To appear in Proc. Tenth Int. Software Metrics Symposium (Metrics 2004).

Open Source Software Development:
A Case Study of FreeBSD

Trung Dinh-Trong and James M. Bieman
Software Assurance Laboratory
Computer Science Department

Colorado State University
Fort Collins, CO 80523 USA
{trungdt,bieman } @cs.colostate.edu

Abstract

A common claim is that open source software devel-
opment produces higher quality software at lower cost
than traditional commercial development. To validate such
claims, researchers have conducted case studies of “suc-
cessful” open source development projects. This case study
of the FreeBSD project provides further understanding of
open source development. The FreeBSD development pro-
cess is fairly well-defined with proscribed methods for de-
termining developer responsibilities, dealing with enhance-
ments and defects, and for managing releases. Compared
to the Apache project, FreeBSD uses a smaller set of core
developers that implement a smaller portion of the system,
and uses a more well-defined testing process. FreeBSD and
Apache have a similar ratio of core developers to (1) people
involved in adapting and debugging the system, and (2) peo-
ple who report problems. Both systems have similar defect
densities, and the developers are also users in both systems.

1 Introduction

Open source software (OSS) development receives much
attention in both the trade press and from researchers [2, 3,
9, 10]. OSS systems share a number of characteristics [12].
These systems are developed by a large number of volunteer
contributors. Some OSS projects are supported by commer-
cial companies with paid participants in addition to many
volunteers. Participants have the freedom to work on any
part of the project. There are no assignments and deadlines.
In general, developers do not create a system-level design,
a project plan, or lists of deliverables.

Proponents claim that the quality of the OSS devel-
opment is equivalent or even superior to traditional com-

mercial development and that “many companies are drawn
by the low cost and high quality of open source soft-
ware” [14]. Reasons given for the advantages of the open
source projects tend to relate to the notion of “freedom”.
Anybody can have a copy of the program and can contribute
to the improvement of the system [6, 17], so that OSS devel-
opments “directly leads to more robust software and more
diverse business models” [20]. Also, OSS developers can
work without interference and in their own time, resulting
in great creativity [14]. Overall, many claim that OSS is de-
veloped faster, cheaper, and the resulting systems are more
reliable [6, 12, 20].

Others challenge the value of OSS, and do not believe
in its long term success. Possible weaknesses of OSS de-
velopment include a lack of a formal process [18], poor de-
sign and architecture [1, 14], and development tools (such
as CVS) that are not comparable to those used in the com-
mercial community [18].

Several research studies have evaluated claims about
OSS. Schach et al. examine 365 versions of the Linux ker-
nel and report that the number of lines of code has increased
linearly with the version number, while the number of com-
mon couplings has increased exponentially [17]. These re-
sults suggest that Linux will become difficult to maintain,
unless it is restructured.

Godfrey and Tu also studied the evolution of Linux by
examining 96 kernel version [6]. They found out that al-
though Linux is very large (over two millions lines of code),
it has been growing at a “super-linear” rate for several years.
Given that the growth of large commercial systems tends to
slow down when the systems become larger, Godfrey and
Tu’s results suggest that OSS systems have a growth rate
that is much greater than that of traditional systems.

Mockus et al. propose that key requirements for the suc-
cess of an OSS project can be expressed as seven hypothe-
ses [12]. These hypotheses were first developed through an

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

bieman
To appear in Proc. Tenth Int. Software Metrics Symposium (Metrics 2004).

empirical study of the Apache project, a pure OSS project
— a project without major commercial support. After con-
ducting the second study on a greater project, Mozilla,
which is supported by a company, Netscape, the authors re-
fined the hypotheses.

We can determine whether or not the hypotheses repre-
sent general rules by examining other open source systems.
This paper reports the result of a case study that repeats
the Mockus et al. study on a different OSS development
project, the FreeBSD project. FreeBSD was selected for
this study because it is a “successful” OSS project — the
project is an order of magnitude older than either Apache or
Mozilla, and the project website shows a list of about 100
software vendors who offer commercial product and/or ser-
vices for FreeBSD. In addition, information concerning the
FreeBSD development process is open to the public through
an email archive, a bug database, and a CVS repository. We
examine enough information to assess five out of six hy-
potheses posed in Mockus et al.’s work.

2 The Hypotheses

The objective of the Mockus et al. case studies of the
Mozilla and Apache projects was to understand the pro-
cesses that are used to develop successful OSS and to com-
pare their effectiveness with commercial development [12].
Mockus et al. found that the Apache project was managed
by an informal organization consisted entirely of volunteers.
Every Apache developer had at least one other job, so that
they could not work full-time on the project. On the other
hand, the Mozilla project was managed by a commercial
company, Netscape, and some of the developers worked on
the project full-time and for pay. Nevertheless, the pro-
cesses used in these two projects had many traits in com-
mon. The identification of these common traits led to seven
hypotheses about successful OSS development:

H1: “Open source developments will have a core of devel-
opers who control the code base, and will create ap-
proximately 80% or more of the new functionality. If
this core group uses only informal ad hoc means of co-
ordinating their work, the group will be no larger than
10 to 15 people.”

H2: “If a project is so large that more than 10 to 15 people
are required to complete 80% of the code in the de-
sired time frame, then other mechanisms, rather than
just informal ad hoc arrangements, will be required in
order to coordinate the work. These mechanisms may
include one or more of the following: explicit develop-
ment processes, individual or group code ownership,
and required inspections.”

H3: “In successful open source developments, a group
larger by an order of magnitude than the core will re-
pair defects, and a yet larger group (by another order
of magnitude) will report problems.”

H4: “Open source developments that have a strong core
of developers but never achieve large numbers of con-
tributors beyond that core will be able to create new
functionality but will fail because of a lack of resources
devoted to finding and repairing defects.”

HS5 “Defect density in open source releases will gener-
ally be lower than commercial code that has only been
feature-tested, that is, received a comparable level of
testing.”

H6: “In successful open source developments, the devel-
opers will also be users of the software.”

H7: “OSS developments exhibit very rapid responses to
customer problems.”

3 Study Method
3.1 Research Questions

To conduct the experiments about OSS development pro-
cess, Mockus et al. [12] answered the following questions
about the Mozilla and Apache and their development pro-
cesses:

1. “What were the processes used to develop Apache and
Mozilla?”

2. “How many people wrote code for new functionality?
How many people reported problems? How many peo-
ple repaired defects?”

3. “Were these functions carried out by distinct groups of
people, that is, did people primarily assume a single
role? Did large numbers of people participate some-
what equally in these activities, or did a small number
of people do most of the work?”

4. “Where did the code contributors work in the code?
Was strict code ownership enforced on a file or module
level?”

5. “What is the defect density of Apache and Mozilla
code?”

6. “How long did it take to resolve problems? Were
high priority problems resolved faster than low prior-
ity problems? Has resolution interval decreased over
time?”

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

1. How many roles are involved in coding (for ex-
ample, changing .c and .h files)? (I know of three
roles: “developers” (AKA “committers”), “core
developers” and “Release Engineer team”.)

2. How does one become a “developer” or “commit-
ter”?

3. How does one become a “core developer”? When
and how do you vote for new developers?

4. How does a normal person contribute code? Does
he/she need to submit his/her code to a commit-
ter?

5. How does the Release Engineering Team check
the code?

6. How does a “committer” decide to commit a new
piece of code to the Current code base? How does
he decide that this code is stable enough to put
into Stable code base?

7. What is the difference between the role of a “de-
veloper” and a “core developer”? What privileges
does a “core developer” have that a “developer”
does not have?

8. How does one decide what to do next when fixing
a bug and when adding new functionality?

Figure 1. Questions sent to each of the
FreeBSD Core Team members.

We sought answers to the same questions concerning the
FreeBSD project. Out of these six questions, we obtained
data to answer the first five. To answer the questions about
the development process, we studied the documents pro-
vided in FreeBSD project website [16]. To help answer our
questions, one member of the Core Team (this term is used
in FreeBSD to refer to the core developers) provided us a
hidden Web address of the “FreeBSD internal pages” (it is
hidden in the sense that we cannot find any way to navigate
to this page from the FreeBSD home page). The FreeBSD
internal pages provided useful information about the guide-
line and requirements for the FreeBSD committers. In the
FreeBSD project, committers play a role that is similar to
developers in the Mozilla and Apache project. In addition,
committers may be elected to the Core Team. We also sent
each member of the current (at the time) nine Core Team
members a set of questions, which are displayed in Figure 1.
Four Core Team members responded with their answers.

3.2 Data Sources

In order to answer the quantitative research questions at
the beginning of Section 3.1 (questions one through four),
we obtained the necessary data from the project CVS repos-
itory, which includes the bug report database as well as
the email archive. The CVS repository contains all of the
code and related documentation that is committed to the
project from 1993 until the present. The bug report database
contains information describing all reported problems, as
well as the status (such as fixed, under test, or open) of
each problem. Each bug report is called a PR, and as-
signed a reference number. The email archive contains ev-
ery email message exchanged between the developers since
1994. Due to the nature of the open source software, the
locations of the developers are distributed world wide, and
they rarely meet with each other. Developers generally ex-
change information about the project via email. According
to Mockus et al. [12], email archives record all information
about an OSS project. However, the main disadvantage of
using email archives as a primary source for information is
that the format is usually informal.

CVS Repository. FreeBSD, like many OSS projects, uses
a Concurrent Version Control Archive (CVS) as the version
control tool. Whenever a developer needs to change the
code base, he or she can check out the corresponding file,
make the change and check the file back into the CVS. CVS
not only stores the latest version of the code base, but also
stores the history of the code that is changed [5].

FreeBSD developers maintain two branches of the code:
the Current branch contains all of the ongoing projects
(many are under test and not ready to be released) related
to FreeBSD, and the Stable branch, which is the official re-
leased version of FreeBSD. In this research, we retrieved
information about FreeBSD code from the Current branch.
The FreeBSD CVS repository is available to the public and
anybody can make a mirror copy of it. We retrieved a copy
of the CVS in early April, 2003 and used the CVS command
“log” to retrieve information about all updates made to the
code base (the “src” directory) from the start of the reposi-
tory until the day we downloaded it. Each update includes
the time of the update, the corresponding file, the number
of lines deleted and added, the login name of the developer
who committed the change, and a short description of the
change. The particular problem (PR) that was fixed is re-
ported in the PR database, which almost always contains
the PR reference number. We wrote a program to scan the
log to record developer login names and count the number
of updates made by each developer. We assume that each of
the developers uses just one login name to commit the code.
We distinguish between the code updated to fix problems,
and the code updated or added to implement a new feature.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

We assume that entries that contain the string “PR” repre-
sent code to fix problems, and the other entries represent
code that implements new features. Each change to a file is
adelta.

Developer Email Archive. The FreeBSD project main-
tains many different email lists for various purposes. We
studied all of the email messages that were sent to freebsd-
bugs@FreeBSD.ORG to report problems. Out of 36,118
PRs recorded in the database, 16,115 were also recorded in
this email list. We used this list to extract names of those
who reported problems and the number of problem reported
by each person. Although we did not study the exhaustive
list of PRs, the retrieved data was still enough for us to test
the hypotheses 3, which relates to the number of people that
report problems.

Bug Report Database. The FreeBSD project records ev-
ery reported problem using a GNATS database. Further in-
formation about the GNATS database is available from the
GNU website [15]. Each report contains a description of
the problem, the name of the reporter, the reported date and
other information. For our research, we only retrieved the
total number of bugs reported. Other information describ-
ing bugs is retrieved from the Developer email archive.

3.3 Data For Commercial Projects

For this paper, we reused the data describing commercial
projects that was provided in the Mockus et al. study [12].
These projects are denoted as projects A, C, D and E. Ac-
cording to Mockus et al., “project A involved software for
a network element in an optical backbone net work” and
“projects C, D and E represent Operations Administration
and Maintenance support software for telecommunication
products”. Mockus et al. also claim that the processes used
to develop these systems was very well-defined.

4 Results

First we examine the collected data to answer the re-
search questions, then we evaluate the hypotheses.

4.1 Answers to the Research Questions

4.1.1 Q1: “What was the process used to develop
FreeBSD?”

FreeBSD is an operating system derived from BSD UNIX,
the version of UNIX developed at the University of Cal-
ifornia, Berkeley. According to the FreeBSD develop-
ers [16], FreeBSD can run on x86 compatible, DEC Al-
pha, [A-64, PC-98 and UltraSPARC architectures. As de-

scribed by Godfrey and Tu [6], an OSS project can be
forked into an alternative OSS project when a subset of de-
velopers are unhappy with the “official” or main branch.
The BDS Unix project is an example of this phenomenon,
which forked into FreeBSD, OpenBSD and NetBSD. The
FreeBSD project started in 1993. At the time of this study
in 2003, there were 35 released versions (from 1.0 to 5.0).

FreeBSD maintains two branches of its code base. The
Current branch consists of on-going projects, which need to
be tested and are still unstable. The Stable branch is mature
and comparably well-tested; releases are formed from the
Stable branch.

Roles and Responsibilities. Contributors to the code base
play one of three main roles: Core Team member, commit-
ter, and contributor. In a pure OSS process every developer
(including Core Team members) and contributor is a volun-
teer and most likely has a paid job. Thus, most volunteers
contribute to the FreeBSD project part-time, perhaps dur-
ing nights or weekends. The Core Team is a small group
of senior developers who are responsible for deciding the
overall goals and direction of the project. The Core Team
assigns privileges to other developers and resolves conflicts
between developers. Core Team members are also develop-
ers — they contribute code to the project. Usually, a Core
Team member may also have to manage some other specific
areas such as documentation, release coordination, source
repository and GNATS database.

When the FreeBSD project began, the Core Team con-
sisted of thirteen members. According to the current by-
laws of the project, the Core Team consists of seven to
nine members who are elected to two year terms by active
committers. Any active committer (active within the latest
twelve months) can be a candidate for the membership of
the Core Team. An early election is called if the number of
Core Team members drops below seven.

Committers are developers who have the authority to
commit changes to the project CVS repository. According
to the by-laws of the project, a committer must be active
within the past 18 months. Otherwise, the Core Team can
revoke the committer’s privileges. An active contributor can
be nominated to be a committer by an existing committer.
The Core Team can award committer privileges to a candi-
date. A new committer is assigned a mentor, who supervises
the new committer until he or she is deemed to be trustable
and reliable.

Contributors are people who want to contribute to the
project, but do not have committer privileges. They usually
begin to contribute by registering on the project mailing lists
so that they can be informed about the activities. Contrib-
utors may test the code, report problems, and also suggest
solutions.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Identification of work to be done. There are two main
tasks that need to be done in any project: developing new
features and fixing defects. Although it is the responsibility
of the Core Team to decide the direction of the project, it is
hardly happened in reality. Instead, according to Core Team
members, individual committers usually determine their
own project, for example, adding a feature. Sometimes,
committers may form teams to work on large projects.

Project defects reported by contributors are tracked us-
ing the GNATS database. There are three ways to report
a problem: (1) use the send-pr command of FreeBSD,
(2) use a web-based submission form provided in the
FreeBSD web page [16], or (3) send an email to Freebsd-
bugs@FreeBSD.org. If one of the first two methods are
used, the PR will be automatically added to the GNATS
database. The third method (sending email) is less prefer-
able, because a committer must personally process the
email — he or she must manually read the message and add
a PR to the database. Also, emailed problem reports may be
ignored because of the huge volume of messages received
each day.

A PR has the following fields: reference number, respon-
sible committer, submitted date, severity, reporter name,
state, and description. A PR may be in one of several states:
open (just submitted, no effort to fix it yet), analyzed, feed-
back, patched, suspended or closed (the bug is fixed or can-
not be fixed at all). The FreeBSD webpage also provides a
guideline for problem reporters, to help them to make the
description as informative as possible.

Assigning and performing development work. A com-
mitter can search through the open PRs in the bug report
database and assign a PR to himself, or to another commit-
ter that should be able to solve the problem. Many PRs may
have solutions suggested by the person reporting the defect.
Contributors can scan the PR database and propose the solu-
tions to open PRs. Although contributors do not have access
to change the code base, they can test solutions in their own
copy of the code, and send the solution to the corresponding
assigned committer. A contributor may also send a solution
to the email list as a follow-up message. The committer
responsible for the PR can communicate with the bug re-
porter and all interested contributors to discuss the problem
and possible solutions. A committer may solve the problem
directly or use a solution proposed by a contributor. After
testing a proposed solution, the committer can insert the so-
lution to the Current code base. Sometimes a committer will
insert a solution to the Stable code base directly, if the prob-
lem does not exist in the Current code base. If, over time,
no new defects related to the fix are reported, the committer
can close the problem.

To implement new features, a committer (or a team of
committers) writes code, tests it and then adds the code to

the Current code base. Before the release date of a new
Stable release, a committer can decide to merge their new
code to the Stable version.

Testing. Committers must test their own code (with the
help of interested contributors) before they can commit their
code to the Current branch. The thoroughness of testing
depends on the judgment and the expertise of a commit-
ter. Also, before merging the code to the Stable branch,
a committer can perform a process called merge from cur-
rent (MFC). After developing new code, committers set a
countdown period and ask other developers and contribu-
tors to test the code. If no new defect found at the end of
the countdown, a committer may assume that the code is
acceptable.

Another form of testing may be considered a form of sys-
tem test. Before releasing a new version, a release candidate
is introduced to the committers and contributors. The re-
lease candidate is tested and fixed until a Release Engineer
Team decides that the system is ready. However, no com-
mitter is assigned to be a tester; volunteers test the release
candidates.

Code inspection. A committer may want to commit a
piece of code to a file or portion of the system that is the
responsibility of another committer, the active maintainer.
The active maintainer must review and approved the new
code before it is added to the code base.

A developer can determine the active maintainers of a
location by using the CVS command log, which will indi-
cate who is currently changing the code. Committers may
assigned themselves as active maintainers of a location by
putting their name in a README file or a makefile.

A committer that plans to make a significant change to
the code is expected to ask some other committers to review
the code. Committers in the Release Engineer Team review
code 30 days before a release date.

Managing releases. The Release Engineer Team man-
ages FreeBSD releases. A Core Team member volunteer
is the chief of the team. The other members of the team are
volunteers selected from the committers. A new version of
FreeBSD is released every four months using the following
timetable:

e 45 days before the release date: the Release Engineer
Team announces to every developer that they have a 15
day period to integrate their changes to the STABLE
branch.

e During the 15-day period: committers will perform the
MFC for their code.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

e 30 days left: the Release Engineer Team announces
a 15-day code slush period, during which the team
will review the added code to the previous release.
During the code slush period only limited changes
are allowed such as bug fixes, documentation update,
security-related fixes, minor changes to device drivers,
and other changes that are approved by the Release En-
gineer Team.

o 15-days left: the code base enters a code freeze period.
During code freeze, a release candidate is built every
week and distributed for a widespread testing, until the
final release is ready. The only changes are allowed
during the code freeze period are serious bug fixes and
security repairs.

Comparing the FreeBSD process to that of Apache
and Mozilla. It is more appropriate to compare FreeBSD
with Apache rather than Mozilla, since both Apache and
FreeBSD are “pure OSS” projects. In contrast, Mozilla is
a hybrid project — it is supported by a commercial com-
pany with paid participants. The process used to develop
FreeBSD is very similar to that of Apache. Both projects
use the same or very similar (1) developer roles, (2) con-
cepts of code ownership, and (3) mechanisms to assign
tasks to developers. However, the FreeBSD project has a
more well-defined testing process than the one used in the
Apache project. FreeBSD includes a form of system testing
during the “code freeze” period, while Apache does not.

4.1.2 Q2: “How many people wrote code for new func-
tionality? How many people reported problems?
How many people repaired defects?”

To determine the number of people involved in writing code
for FreeBSD, we used the CVS “log” command to retrieve
the user names of the committers who update the code to the
src directory. The src directory contains the code in the Cur-
rent branch of FreeBSD; it does not include any application
code provided by third parties. A total of 354 committers
added code to the src directory from 1993 to April 2003.

Following the steps in Mockus et al. case study [16],
we counted the number of distinct people who contribute
code to fix defects and the number of people who con-
tributed code for new features. The src directory contains
source code (files with ./ or .c extensions), text files such
as README files and shell scripts. A total of 224 commit-
ters checked in 11,406 deltas to fix problems. Among these
deltas, 5,893 deltas are source code files checked-in by 197
committers. 337 committers checked in 516,540 deltas for
new features; 301,969 of these deltas are source code files
checked in by 290 committers.

An examination of the archive of the email list freebsd-
bugs @FreeBSD.ORG determined the names of contribu-

tors who reported problems. A total of 6082 unique indi-
viduals (based on names) reported 16,115 problems. The
email list probably does not include all bug reporters, since
there are 36,118 PRs in the GNATS database. Because we
did not find an exhaustive list of bug reporters, we conclude
that there are at least 6,082 bug reporters. This is enough
data for us to evaluate the corresponding hypothesis (hy-
pothesis 3).

4.1.3 Q3: “Were these functions carried out by distinct
groups of people, that is, did people primarily as-
sume a single role? Did large numbers of people
participate somewhat equally in these activities,
or did a small number of people do most of the
work?”

The results from Mockus et al. [12], indicate that a small
group of less than 15 committers will commit more than
80% of the new source code (code for new features). How-
ever, our results, shown in Figure 2, show that the top 15
commiitters contribute only 56% of the deltas to new source
code; it took the 50 top committers to contribute 80%. We
also found that a total of 36 people were members of the
Core Team at some period, and 36 top developers (not all of
them are in the Core Team) contributed about 75% of new
source code. Note that this data is for the deltas that affected
source code (. and .c files). We performed the same analy-
sis on the deltas that affected all files (not just source code)
in the src directory and got similar results.

Figure 3 shows the cumulative distribution of the source
code changes that were checked-in to fix defects. The top
15 contributors checked-in about 40% of the deltas, and the
top 50 developers contributed about 70% of the fixes. This
result is somewhat similar to the Apache case study [12].
A small number of committers added most of the new fea-
tures, but the effort required to fix defects is more evenly
distributed.

Among the 6,082 individual reporters reporting 16,115
defects, the top 15 reporters reported between 49 and 100
problems each, which represents 0.6% of the PRs. There
were 3,370 reporters who reported one bug, 1875 reporters
who reported two bugs, and 447 who reported three.

4.1.4 Q4: “Where did the code contributors work in
the code? Was strict code ownership enforced on
a file or module level?”’

The study of the Apache project [12] suggests that there
is no strict code-ownership involved in OSS developments.
The result of our study strongly supports this suggestion.
Our study shows that among 26,048 .c and .A files, only
30% of the files were modified by one committer, 25% by
two committers, 15% by three committers, and 8% by ten or
more committers. One file was changed by 74 developers.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Accumulative Contribution to new source code

1.2 4
% 1
= 03 /— |
: DE g 1
2
e 04
o B
- 02
]
— = == [} 0o w o [} Lo o — = == = o w o ™ Lo oo — = =
— (] = L [¥u] - m L] — [ax] =T Oyl [o (=] [(] w = [du] [[iu]
- = = = = = o = o N
Humber of Contributors

Figure 2. Distribution among developers (committers) of source code deltas to add new features.

Accumulative Contribution to fix source code

1.2 4

" |
0.3 |
0.6

Fraction of delta

1]

0.4 |
nz /

- 2

o

o
— ™

- @ w = 0 0
L LT P I ¥ = T o v R

T T T T T T T T T T T T T T T I T e T
= o o -) L =t " i~ =
= = — [a] o =+ L o F-- o
-— T -— -— = -— -— -— = -—

Humber of contributors

190

Figure 3. Distribution among developers (committers) of source code deltas to fix errors.

In fact, every committer has the privilege to make any
change to any file in the system. Code ownership in
FreeBSD does not exist. Instead, FreeBSD committers are
only required to respect each other by asking for code re-
view before committing code to files that are actively main-
tained by other committers.

4.1.5 QS5: What is the defect density of FreeBSD code?

Following the approach used by Mockus et al. [12], we mea-
sure the number of defects per thousand lines of code added
and per thousand deltas. The result is shown in Table 1. We
also compare the result with the defect densities in Apache
and the four commercial software systems as reported by
Mockus et al. The four commercial projects are denoted
as projects A, C, D and E. For the commercial software sys-

Proceedings of the 10th International Symposium on Software Metrics (METRICS
1530-1435/04 $ 20.00 IEEE

tems, we show both the defect density after release and after
the feature test. There is no data for the post-feature defects
in Project A. The results indicate that the defect density of
FreeBSD (and also Apache) is smaller than the commercial
systems after the feature tests.

4.2 Evaluating the Hypotheses

We examine each hypothesis concerning successful OSS
projects in order:

HI1: A core of 10 to 15 developers in an OSS project will
control the code base, and create approximately 80%
or more of the new functionality.

In FreeBSD, a total of 36 people were members of the
Core Team at some time over the period studied. These

TEEE ':a

'04) COMPUTER
SOCIETY

Table 1. Defect densities in FreeBSD, Apache, and four commercial systems.

Measure FreeBSD | Apache | A C D E
Post-release defects/KLOC 3.35 2.64 0.11 | 0.1 | 0.7 | 0.1
Post-release defects/Kdelta 68.39 40.8 4.3 14 28 10
Post-feature defects/KLOC 3.35 2.64 * 57 | 6.0 | 6.9
Post-feature defects/Kdelta 68.39 40.8 * 164 | 196 | 256

Core Team members contributed 75% of the new func-
tionality deltas. The core team contained 13 members
at the beginning of the project; later the team size was
restricted to between seven and nine members. We
might infer that the larger sized group was unwieldy,
and that is why the size of the Core Team was reduced.

Thus, the size of the Core Team was generally smaller
than that given in HI, and the Core Team members
contributed slightly less of the functionality. We sug-
gest that H1 is overly proscriptive. A more realistic
hypothesis is that there will be a core of fifteen or
fewer developers at any one time, and this core will
contribute most of the new functionality.

H2: In projects where more than 15 people contribute 80%
of the code, some formal arrangements will be used to
coordinated the work.

FreeBSD had a smaller set of core developers, so we
cannot evaluate H2. We do note that FreeBSD does
use a set of rules for determining the set of commit-
ters and core developers, and there are guidelines for
“assigning” tasks, testing, and inspections. However,
these rules appear to be informal.

H3: A group that is much larger than the core will repair
defects, and an even larger group will report problems.

The FreeBSD project was consistent with the relation-
ship in H3 between the relative size of Core Devel-
opers, those who repair defects, and those who report
problems.

H4: OSS projects without many contributors, in addition
to the core, may create new functionality, but will fail
because of a lack of defect discovery and repair capa-
bility.

Since FreeBSD did have many contributors, we could
not evaluate H4.

HS5 Defect density in OSS releases will be lower than com-
mercial code that has only been feature-tested.

The results from FreeBSD are consistent with H 5.
However, we note that the four commercial projects A,
C, D and E were chosen by Mockus et al. because they
were deemed as comparable to Apache, but Apache

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

may be not comparable to FreeBSD. Thus, our infor-
mal judgement is that we cannot reject the null hypoth-
esis for HS.

H6: Developers will be users of the software.

The developers of FreeBSD were clearly users, thus
supporting H6.

H7: There will be rapid responses to customer problems.

Unfortunately, we do not have enough data yet to eval-
uate H7.

5 Threats to Validity

Like most case studies there are threats to validity. We
assess four types of threats to validity: construct valid-
ity, content validity, internal validity and external validity.
Construct validity refers to the meaningfulness of measure-
ments [7, 13] — do the measures actually quantify what
we want them to? To validate the meaningfulness of mea-
surements, we need to show that the measurements are con-
sistent with an empirical relation system, which is an intu-
itive ordering of entities in terms of the attribute of inter-
est [4, 8, 11]. The variables in this study include counts of
defects, deltas, and the size of the different project groups
match those used in the Apache study. A count of the deltas
in the code base is an intuitive measure of the relative con-
tribution of project members, and a count of defects is an
intuitive indicator of code quality. However, not all deltas
or defects are equal, but the large number of deltas and de-
fects should minimize the impact of the variability of delta
size or defect severity. Counts of the number of members
in the different OSS development groups do not appear to
represent any threat to construct validity.

Content validity refers to the “representativeness or sam-
pling adequacy of the content... of a measuring instru-
ment” [7]. The content validity of this research depends on
whether the individual measures of deltas and defects ade-
quately cover the notion of the relative contribution of de-
velopers and code quality respectively. The count of deltas
quantifies only one aspect of relative contribution. We only
look at one quality attribute, defects. It is always difficult
obtaining quantitative indicators of all aspects of quality.
One real concern is that the qualitative understanding of the

YF]',F.

COMPUTER
SOCIETY

process used is based on informal dialogue with only a sub-
set of Core Developers. A representative sample of all Core
Developers and committers might offer different insights.
Also, there is an implicit judgement in this research. That
is that all of the OSS projects involved (FreeBSD, Apache,
and Mozilla) may be considered successful OSS develop-
ments. One may always debate such judgements.

Internal validity focuses on cause and effect relation-
ships. The notion of one thing leading to another is appli-
cable here and causality is critical to internal validity. This
study did not really lend itself to a statistical analysis of
correlation between variables. In a sense, we did not have
a control — an OSS system that is a failure. In addition,
the hypotheses were expressed as necessary conditions for
success, but they are not sufficient conditions. A project
may satisfy all of the organizational conditions, yet fail due
to other external reasons. For example, there may turn out
to be little user interest in the OSS product. Thus, a study
of failed project would shed little light on the hypotheses.
Ultimately we can find conclusive evidence only when the
hypotheses can be clearly rejected — when a data from a
successful OSS project contradicts the hypotheses. An in-
tuitive argument does support a causal relationship between
OSS project organization and success.

External validity refers to how well the study results can
be generalized beyond the study data. An adequate study
should be valid for the population of interest [19]. A gen-
eral problem with case studies is that they may or may not
apply to other projects. One objective of this project is to
add another piece of evidence to that collected by Mockus
et al. [12]. Thus, this study has reduced the threats to the
validity of the earlier study.

There are some specific threats to the validity of this re-
search. There is a lack of information about the commercial
systems. In order to evaluate the efficiency of OSS devel-
opment, we compare the defect density of FreeBSD project
with commercial projects A, C, D and E, which were pro-
vided in the Apache and Mozilla case studies. [12]. These
commercial projects were chosen so that they are compa-
rable to Apache, which may not be completely compara-
ble to FreeBSD as shown in Table 2. However, our results
show that the defect density of FreeBSD is higher than that
of Apache, so we suggest that commercial projects that are
“comparable” to FreeBSD should also have higher defect
densities than those of projects A, C, D and E. Still we see
that the defect densities of A, C, E and D are much higher
than the defect density of FreeBSD. Because of that, we
conclude that our results support hypothesis HS.

Another threat is that we studied only 16,115 out of a
total of 36,118 PRs to extract the names of the problem re-
porters. The key result is that the number of problem re-
porters in FreeBSD is larger than the number of developers
(committers) by an order of magnitude (this result supports

Table 2. Comparisons between FreeBSD,
Apache, and four commercial systems.

Project | K Deltas | Years | Developers
FreeBSD 528 10 354
Apache 18 3 388
A 129 3 101
C 2.8 1.3 17
D 0.7 1.7 8
E 24 1.5 16

hypothesis H3). Obviously, if we examined all PRs, the
number of problem reporters would have been even larger,
and it will not effect our conclusion at all.

6 Conclusions

The goal of this study was to better understand the na-
ture of Open Source software development, and to see if
prior case study results can be obtained in a study of an-
other system.

This study repeated the work of Mockus et al. [12], a
study of Apache and Mozilla, on FreeBSD. We conclude
that the FreeBSD process is fairly well-defined and orga-
nized; project members understand how decisions are made,
and it appears fairly effective.

We examined whether the FreeBSD project supported
six hypotheses proposed by Mockus et al. We gathered
enough data to evaluate hypotheses H1, H3, H5 and H6.
Our data supports hypotheses about the relationship be-
tween the number of core developers, developers and con-
tributors (H3), the defect density of OSS (HS), and that OSS
developers are also users (H6). Our results show that the
hypothesis about core developers (H1) is too restricted —
our data would support a relaxed version of H1. We cannot
test hypotheses H2 and H4 due to the nature of FreeBSD.
Hypothesis H7 concerning the time to respond to customer
problems was not tested due to a lack of data.

Finally, we feel that, by studying existing, on-going soft-
ware projects, researchers will gain insights into the nature
of software development that can lead to improvements in
development methods.

Acknowledgements

We would like to thank FreeBSD Core Team members
W. Peters, J. Baldwin, M. Losh, and M. Murray for provid-
ing project information. We would also like to thank Core

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04)
1530-1435/04 $ 20.00 IEEE

Team member R. Watson and FreeBSD developer J. Gibbs [16] T. F. B. Project. FreeBSD (version 5.0), [computer soft-
for helping us to mirror the FreeBSD CVS repository. ware]. http://www.freebsd.org/, 2003.

This material is based in part on work supported by [17] S..Sch.a.ch, B. Jin, D.. Wright, G. Heller, and J. Offutt. Main-
the U.S. National Science Foundation under grant CCR- tainability of the Linux kernel. IEE Proceedings — Soft-
0098202. Any opinions, findings and conclusions or rec- ware, 149(1):18-23, February 2002. .

. . . . [18] G. Wilson. Is the open source community setting a bad ex-
ommendations expressed in this material are those of the

. . ample? IEEE Software, 16(1):23-25, 1999.
authors and do not necessarily reflect the views of the Na- [19] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Reg-

tional Science Foundation. nell, and A. Wesslen. Experimentation in Software Engi-
neering: An Introduction. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2000.

[20] M. Wu and Y. Lin. Open source software development: An
overview. IEEE Computer, 46(6):33-38, 2001.

References

[1] D. Cooke, J. Urban, and S. Hamilton. Unix and beyond: An
interview with Ken Thompson. IEEE Computer, 32(5):58—
62, 1999.

J. Feller. Meeting challenges and surviving success: The 2nd

workshop on open source software engineering. Proc. 24th

Int Conf. Software Engineering (ICSE-24), pages 669—-670,

2002.

J. Feller, B. Fitzgerald, and A. Hoek. Making sense of the

bazaar: 1st workshop on open source software engineering.

ACM SIGSOFT Software Engineering Notes, 26(6):51-52,

2001.

[4] N. Fenton and S. Pfleeger. Software Metrics - A Rigorous

and Practical Approach Second Edition. Int. Thompson

Computer Press, London, 1997.

K. Fogel. Open Source Development with CVS (Ist Ed.).

Coriolis Open Press, http://cvsbook.red-bean.com/,

1999.

[6] M. Godfrey and Q. Tu. Evolution in open source software: A

case study. Proc. Int. Conf. Software Maintenance (ICSM),

pages 131-142, 2000.

F. Kerlinger. Foundations of Behavioral Research, Third

Edition. Harcourt Brace Jovaonvich College Publishers, Or-

lando, Florida, 1986.

[8] D. Krantz, R. Luce, P. Suppes, and A. Tversky. Foundations

of Measurement, volume I Additive and Polynomial Repre-

sentations. Academic Press, New York, 1971.

T. Lawrie and C. Gacek. Issues of dependability in open

source software development. ACM SIGSOFT Software En-

gineering Notes, 27(3):34-37, 2002.

[10] A. Lonconsole, D. Rodriguez, J. Borstler, and R. Harrison.
Report on Metrics 2001: The science & practice of software
metrics conference. ACM SIGSOFT Software Engineering
Notes, 26(6):52-57, 2001.

[11] J. Michell. An Introduction to the Logic of Psychological
Measurement. Lawrence Erlbaum Associates, Inc., Hills-
dale, New Jersey, 1990.

[12] A. Mockus, T. Fielding, and D. Herbsleb. Two case stud-
ies of open source software development: Apache and
Mozilla. ACM Trans. Software Engineering and Method-
ology, 11(3):309-346, July 2002.

[13] J. Nunnally. Psychometric Theory, Second Edition.
McGraw-Hill, New York, 1978.

[14] G. Perkins. Cultural clash and the road to world domination.
IEEE Software, 16(1):23-25, 1999.

[15] G. G. Project. Gnats (version 4.0).
http://www.gnu.org/software/gnats/.

2

—

3

—

[5

—

[7

—

[9

—

YF]',F.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) COMPUTER
1530-1435/04 $ 20.00 IEEE SOCIETY

