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Abstract

It iswell-known that uncontrolled changeto software can
lead to increasing evolution costs caused by deteriorating
structure and compromised system qualities. For complex
systems, the need to carefully manage system evolution is
critical. In this paper we outline an approach to manag-
ing evolution of object-oriented (OO) software. The ap-
proach is based on a goal-directed, cyclic process, in which
OO models are transformed and quantitatively evaluated in
each cycle. Evaluation criteria guide developersin choos-
ing between alternative transformations in each cycle. The
process, transformations, and eval uation techniques can be
used to develop systems from a set of baseline models.

Keywords Design transformations, design evaluation,
object-oriented design, software evolution

1. Introduction

The large integrated software systems that are central to
the missions of many organizations must change to satisfy
continually evolving requirements. Adapting such software
can bevery difficult, because of the software’ ssizeand com-
plexity and the variety of users or stakeholders with con-
flicting requirements. The cost of adapting systemsincludes
both labor and time, and can be enormous. Furthermore, un-
controlled evolution of software can lead to deterioration of
system architecture qualities.

We view software evolution as a processin which trans-
formations are successively applied to software artifacts.
Our notion of “evolution” includes (1) producing new soft-
ware systems from scratch, (2) producing software artifacts
from implemented software systems (e.g., producing mod-
elsand documentationfrom legacy systems) and (3) produc-

ing new software system versions from previous versions.
During the development of a new software system, require-
ments and design models evolve as devel opers gain a better
understanding of desired functionality and qualities. These
models are eventually transformed (evolved) to an imple-
mented system. Evolution also occurs after release, asare-
sult of corrective, adaptive, and perfective maintenance.

We propose an approach to software evolution based on
transformations of object-oriented (OO) models and code.
We are devel oping aframework, called multi-view software
evolution (MV SE), that includes techniquesto

1. characterize and represent alternative perspectives or
views of an evolving software system,

2. transform system models and code to implement re-
quired modifications, and propagatethe transformation
effects across views and their implementations,

3. derive objective criteria from goals for evaluating the
effects of a change, and

4. define a process that weaves these elements into a co-
herent, goal-driven approach to software evolution.

Our objectiveisto develop methodsthat scaleup to large
industry software systems (e.g., enterprise-wide informa-
tion systems found in large telecommunication and retail
organizations). The complex relationships among services
and the diverse user base of these systems contribute to the
difficulty of evolving them. Evolution can add new ser-
vices, modify existing services, and update underlying sup-
port systems (e.g., databases, communication, and security
systems). Such changesrequire: (1) assessing theimpact on
interacting services, support systems, and on user views, and
(2) resolving possible quality conflictsarising from different
views of the system, and minimizing potential degradation



of system qualities by making appropriate tradeoffs. These
requirements also apply to changes made during the devel-
opment of new software systems.

MV SE has the following characteristics:

e A multi-view, model-based approach: Models of
evolving systems make the evolution task more man-
ageable. Changes are effected by evolving multiple
viewsof asystem represented asmodels, and propagat-
ing those changes to the implementation. Our notion
of view is an adaptation of views and viewpoints as
used in requirements analysis [25, 26]. Propagating
changes, and assessing the impact of change across
views requires well-defined relationships among and
between the views and their implementations. Models
expressed in languages such as the Unified Modeling
Language (UML) [38], can identify dependencies
and interactions among system components within
and across views. Using well-defined relationships
among models and implementations, changes can be
propagated across views and their implementations.

o A set of well-defined transformations: The transforma-
tions are instantiations of evolution patterns, i.e., pat-
terns reflecting types of software changes.

e Objective evolution goals. Selecting appropriatetrans-
formations depends upon objective determination of
the success or failure of the transformations.

e An iterative, goal-driven evolution process. A pro-
cessmodel that weavestheviews, transformations, and
goals together to manage evolution. Our model con-
sists of cycles, where each cycle implements a well-
defined change and consists of the following activities:
(1) identification of changegoals, (2) reduction of goals
to objective evaluation criteria, (3) selection and appli-
cation of appropriate transformationsto satisfy the cri-
teria, and (4) evaluation of transformation results.

In MV SE, evolution of complex systemsis a processin
which transformations are successively applied to multiple
views of software (represented by models), until objective
criteriaare satisfied. This paper introducesthe concepts un-
derlying MV SE.

2. Evolving Software using MV SE

A stakeholder! view reflects the perspective a stake-
holder has on a system’s application and behavior. In
MV SE, stakeholders initiate changes to systems and de-
scribe these changes in the context of stakeholder views.?

1A stakeholder is someone with a vested interest in how the system is
used and evolved.

2Werefer to a“ stakeholder view” asaview when it does not cause con-
fusion.

For example, in a Telecommunication Information Sys-
tem (TIS), changes in switching and network technolo-
gies can trigger changes expressed in the context of a sys-
tem/network view of the TIS, while changes derived from
changing processesin aparticular business sector (e.g., Cus-
tomer Care or Billing) are often expressed in the context of
service-oriented views of the TIS. Within a large organiza-
tion, there are usually many stakeholders with different and
sometimes conflicting views.

Precise relationships among different views of a system
can help determinetheimpact of achangeon different stake-
holders. A good system architecture can provide a solid
foundation for building relationshipsamong multipleviews:
we treat a view as a sub-architecture that reflects a stake-
holder’s perspective on the system (see Fig. 1).
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Figure 1. Views for a Distributed Order Han-
dling System with a Multi-Tiered Architecture

MV SE treats a system architecture as a model of struc-
ture and behavior expressed in terms of subsystems, where
a subsystem defines the behavior and structure of a clearly
defined part of the system. A subsystem is developed and
depicted in terms of UML models (e.g., Class Diagrams,
Use Cases), where each model captures a particular aspect
of the subsystem’s structure or behavior (see the elaboration
of Subsystem 4 in Fig. 2). The integration of a subsystem’s
UML models (accomplished by relating conceptsacrossthe
models) resultsin acomprehensive definition of the subsys-
tem’s structure and behavior.

A stakeholder view can be represented as an integrated
set of UML modelsfrom the subsystemsin the view. Fig. 2
shows an example of relationships between stakeholder
views and subsystems.
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Figure 2. Architecture and Views

MV SE treats software evolution as a process in which
modelsin stakeholder views are iteratively transformed and
evaluated. Well-defined rel ationshipsamong themodelsina
view play key roleswhen propagating achangein onemodel
to other models in the view. The propagation of change
across different views is made possible by well defined re-
lationships among the subsystems.

When evolution involves making a change to an imple-
mented system, transformations eventually lead to the pro-
duction of code that effect the change. When only code is
available, transformations must generate models for stake-
holder views from the code. During the development of a
new product, transformations are carried out on the models
to meet design quality goals, and to obtain implementations
expressed in particular programming languages.

MV SE models are expressed using a precise form of
the Unified Modeling Language (UML) [38], currently be-
ing developed by the precise UML (pUML) Group [27].
Class, Component and Deployment Diagramsprovidestruc-
tural views while Interaction and State Diagrams provide
behavioral views of a system. The relationships among
UML modelsin and across views are depicted using stereo-
typed dependency relationships (e.g., < realize >, <
refine >, and < trace >>). For example, < traceOp >
isastereotyped dependency (more precisely, astereotype of
the < trace > stereotype) that is used to depict the rela-
tionship between operations/methodsin a Design Class Di-
agram and messages that request invocations of the opera-
tions/methodsin Interaction Diagrams. Consistency check-

erscan ensurethat operations/methodsarelocated in classes
as determined by the Interaction Diagrams.

Models can also include cross-referencing information to
relate concepts across models. For example, Use Cases can
include a cross-reference section with information about ob-
jectsthat are created, read, updated, and deleted (CRUD in-
formation) during the process described by the Use Case.
CRUD information relates Use Case concepts to concepts
in Class Diagrams, and can help determine the impact of a
process change on underlying databases.

2.1. Horizontal and Vertical Transfor mations

We identify two broad classes of model transformations:
vertical and horizontal transformations. A vertical transfor-
mation results in a target model that is at a different level
of abstraction. Model refinement and abstraction are two
forms of vertical transformations.

A horizontal transformation resultsin atarget model that
isat the same level of abstraction as the source model. Hor-
izontal transformations can occur for a number of reasons:

e Toimprove specific quality attributes of the model:
Transformations based on reusable experiences (e.g.,
design patterns [30]) can be applied to models to pro-
duce models at the same level of abstraction. Such
transformationscan result from adesireto (1) meet de-
sign goals, (2) address deficiencies uncovered by eval-
uations, or (3) explore alternative decision paths. We
use the term model refactoring to refer to this type of
horizontal transformation.

e Tosupport analysisof models: During analysis, mod-
els can be transformed to make explicit properties that
are being analyzed. Such transformations use the se-
mantics of the modelsto determinewhat propertiescan
beinferred fromthe models. We usetheterm model in-
ferencing to refer to this type of transformation.

Fig. 3illustrates horizontal and vertical transformations.
Thehorizontal transformation isan example of model refac-
toring. It represents an application of a design pattern, the
Bridge pattern, [30], to decouple the implementation of im-
ages (which can vary based on display resolution and avail-
ability of colors) from their abstraction. The vertical trans-
formationsshownin Fig. 3 are examplesof class refinement
and abstraction[21]. Inaclassrefinement, aclassobject (the
abstraction) isrealized by a network of objects that interact
to realize the public interface of the abstraction. In the fig-
ure, Displaylmp isaredization of Display, and Display is
an abstraction of Displayl mp.

Effective management of evolution requires that the
transformations be explicitly modeled; MV SE uses stereo-
types of UML model relationships (e.g., realize, trace, re-
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Figure 3. Model Transformations

fine). The stereotypes tailor the more generic UML rela-
tionships to the transformations types supported by MV SE.
Information pertaining to transformation scope, measurable
impact, and applicability are associated with the relation-
ships. By explicitly modeling transformations one can track
the evolution paths of OO software. This paper does not fo-
cus on the form of documented transformations. The focus
in the remaining sections is on the process, transformation
types and eval uation techniques.

3. A Generic Process For Managing Evolution

The generic development process weaves model trans-
formation techniques together with model evaluation tech-
niques. Explicit goalsand evaluation criteriahelp to (1) de-
terminewhento perform transformation typesand (2) select
among aternative transformations of the same type.

We assume an evolutionary life cycle, where develop-
ment is based on modifications to an existing system. Ini-
tial development is a special case where the base system is
null. Development involves version-to-version transformar
tionsof any of the model sthat represent the variousviews of
the system at variouslevels of abstraction. Thisassumption
is consistent with aspiral life cycle[9], where devel opment
consists of cycles of activities which progress towards iter-
ative development goals.

The generic processmodel isan adaptation of commonly
recommended approaches to OO development [32]. Our
adaptationsinclude the following:

e Weassume cycles(or iterationsof aprocessspiral) that
achieve specific interim goals. The processis goa di-
rected.

e We assume that each cycle has an initial version with
a set of models. Theinitial set of models can include
from zero to many OO models of arbitrary types and
levels of abstraction.

e Theprocess supportsboth forward (refinement) and re-
verse (abstraction) engineering activities.

e Transformations achieve specific goals.

e The selection among dternative transformations is
guided by evaluation criteria

As in the general spiral model [9], our generic process
model includes four general activities which represent the
four quadrantsof acycle. However, our quadrantsmake use
of the Goal-Question-Metric paradigm for quantitative as-
sessment of software entities[2]; goal setting and determin-
ing mechanisms to evaluate changes play key rolesin the
process. The generic process model includes the following
activities for each quadrant of a development cycle:

1. Identify cycle-goas for the current process cycle and
derive a set of questionswhose answers can determine
the extent to which the goals are satisfied. The goal
setting includes an assessment of the current state of
the devel opment process, and includes areview of the
evaluation from the previous cycle.

2. Determine the transformations that are needed to sat-
isfy the goals, thusidentifying the target OO modelsto
be created. Convert the questions from the prior step
into more precise eval uation criteriawhich can answer
the questions for the selected models created by the
transformations.

3. Conduct the transformations, using the evaluation cri-
teria to select between aternatives of the target OO
model type.

4. Evauatethegenerated OO modelsusing the evaluation
criteria developed in steps 1 and 2 to determine how
well the goals have been met.

This generic process model is general enough to include
awide range of overall processtypes. The model fits devel-
opment from scratch, where development starts with some
loosely defined requirements, and cycles through a series
of OO models as described by existing OO process mod-
els[21, 32]. In contrast with these models, the generic pro-
cess model does not assume any particular starting point,
and can be applied when there are incomplete and/or miss-
ing models. The model can be applied to iterative develop-
ment which adds new features to an existing system. Such
development may include areverse engineering component,
since OO modelsare often not avail able on existing systems.
Then, an early cyclewill abstract model sfrom existing code
S0 that adaptations can be made to appropriate OO models.

The goalsfor aparticular process cycle can vary widely;
the following are possible cycle goals:



e Create a (partial) design solution from a high-level
analysis model. Cycle transformations will tend to be
refinements.

e Gain understanding of an existing artifact or model.
Cycle transformationswill tend to be abstractions.

e Understand an orthogonal facet of an existing OO
model. Inferences explore design consequences.

e Improve quality characteristics of a model. Refactor-
ing transformations are likely candidates. For exam-
plerefactoring can reduce model coupling, or introduce
patternsto improve adaptability.

This generic development process depends on having the
ability to rigorously refinethe modelsvertically from higher
levels of abstraction al the way down to program code. It
also depends upon horizontal analyses at one level of ab-
straction to identify consistency between different views of
thesystem. For example, an evaluation criteriamight bethat
a Use Case can be “applied” to a Class Diagram to deter-
mineif the class model is sufficient for specified use scenar-
ios. Such static testing of a Use Case against a Class Di-
agram can identify missing attributes and responsibilities.
The generic process model formalizesthe devel opment pro-
cess by providing well-defined connections between differ-
ent modelsand at various levels of abstraction.

Application of the generic process depends on the devel-
opment of appropriate goals and evaluation questions, the
selection of transformations and target models based on the
goals and questions, and the derivation of evaluation crite-
riathat can be applied to OO models and answer evaluation
guestions.

4. Model Transformations

In this section we give an overview of the different types
of transformations supported by MV SE.

4.1. Model Refactoring

Model refactoring occurs when a model is transformed
to enhance quality attributes of the model. Using a design
pattern (e.g., see [30, 16]) to improve a design results in
model refactoring: the instantiated pattern, when applied to
amodel, results in a new model reflecting the solution de-
fined by the instantiation.

To support effective management of transformations
based on patterns, precise representations of patterns are
needed. A problem with the current form of pattern descrip-
tionsisthat themodelsof structureand behavior aregivenin

terms of typical instantiations of the patterns. A more gen-
eral, but precise, representation of pattern structure and be-
havior is needed if one is to objectively assess if a pattern
has been applied appropriately.

In MV SE, a pattern specification determines the form of
the UML models that are pattern instantiations. A pattern
instantiation is a set of UML models (static structural and
dynamic models) that reflect the pattern properties. A pat-
tern specification in MV SE consists of two types of (meta-
)models:

e Static Role Models: A static role model (SRM) char-
acterizesthe static structural modelsthat can be part of
pattern instantiations. It consists of classifier and rela
tionship roles, where aclassifier role defines properties
that determine the UML classifer constructs that can
“play the role” and a relationship role defines proper-
ties that determine the UML relationships (e.g., asso-
ciation, generalization, dependency) that can “play the
role”. An element that plays (realizes) a role has the
propertiesspecified by therole. Suchanelementisalso
called arealization of the role. Applying a pattern es-
sentially involves associating modeling elements (e.g.,
a class construct) to roles specified in its role models.
Givenan SRM, astatic structura diagram, anda“ plays
role of” mapping between the diagram constructs and
the SRM role, the structural diagram is said to realize
the SRM if the mapped constructs play the roles they
are mapped to.

e Dynamic RoleModels: A dynamicrolemodel (DRM)
characterizes the dynamic aspects of models that can
be part of the pattern instantiations. For example, be-
havioral roles characterize the properties (in terms of
parameterized pre- and post-conditions) that class op-
erations must satisfy in realizations.

There are two types of properties that can be specified in a
(Static or Behavioral) Role Model:

e Metamodel-level constraints restrict the form of con-
structs that can play the role. These properties are ex-
pressed as constraints over the UML metamodel ele-
ments [38] and thus limit the syntactic form of con-
structsthat realize therole.

e Model-level constraint templates are parameterized
constraints whose instantiations express semantic
properties that must be expressed in models that
realize the pattern. An instantiated constraint template
isreferred to as amodel-level constraint. A constraint
that requires an operation to have a particular effect
on a system’s state is an example of a model-level
constraint.
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An example of a SRM and a static structural diagram
that satisfies the SRM are shown in Fig. 4. The SRM
shown on theleft of thefigure consists of two classifier roles
(M onitor, Subject) and onerelationshiprole (M onitors).
The meta-model constraint for the M onitor role states that
only class constructsthat are abstract can play thisrole. Fur-
thermore, there can be only one such class in the diagram.
The model-level constraints are behavioral roles that spec-
ify therequired effects of behaviorson objects of the classes
that can play the Monitor role.

Model Inferencing A precise modeling language enables
oneto rigorously reason about properties captured by mod-
els. One can understand a precise model in terms of the
propertiesthat can be inferred from it. One approach toin-
ferring properties from precise models is to transform the
modelsin such away that implicitly defined properties be-
come explicit. These types of transformations are referred
to as inferences.

To illustrate inferencing, consider the UML Class Dia
gram inference shownin Fig. 5.

In [29] we developed a technique for transforming CDs
to Z specifications based on a precise semantics. By trans-
forming the UML models in Fig. 5 to Z specifications we
showed that the Z specification for the top model implies
the Z specification of the lower UML model. We general-
ized the above transformation to a rule for demoting asso-
ciationsin single-level specialization hierarchies. Our early
work defines UML Class Diagram inference rules[22, 28].
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Figure 5. UML Inference Diagram

4.2. Model Refinement and Abstraction

Refinement/abstraction of a system model is accom-
plished by refining/abstracting one or more modeling views
of the system model. In the framework, the notion of re-
finement is broader than moreformal notions of refinement:
new properties may be included in a refined element. For
example, a refined Class Diagram may include structures
(classes and relationships) not included in the more abstract
Class Diagram. A more appropriate term for our notion
of refinement is detailing. The notion of refinement sup-
ported in MV SE builds upon the refinement notions defined
in Catalysis[21].

Vertical transformations on a model can trigger corre-
sponding transformations on other modelsin order to main-
tain consistency among the models. For example, a refine-
ment of an Interaction Diagram may introduce new classes
of objects, in which case a corresponding refinement of the



Design Class Diagram is triggered, resulting in the addi-
tion of the new classes and appropriate associations. Well-
defined relationships among models (represented as stereo-
typed UML dependencies) enables one to determine what
models need to be transformed as aresult of a model trans-
formation. The following subsections provide examples of
the types of model refinement supported by MV SE.

Class Diagram Refinement Class refinement results in
an elaboration of class properties and may involve (1) re-
fining class attributes and operations of the class (abstract
datatype refinement), (2) adding new properties (attributes,
operations, relationships), or (3) decomposing aclassinto a
substructure. For example, in moving from requirementsto
design, one may decide to centralize control of the system
services by using a facade class to manage al interactions
between a system and its users. This resultsin the addition
of aclassto the requirements Class Diagram.

Use Case and Activity Diagram Refinement Use Case
refinement creates more detailed Use Cases, Activity Dia
grams, or interaction diagrams. Activity Diagrams can be
used to detail flows described in Use Cases. Use Cases are
treated as informal entities in the framework, thus their re-
finement areguided by heuristicsrather thanformal rules. In
MV SE, the relationship between a Use Case and its refine-
ment can be documented by (1) relating Use Case steps to
sections of Interaction Diagrams or Activity Diagrams that
realize the steps, and (2) mapping Use Case conceptsto el-
ements in Interaction Diagrams (e.g., objects, links, mes-
sages) and detailed Use Cases.

Interaction Diagram Refinement Refinement can de-
compose a single interaction into a structure of interactions
representing a complex protocol between objects. Con-
versely, abstraction can derive a single interaction that rep-
resents a complex set of related interactions.

5. Evaluation of OO Models

We evaluate models to assess designs and guide the de-
velopment process. Ultimately, software artifacts should
exhibit externally visible qualities such as maintainability,
reusability, testability, reliability. These qualities depend
upon the architectural integrity of the software — the de-
sired structural quality of the softwarethat should be embod-
ied by the OO models that represent the software. MV SE
eval uation techniques support detection of design situations
that compromise architectural integrity.

Prior work on quantifying OO design structure focuses
onlower level static design entities, most commonly classes
or class models. Existing measures can quantify isolated

intra-class attributes such as unit size, control flow, data
flow, and cohesion, and inter-unit attributes such as cou-
pling. Of the existing measures, those that quantify class
coupling are the best predictors of one key quality attribute:
class fault proneness[10, 14].

We focus on the architectural context of the software
units— the higher level structuresthat aunit playsrolesin.
The quality of adesign will depend on whether aclass'sin-
teractions with therest of asystem is consistent with thein-
tent of the architectural structures and design patterns that
exist at ahigher level of abstraction.

We merge class-level properties with the architectural
contexts in which the program units exist. Architectural
contexts are defined primarily through design patterns, and
other well-known design structures, such as inheritance re-
lationships. We quantify the architectural context in away
to insure that measures are internally consistent, and actu-
ally quantify the attributes of interest.

Design patternsrepresent preferred structures, and quan-
tifying the existence of such structures can help in improv-
ing design quality. We quantify structurein terms of the use
of preferred design structures as represented by design pat-
terns. Componentsin apattern are coupled in specific ways.
Antoniol et a. found that measures of such connectionscan
identify patterns in object models [1]. We can also derive
measures of the specialized coupling exhibited within pat-
tern instances.

M easurements can be based on the rel ationships between
aclassor other unit and thedesign patternsthat it playsroles
in. We can classify and quantify the patterns that contain a
class and the pattern roles that a class plays.

A classmay play arolein morethan onepattern. Figure6
shows the partial design of a system to model an abstract
syntax tree (AST) of a programming language. Two classes
of AST nodes are shown: St mt Node which represents
AST nodes for program statements, and Decl Node which
represents AST nodesfor program declarations. The design
supportstwo kindsof AST analysis, type checking and code
generation. It makes use of two patterns from Gamma et
al. [30]: Visitor and Abstract Factory. The Abstract Factory
pattern supports the creation of instances of new AST node
subtypes, and the Visitor pattern makes adding new kinds of
AST analysis easier.

The two patterns in the design overlap. Class AST,
ASTNode, St nt Node, andDecl Node inFigure6 play
rolesin both patterns. Thus, these “dual role” classesarein
context with two architectural structures. Modifying these
classes may affect the expected behavior of both patterns,
and thus these classes may be more difficult to adapt. Over-
lapping patterns may be very common in real industrial de-
signs, especially those that are designed with patterns in
mind [35]. We can readily quantify the number of design
contextsfor each class.
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Wetreat design patternsasarchitectural design units, just
as classes are implementation units. From this perspective,
asystem is acollection of interacting patterns and indepen-
dent classes — classes that are not part of any pattern. Pat-
terninstances have attributesthat are potentially measurable
in amanner similar to class attributes.

Pattern coupling might be measured in terms of the con-
nections between patterns. One pattern can be connected to
other patterns through common classes — classes that play
roles in more than one pattern, by referencing common ob-
jects, and by using methodsin another pattern. Such pattern
coupling could be viewed as a form of common coupling,
an undesirable form of coupling according to Myers' ordi-
nal coupling scale [37].

More desirable forms of coupling require connections
via unit parameters. The most desirable form of coupling,
data coupling, requiresthat a program unit pass simple data
or a data structure as a parameter to another unit. Since
design patterns are not yet supported as programming lan-
guageunitsor programming environment units, connections
through explicit pattern parameters cannot be made.

The internal structure of patterns and pattern instances
can aso be quantified. For example, we can measure the
size of a pattern in terms of the number of its component
classes. We can identify the sub-patterns contained within a
pattern. Patternsmay also have cohesion-likeattributes, that
aremeasurableintermsof the dependenciesbetween pattern
components, which may be classes or sub-patterns.

Other potential design measures can be based on some
notion of distance from desired patterns. We can develop
empirical relation systems [24] that model our intuition
about relative distances of a structure of classes from a par-
ticular pattern. We can then define ordinal, and eventually
ratio, scale measures from such empirical relation systems.
This is the approach that we took to develop measures of

functional cohesion and class cohesion[7, 5].

Our hypothesis is that components that play roles in a
small number of well-defined architectural contextswill be
easier to maintain, reuse, and test than componentsthat play
no role in these contexts or that play roles in many con-
texts. We are testing this hypothesis by examining com-
mercial software data which includes software designs and
process data, such as maintenance and reliability informa-
tion [4].

6. Related Works

Lehman and his FEAST project show that transforma-
tions and system growth are inevitable, and it takes an in-
put of effort to keep system complexity managesble [23].
We are devel oping a process and mechanism that guideusin
applying transformations so that evolving system improve.
Our work complements Lehman’s by showing how to apply
effort to manage system transformations.

6.1. Transformation Techniques

A number of techniques support the incorporation of pat-
terns into development tools (e.g., see [15, 20, 36, 42]).
These techniques use either imprecise pattern descriptions
or base their descriptions on metamodels. Our work em-
phasizes precise representation of patternsin terms of role
models. Like the Objecteering approach [20], we use trans-
formations to incorporate patterns into designs. Unlike the
Objecteering approach, our transformationsare based onin-
stantiations of role models, rather than mappings between
metamodel elements.

MV SE uses notions of refinement and abstraction that
builds upon the notions described in the Catalysis method
[21]. Catalysis provides extensive guidelines for refining
and abstracting OO models, but the descriptions are infor-
mal and there seems to be no support for rigorous applica-
tion of refinement and abstraction techniques. One goal of
our research isto develop formal notions of refinement and
abstraction where possible.

6.2. Software M easurement and Evaluation

Briand et al, [13] identify five major quantifiable soft-
ware design concepts. size, length, complexity, cohesion,
and coupling. Size can be measured in terms of counts of
entities, whilelength implies somekind of distance between
entities. Complexity “depends on the relationshi ps between
entities” and is not a property of an isolated element. Here,
complexity refers to “artifact complexity” rather than the
psychological complexity of a human interacting with a de-
sign[19]. Cohesionrefersto therelatedness of module com-
ponents. Cohesive modules are difficult to split into sepa-



rate components. Coupling refers to the connectedness of
modules. A module with high coupling has many connec-
tions with other modules. Coupling differs from complex-
ity in that coupling is generally measured with respect to an
individual element or a pair of elements.

A commonly used heuristic is to design modules with
high cohesion and low coupling [40]. Developers also try
to minimize system complexity and component size.

No prior work addresses elements within specific archi-
tectural design contexts. Rather, published principles focus
on elements within abstract, semantics-free, constructs.

6.3. Object-Oriented Design M easurement

Published measures of structure of object-oriented soft-
ware primarily quantify properties of individual classes and
their relationships to the rest of a system. Chidamber and
Kemerer’'s suite of object-oriented measures include only
single classmeasures[17]. Other researchers, including one
of the authors, have developed cohesion measures for indi-
vidual classes|[5, 11, 31, 39].

Work on quantifying interclass properties (properties of
collections of classes) includes Hitz and Montazeri’s work
to quantify coupling in object-oriented systems [31]. They
classify individual dependencies between classes and be-
tween objects, and they propose an ordinal measure of the
strength of coupling by a single dependency and the change
dependencies between two components. Others study the
coupling between two classes or objects: Coad and Your-
don [18] define inheritance coupling and design coupling
between two classes; Wild [41] definesahierarchy that clas-
sifies coupling between two classes. Briand et a. [12] de-
scribethe propertiesof 30 different object-oriented coupling
measures. These coupling definitions and measures do not
directly address coupling between classes that are compo-
nents of specific architectural contexts or patterns.

One of the key reasonsto use object-oriented methodsis
the often asserted claim that they lead to more reusable and
adaptable systems. Measures of reuse and reusability are
needed to evaluate these claims. Several relevant reuse ab-
stractions, attributes, measures, and measurement tools are
applicable to object-oriented systems [3, 6, 8]. The mea
sures and tool s are based on both the inheritance and calling
structure of a system.

Inheritance and inheritance hierarchies are unique fea-
tures of object-oriented systems and should have measur-
able attributes. Properties of inheritance hierarchies, or in-
heritance clusters [34], are subjects for analysis and mea-
surement. The relationship between inheritance tree shapes
and reuse through inheritance can be measured in terms of
“code savings’ [33]. These measured interclass properties
arerelevant toinheritance use, in general, but do not provide
direct guidance for design pattern use.

7. Conclusions

We propose the MV SE framework to support managed
evolution of OO software. MV SE supports. (1) objective
evaluation of analysis and design models, and (2) rigorous
analysis, refactoring, refinement, and abstraction of soft-
ware models.

In MV SE, software evolution is a processin which mod-
els are iteratively evaluated and transformed. At the end
of each development stage, the products are evaluated and
goals for the next stage are refined. The refined goals are
used in the next stage to drive decisions related to the types
of transformations the modelswill undergo.

Thedevelopment of MV SEisintheearly stages. Our on-
going research has five major threads:

e Development of techniques for expressing patternsin
terms of role models.

e Development of model refactoring techniques that (1)
use patternsto transform models, (2) support theincor-
poration of components into designs, and (3) support
the instantiation of designs from design frameworks.

e Precise characterizations of refinement and abstraction
relationships.

e Development of objective criteria for evaluating OO
models and of industrial-strength evaluation tech-
niques that can be used to determine whether models
meet the criteria
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