
Software Quality Journal Vol. 13 No. 2, 2005

Editorial: Can Users Read Developers Minds?

Software development involves lots of mind reading. Developers continually try to
read users’ minds by imagining what users will try to do with software once it is released.
Developers also try to read the minds of those in management to determine the “real”
requirements, as opposed to what is in a written requirements document. Developers
learn that hard way that they must satisfy unwritten and unspoken requirements. In
addition, developers must guess what new features will be required, so that designs can
be structured to be readily modified to include the new features. Of course, mind reading
is not easy, and developers do not have greater telepathic powers than most people.

 It turns out that, not only must developers read users’ minds; there are times when
users really need to be able to read developers’ minds. Users may need to think like a
developer to understand how to correctly access particular functionality. There is usually
a gap between the system that developers have actually built and the system that users
think that they are using. This gap can lead to both annoying and devastating problems,
especially when users’ expectations are reasonable, and the software limitations are not.

Problems are especially critical when they are in systems that control important
aspects of users’ lives, for example personal or business finances. One such software
application domain is the software now commonly used in web-based, electronic bill
paying systems. Bill paying software is connected to an overall banking system that
allows customers and bank employees to examine the status of several accounts with a
bank, define a set of “payees” for electronic payments, and schedule payments to be
made to payees.

Here is an actual scenario that occurred to a customer, who will remain unnamed, of a
major bank in the USA. This customer had a personal checking account, and had been
using it successfully to pay bills both by check and via electronic payments. In order to
better organize personal finances, this user opened a second checking account at the same
bank to pay professional expenses. Such an arrangement makes it much easier to separate
professional expenses from personal expenses and is especially useful when preparing
US income tax returns, one of the most odious requirements of living in the USA. The
customer would deposit regular income into the personal account, and deposit just
enough funds into the professional account to pay expenses.

Using the on-line banking system, it is relatively simple to navigate between accounts
to check balances, etc. When paying personal bills, the user navigates to the personal
account and then selects the “schedule bill payment” option to set up the required
payments. This method seemed to work fine for a while until a statement arrived with a
series of overdraft charges piled onto overdraft charges adding up to several hundred
dollars on the professional account. The customer called the bank toll free number and,
after surviving phone software hell, learned that she had been inadvertently paying
personal bills through her professional account rather than the personal one.

It turns out that after she opened the professional account with an on-line bill payment
feature, the banking system automatically paid all bills from the professional account.
The problem, from this customer’s perspective, is an unstated, or well-hidden, system
constraint – customers can only use one account for on-line bill payment, which cannot
be changed by the customer on-line. Rather than allow the user to select an account to
pay bills from, a default account for bill payment is set. The constraint is not obvious; it
is not stated on the bank web page, and it appeared to be only known by those in the
technical office. Local bank employees – those who advise customers when they open
accounts and when they have problems – had no knowledge of this constraint. They were
as surprised about this as the victim (the bank customer).

Consider this scenario. A customer navigates to their personal account, then selects the
“bill pay” option, and proceeds to schedule payments. Most customers, other than
programmers, would naturally assume that the personal account would be used.
Unfortunately, this was not the case – the professional account was debited. The bill
payment page does not indicate which account is to be used, and it appears impossible to
tell from the provided on-line information. Perhaps this limitation is a security
precaution. However, this behavior is clearly a problem for users with multiple accounts.
And multiple accounts are common. Surely, there are thousands of bank customers who
have or will run across this problem, which I classify as a serious program failure.

Depending on your perspective, the fault that is the root cause of the failure is either
missing functionality or missing documentation. From the user’s perspective, the fault is
that users are unable to select between accounts when paying bills on-line. From the
developer’s perspective, the failure was caused by the missing documentation of the
constraint that bills could be paid on-line from only one account per customer. Clearly
the actual system behavior did not match the behavior expected by the customer or the
local bank employee. A user would benefit, and possibly discover the hidden constraint,
by reading the mind of the developer. But, to do this, they must have more knowledge of
software design than most people.

Someone with a developer’s perspective will look at the system and on-line bill paying
process a bit differently than more naïve customers. Since the internet protocols are
generally state-free, servers do not automatically know the relevant history of a client –
the bill payment page software may not know that a client has just visited the personal
account, so that it knows to pay bills from that account (a natural assumption for a naïve
customer). Someone with a developer’s perspective knows about the possible limitations,
and is more likely to verify that the proper account is debited. However, most users are
not developers, and are too trusting that software will do “the right thing.”

Software failures that affect personal finances can be very serious and have safety
implications. Customers can panic after receiving unexpected and unwarranted overdraft
notices. A customer with a bad heart can end up in a hospital (or worse), and a mentally
unbalanced customer may react in unpredictable and dangerous ways.

The actual scenario related here turned out fine. The local bank official apologized,
and reversed all of the overdraft charges. The local bank official and the customer learned
some important lessons about the limitations of the software. However, there should be
easier ways to communicate key details about how a system works. Let’s not force users
to be mind readers.

Both developers and users are poor mind readers. Developers can’t anticipate users’
behavior and expectations. Users should not also have to read developers’ minds. It’s too
bad that mind reading is necessary, since it is impossible. I guess that we must all wait for
some astounding advances in clairvoyance and telepathy. Otherwise, software
professionals must do a better job of satisfying the information and functionality needs of
all stakeholders.

James Bieman
Fort Collins, Colorado

U.S.A

