of Extreme 
Programming have not been convincingly demonstrated. 

Another example is the emerging field of aspect-oriented programming2. When we 
develop software using object-oriented techniques, we develop an overall static structure, 
or primary decomposition, of a program, which is often represented with a class diagram.  
This primary decomposition is often inadequate for expressing crosscutting concerns 
such as security issues. Using an aspect oriented language, a developer writes an aspect --
- the functionality for the crosscutting concern---and the language processor weaves the 
aspect code into the original program.  

The aspect-oriented approach does make the aspect a named functional entity. Thus, 
there is a specific component addressing the aspect. However, the process of aspect 
development and its affect on the overall design integrity is unknown. One concern is that 
the weaving process can introduce content coupling, where a module references the 
internal elements of another module. Content coupling is generally considered to be the 
worst kind of coupling. The interactions between the code in an original function or 
method and the aspect that was woven in may be difficult to track.  

I am not saying that we should not use object-oriented methods, design patterns, 
extreme programming, aspect-oriented programming, etc. Rather, we should use these 
methods carefully, and be skeptical. I encourage objective, scientific studies of new 
methods. Then developers can make informed, rather than risky decisions.  

Please share your thoughts on these and other software quality issues. Send your 
comments to me at bieman@cs.colostate.edu. 

 
James Bieman 

Fort Collins, Colorado 
U.S.A 

                                                 
2 For a good introduction to aspect-oriented programming see the October 2001 issue of  Communications 
of the ACM 


