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Abstract: There are many different ways to specify the requirements of complex software 
systems, and the optimal methods often vary according to the problem domain.  We apply and 
compare two languages, UML/OCL and Alloy, to specify a problem in one domain, the run-time 
configuration management of a loosely coupled distributed system, to determine which is more 
appropriate for this domain.  The specific problem that we specify in the case study involves the 
run-time configuration management of an Asynchronous Transfer Mode / Internet Protocol 
(ATM/IP) Network Monitoring System.  Neither Alloy nor UML/OCL supports the specification 
of key temporal aspects of the problem.  This paper addresses the representation of requirements 
specification; continuing research will compare the usefulness of the specifications for modeling 
and design purposes.   

1  Introduction 

There are many different ways to specify the requirements of complex software systems, 
and the optimal methods often vary between different problem domains.  We apply two 
languages, UML/OCL ([FK97], [OM01], [WK99]) and Alloy ([Ja99], [Ja00a], [Ja00b], 
[Ja01c], [JSS00]) to the domain of run-time configuration management of a loosely 
coupled distributed system.   
Run-time configuration management refers to physical changes made to a loosely 
coupled distributed system once it has been deployed and is executing.  From time to 
time in a large system, changes in computers, measurement devices, software 
applications, etc. must be made while the overall system continues to run.  A common 



example occurs when a new application or service is created that needs to be deployed 
across the system and its execution begun while other parts of the system continue to 
execute properly.  In a large distributed system changes like this must also be 
accomplished in the context of unexpected network errors that inhibit communication 
between computers or measurement devices.  
The run-time configuration of loosely coupled distributed systems must be flexible and 
extensible.  Flexible means that it is possible to logically or physically move portions of 
the system.  Extensible means that it is possible to create a new entity by logically 
grouping resources, or to physically add an entity to a computer.  Yet, in our industrial 
experience, the specification methods often used to describe system requirements are 
UML class diagrams (without accompanying OCL constraints) and/or structural box 
diagrams along with textual descriptions.  The resulting specifications do not specify 
system run-time configuration management flexibility, extensibility, or any other 
system-wide behavior.  As a result, many distributed systems do not meet their run-time 
configuration management flexibility and extensibility requirements, and these systems 
often require large amounts of engineering resources to maintain and enhance. 
The notation used to specify run-time configuration management requirements of these 
systems must be expressive, yet easy to use for both a system architect developing the 
architectural models of the system, and system designers/implementers who are involved 
in the actual creation of an implementation of the system.  This paper discusses the first 
part of this problem, choosing a notation that is expressive and easy for a system 
architect to use.  The second part of the problem, ensuring that the notation is precise and 
comprehensible to system designers and implementers, is the subject of on-going 
research.   
We use the run-time configuration management requirements of an existing 
Asynchronous Transfer Mode/Internet Protocol (ATM/IP) Hybrid Network Monitoring 
System to compare two specification languages.  We use UML/OCL (initially as 
implemented in the USE tool from the University of Bremen ([RG00]), then 
subsequently the full UML/OCL language [OM01])1 and Alloy (version 1.0 from MIT 
[Ja00b]; a newer version of Alloy has been proposed but is not yet available as part of a 
validation tool [Ja01a], [Ja01b]) to specify the run-time configuration management 
capabilities of the case study system.  Both of these tools are currently research tools. 
UML is a popular modeling language widely used in industry, however in our industrial 
experience, the typical models consist only of static class diagrams without OCL 
constraints.  These diagrams do not contain enough information to completely specify 
run-time configuration management requirements.   Constraints can be expressed using 
OCL, although, in our experience, formal constraints are rarely used in industry, except 
in domains where perfect operation is required (e.g. medical and aviation domains 
[Ha96]) and then formal specification and design methods are often used and 
automatically verified for proper behavior.  We are interested in evaluating the 
usefulness of OCL to complete UML diagrams in an industrial software environment.  
Alloy is a modeling language designed to provide precise semantics for specification and 
modeling purposes.  We selected Alloy because of its reputed expressive power and 
                                                 
1 Additional OCL tools have been brought to our attention since this research began, however the USE tool is 
the only one discussed in this paper. 



because a tool is available that can validate its models.  The Alloy tool provides syntactic 
as well as invariant and operation validation of an Alloy model.  We are also interested 
in evaluating the usefulness of Alloy to complement UML diagrams in an industrial 
software environment. 
The paper is structured as follows.  Section 2 provides a high-level description of the 
Agilent Technologies ATM/IP monitoring system and its run-time configuration 
management requirements.  Section 2 describes the problem domain context for 
interpretation of the models presented in subsequent sections.  Section 3 describes the 
UML/OCL specification of a portion of the run-time configuration management needs of 
the monitoring system.  This section also contains an explanation of the kind of UML 
models that are used as well as some explanation of the notations used in those models.  
Section 4 describes the corresponding Alloy specification.  Section 5 compares the use of 
the two languages to specify the dynamic configuration management of the ATM 
network monitoring system.  Finally Section 6 presents conclusions. 

2 An Asynchronous Transfer Mode/Internet Protocol (ATM/IP) 
hybrid network monitoring system; the problem domain context for 
model interpretation 

The Agilent Technologies accessATM/IP Network Monitoring System is an extension to 
a previous internet protocol–only network monitoring system (accesSS7).  
AccessATM/IP can monitor the behavior of a hybrid ATM/IP network.  For example, it 
monitors quality of service (e.g. delay, lost packets, peak bandwidth, etc.) between 
various points of the network.  Hardware probes are connected to local area networks 
(LANs) at various local monitoring sites, which also contain site server computers and 
routers.  Data is consolidated at the geographical level at these local sites.  Operators can 
access the monitored information that has been collected throughout the monitoring 
network from workstations, as well as direct the operation of the overall system.  A 
simplified version of this entire system is shown in Figure 1.2 
Hardware monitoring probes in the monitoring system must be located outside the core 
ATM portion of the network, due to the high speed of the core (up to OC192 speeds, 
approximately 10Gb).  Network speed at the probes is approximately 155Mb, or OC3 
speeds.  (See [Za99] for a description of ATM networks.)  Probes are connected locally 
to monitoring system site server computers that perform the analysis of the header 
information they obtain, and these local monitoring networks are further connected via 
wide area networks (WANs) to a central server.  Workstations at the central site of the 
monitoring system control the observations of the probes and the analysis of header 
information at local sites.  The monitoring system may be comprised of tens of 
thousands of probes with each local site having on the order of tens of probes.  There is 
one probe for each link being monitored in the system. 

                                                 
2 Graphic developed with the help of G. Pollock and D. Thompson of Agilent Laboratories. 



 Figure 1.  A simplified hybrid ATM/IP network and its monitoring system.   

In the ATM/IP network monitoring system, probes that capture packet headers are 
physically attached to the network.   Relevant information is stripped off and analyzed 
(looking for patterns) at site servers.  The site servers are connected via LAN or WAN 
(depending on their geographical locations), to a central server computer where final 
analysis and decision making occur. Due to the huge amount of data in this system, a 
primary task is to perform as much processing as possible at the source of the data in 
order to cut down on the amount of information that has to pass among computers at 
different "levels" and geographical locations in the system.  The probe data can be mined 
for many types of information, such as quality of service, connection information for 
billing purposes, and also patterns that indicate fraudulent use of the network.  Data is 
static and also time-sensitive; after some relatively short period of time it has no value. 
The system is very dynamic; it can be changed from one that monitors network 
performance to one that searches for fraudulent use by changing the recognition patterns 
used in the system. This transformation requires changing applications that are running 
on the various local site computers. Since the computing and probe system is very large 
(typically thousands of probes and hundreds of computers are involved over large 
geographical areas), the task of getting the correct version of the correct application to 
the correct computer presents a significant challenge.  A related problem is getting the 
correct services/applications operating on the correct computers, in the correct sequence.  
For example, if a probe is to begin searching for a new pattern, the local computer must 
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already be running the new correlation and analysis program before it can correctly 
analyze new data from the probe.   
Another interesting aspect of the monitoring system is that since it is using many 
networks (including LAN and WAN) that are geographically dispersed, portions of the 
overall monitoring system may be operating or not, solely depending on network status.  
New probes/computers may also be added at any time, further complicating the situation.  
Whenever the monitoring system topology changes, the system must somehow 
determine its current configuration, determine what software needs to be in place on the 
changed parts of the system, and effect configuration changes to make all parts of the 
system run properly. 
In order to focus this case study, we only specify run-time configuration management 
needs of software items.  We focus on moving particular pieces or versions of software 
around the system, instantiating them on particular machines, placing them in particular 
states, etc.  There are also temporal constraints on run-time configuration management.  
These are:  
(1) An attempt to move toward a new desired configuration must not take place unless a 

minimum time has passed since the last configuration change began.  (This allows 
the entire system to converge on a particular desired configuration.) 

(2) Configuration changes must happen within a defined acceptable time. 

3 The UML/OCL Specification 

We use a type model to specify run-time software configuration management.  The 
model is accompanied by a completely textual OCL specification of additional 
constraints and operations.  Two portions of the model are presented and discussed in 
this paper.  The entire model is too large to be included in this paper. 

3.1 Model choice and notation 

A type model consists of concepts, UML types, and the relations between them.  In the 
UML, a “…Type is used to specify a domain of objects together with operations 
applicable to the objects without defining the physical implementation of those objects” 
([OM01]).  A concept is a domain of objects.  (See [La98] for a discussion of concepts.)  
We use the problem domain to identify concepts.  Once we identify operations related to 
a concept, it becomes a type.  For this case study problem, we are only interested in 
partial operation signatures and pre- and post-conditions.  We are not interested in 
specific return values of operations at this level of abstraction, so the operation 
signatures do not include return values.   
We show behavior in two ways.  First, operation signatures (excluding return value 
types) are shown in the <<operations>> section of the concept in the type model.  
Second, a state transition diagram is shown in the type's <<state machine>> section.  
These two sections show the operations as well as their effect on the state of the object.  
OCL descriptions of the operations use information from the state diagram, as shown in 
Figure 3. 



3.2 UML/OCL Type Models 

 Figure 2 shows the configuration management types, concepts, and their relations.  
Figure 3 shows the operations and state transitions effected by the operations of 
RunnableItem. 
There are five basic types that need to be managed in the model of configuration 
management software items.  These are SourceCode, ObjectCode (created to run on a 
particular combination of a machine type and a compiler, called a Platform), Object (this 
is a concept of the problem domain, not an instance of a type), Service (a related set of 
operations that provide functionality to multiple applications), and Application (an 
Application makes use of services to achieve a functional goal).  Depending on the 
particular application, not all of these software items may exist in the system, but in all 
cases there will at least be source code, object code, and some sort of executing code.  
All five types of software exist in the ATM network monitoring system.  We show these 
types as specializations of ConfigItem.  
Configuration changes are made to executing or executable applications, services, and 
objects in the ATM/IP network monitoring system.  These are specializations of 
RunnableItem.  RunnableItem contains the operations needed to perform these 
configuration changes (see Figure 3).   
Figure 2 also shows a configuration service, ConfigService.  ConfigService is a 
specialization of Service.  Since it performs configuration management operations on 
software items, it has additional operations that must be implemented (e.g. compare-
change, which is shown in Figure 3).  Any particular ConfigService has an association 
with a single LocalSet.  A LocalSet is a partition of the overall system that allows 
dynamic configuration management.   
In order for an application, service, or object to be successfully executed in the ATM/IP 
network monitoring system, there are often other applications, services, or objects that 
must also execute.  For example, an application may need to use a trading service to find 
a particular kind of object.  In this case the application is dependent on a service as well 
as an object.  This kind of dependence leads to the notion of a dependency set, and the 
dependsOn relation.  This relation is used to define the dependency set for each kind of 
configuration management software item in the system in Figure 2.  It is shown as a 
relation for ConfigItem (with the roles CIDependsOn and depCI), and is further defined 
in the <<constraints>> section of the other types.  Specifically, the dependency relation 
is constrained so that Object types can only depend on other Object types, Service types 
can depend only on Object types and other Service types, and Application types can 
depend on Object types and Service types. 



Figure 2.  A type model containing concepts, UML types, and associations of the case study system 
that need to be dynamically configured.  

Figure 3 shows the operations of RunnableItem, both in terms of calling arguments 
(<<operations>> section) and operation effect on state (<<state machine>> section).   



Figure 3.  Operations provided by and state machine details of RunnableItem and ConfigService.   

Figure 3 shows the operations needed by each RunnableItem that allow it to be 
dynamically configured.  The <<operations>> section shows the calling signatures of 
the operations and the <<state machine>> section shows how each operation effects 
state.  Transition lines are labeled with operation names that effect the state transition.     



Figure 3 also shows the operations and state machine for ConfigService.  ConfigService 
is a specialization of Service, and is responsible for the dynamic configuration 
management of the runnable items in the system.  It therefore has additional operations 
that need to be defined.  These operations use the other operations defined in the 
RunnableItem type to accomplish dynamic configuration management.  The state 
machine section of ConfigService shows the making changes state, which is equivalent 
to the running state in RunnableItem. 

4 The Alloy Specification 

Alloy is a modeling language ([Ja99], [JSS00]), and is supported by an associated tool, 
that tests assertions, invariants, and operations of an Alloy model.  Version 1.0 of Alloy 
is discussed in this case study.  A second version has been proposed, but its associated 
tool is not yet available and so it is not considered in this case study ([Ja01a], [Ja01b]).   
An Alloy model cannot contain a UML diagram.  The entire Alloy model must be built 
textually using its associated tool.  An Alloy model consists of several parts.  A key part 
is an initial list of sets that are fundamental to the model (the domain statement).  Other 
sets can then be defined in terms of these initial sets, and relations between sets can also 
be created (the state statement).  Definitions of the relations are included in the model 
(def statements), as are invariants (inv statements) and assertions (assert statements) 
regarding the sets and their relationships.  Finally, operations (op statements) that are 
performed on the sets are also defined.   
Figure 4 shows a portion of the Alloy model for the dynamic software configuration 
management of the case study system.  This figure shows the structure of an Alloy 1.0 
model, as well as showing some example relations (e.g. platformMT, platformC, and 
dependsOn), invariants dealing with a LocalSet, and an operation (deploy).  This subset 
model compiles and is shown to be consistent using the Alloy tool.3   
The subset of the full Alloy model shown in Figure 4 highlights some of the structural 
components of Alloy.  The domain and state sections are shown, along with definition 
(def) and invariant (inv) statements.  An operation (op) is also shown.  Notation used in 
the state section includes partition (subsequent names are subsets of the name after the 
colon, do not share any members, and are its only subsets), colon (the first name is a 
subset of the second name), and exclamation mark (singleton set).  The model 
components shown include the platformC and platformMT relations (required to define 
the Platform tuple), the dependsOn relation (initially defined as existing between 
ConfigItems and then explicitly defined in a def statement), and invariants 
(oneCSControls and oneCSControlsAll which are used to specify independent 
configuration of local sets).  In the operation definition, primed values of state 
components indicate the post state of the variables that are primed.  The notation 

                                                 
3 The Alloy tool creates a boolean satisfaction formula from an Alloy model, and assigns a scope to the 
formula.  The analysis determines if an instance exists for the formula within the scope (the number of 
elements in each domain set).  If one does exist, then the Alloy model is consistent.  The tool can also be used 
to look for theorem (assertion) counterexamples that indicate model inconsistency.  Failing to find an instance 
of a formula does not necessarily indicate that the model is inconsistent; it may simply have an instance at a 
higher scope.  Similarly, failing to find a counter example to an assertion does not mean that the assertion is 
consistent; a counter example may exist at a higher scope. 



+createdFrom indicates one or more uses of the createdFrom relation, in order to reach 
the associated ObjectCode set (which has the relation developedToRunOn).  The // 
notation is used to begin a comment.  This Alloy model defines a LocalSet based upon a 
partitioning of the machines on which RunnableItems are executing.  The full Alloy 
model of the dynamic software configuration management of the ATM monitoring 
system is available on-line at http://www.cs.colostate.edu/~georg/alloy-atm.pdf.  
 
model ATM-monitoring-CM-example { 
domain { Machine, LocalSetId, Platform, Compiler, MachineType, ConfigItem, OpAttempted, ReturnValue, 
Version } 
state { 
     partition SourceCode, ObjectCode, Object, Service, Application : ConfigItem 
     NotOCode : ConfigItem 
     RunnableItem : ConfigItem 
     ConfigService : Service 
     partition deployed, located, bound : OpAttempted 
     OK : ReturnValue  
     Error : ReturnValue 
     controlledBy (~controls) : RunnableItem -> ConfigService ! 
     on  (~riOn) : RunnableItem  -> Machine ! 
     LocalSet (~lsRI) : RunnableItem -> LocalSetId ! 
     LocalIndex (~mach) : Machine -> LocalSetId ! 
     dependsOn : ConfigItem  -> ConfigItem 
     createdFrom : ConfigItem  -> ConfigItem      
     platformC : Platform -> Compiler ! 
     platformMT : Platform -> MachineType ! 
     FeedBack : OpAttempted -> ReturnValue 
     hasMType : Machine -> MachineType ! 
     hasVersion : NotOCode -> Version ! 
     developedToRunOn : ObjectCode -> Platform } 
 
  def NotOCode  { NotOCode = SourceCode + Object + Service + Application } 
  def RunnableItem   { RunnableItem = Object + Service + Application } 
  def LocalSet { all ri | ri.LocalSet = ri.on.LocalIndex } 
  def controlledBy  { all ri : RunnableItem | one cs : ConfigService | ri.controlledBy = cs -> ri.on.LocalIndex = 
cs.on.LocalIndex } 
  def dependsOn { all ci | ( no ci1 : ConfigItem |ci.dependsOn  = ci1 ) }         // The complete definition is too 
long to include in this figure. 
  def createdFrom { all ci | ( ci in SourceCode -> ci.createdFrom = ci ) && ( ci in ObjectCode -> one src : 
SourceCode | ci.createdFrom = src ) && ( ci in Object -> some oc : ObjectCode | ci.createdFrom = oc ) && ( ci 
in Service -> some obj : Object | ci.createdFrom = obj )  && ( ci in Application -> some obj : Object | 
ci.createdFrom = obj ) } 
  inv oneCSControls  { all cs1, cs2 : ConfigService | no ri : RunnableItem |  ri in cs1.controls & cs2.controls  
&& ! ( cs1 = cs2 ) } 
  inv oneCSControlsAll { all lsid : LocalSetId | one cs : ConfigService | cs in lsid.lsRI && lsid.lsRI = 
cs.controls } 
  op deploy ( ri : RunnableItem !, ver : Version !, m : Machine ! ) { 
     m.hasMType in ri.+createdFrom.developedToRunOn.platformMT   
     ri.hasVersion = ver   
     ri.on' = m   
     deployed.FeedBack' in OK  }  
} 

Figure 4.  A portion of the Alloy model of dynamic software configuration management for the 
ATM network monitoring system.   



Some observations about the Alloy model include:  

• The type model (excluding state machines and OCL expressions) must be 
duplicated in Alloy before the specification can be completed using Alloy.  While 
this is time consuming, it does seem to be possible to follow a method to create an 
Alloy model from type models, which also implies that an automated tool could be 
developed to aid in this initial process.   

• We developed an Alloy model from an earlier set of UML type models.  These 
initial models did not include any OCL constraints nor state machine descriptions.  
Development of the Alloy model pointed out changes that needed to be made to the 
UML models.  In addition, as the UML models were refined, changes that needed 
to be made to the Alloy model became clear.  Thus, the effort of developing both 
models semi-concurrently was very synergistic, and resulted in better models.    

• In modeling the case study system it is important to be able to declare relations and 
refine their definitions as the problem becomes clearer.  Alloy allows relations to 
be declared, then to be precisely defined using the def notation.  The dependsOn 
relation is initially declared as a relation between ConfigItems.  The def  
(definition) notation is then used to precisely state the nature of this relation 
between applications, services, objects, object code and source code.  We 
accomplish the same thing in the type model using the dependsOn relation with 
roles CIDependsOn and depCI for the ConfigItem generalization.  OCL constraints 
precisely define this relation for applicable specializations.   

• One problem with using version 1.0 of Alloy is that it requires one relation for each 
part of an aggregation.  To model the Platform aggregation, two relations are added 
to the Alloy model.  Thus, the relation platformC is included in the Alloy model to 
map between a Platform and a Compiler, and the relation platformMT is added to 
map between a Platform and the Machine type it represents.  If Alloy supported 
tuples directly, these multiple relations could be replaced by a single relation. 

• System-level constraints on behavior can be included in the Alloy model.  For 
example, the notion that local sets can work independently, moving toward a new 
desired configuration can be included in the model as a set of invariants associated 
with local sets and configuration services. 

• The temporal constraints of configuration management operations noted in Section 
2 are not specified in the Alloy model since Alloy has no direct notion of time.  
(See Section 5 for a discussion of this problem with respect to both UML and 
Alloy.) 

5 Comparing UML/OCL and Alloy for Run-Time Configuration 
Management Specifications 

We compare UML/OCL and Alloy based on using them to specify the software run-time 
configuration management requirements of the ATM network monitoring system.  This 
comparison does not include a deep analysis of the two languages.  It also does not 
address open issues such as the understandability of specifications written in the 
languages, nor the ability of those specifications to lead through design and 
implementation to systems that exhibit the required behavior.  These are topics for future 
research. 



• OCL/UML allows development of models containing concepts and types, relations, 
and operations.  It has built-in data types (e.g. Integer and Set) and operations on 
them (e.g. mathematical operations on Integers and operations such as union and 
iterate on Sets).  These built in data types and their associated operations can cause 
a subtle shift in the viewpoint of the modeler to the more concrete aspects of a 
system, thus potentially turning specification into design.  Operations like iterate 
exacerbate this problem.  The shift from abstraction to concrete aspects is less 
likely to occur when the modeler only uses sets to model the system (as when using 
Alloy), although no doubt experience can help keep the specification process at an 
abstract level.  We experienced this problem when writing OCL post conditions for 
operations like deploy.  The deploy operation must ensure that the runnable item 
being deployed was built for the machine type where it will be running.  This can 
be accomplished by iterating through its associated object code, however there are 
no doubt many ways to accomplish the check.  An OCL expression that uses the 
iterate operation can be interpreted as the correct design, precluding other methods 
that accomplish the machine type check.  A more abstract expression uses the 
forAll operation on the associated object code. 

• Alloy does not include the notion of sequencing.  Thus, it is difficult to specify that 
particular operations need to be sequenced.  For example, one version of an 
application may need to be stopped and then another version started, perhaps 
because the resources used by the first version need to be released before the 
second version is started.  This is the case in the compare-change operation of a 
ConfigService, when a request for a different version of a runnable item is part of a 
desired configuration.  It is not possible to express this kind of sequence 
specification in Alloy.  We are forced to create additional operations that compose 
the post conditions of operations we need to sequence. The language constructs of 
OCL (e.g. if-then-else-endif) allow explicit sequencing of operations, so this is not 
an issue with OCL. 

• The Alloy specification suffers from a structural problem; definitions (i.e. def 
statements) and invariants (i.e. inv statements) of relations and subsets are included 
in the model after the declarations of these relations and subsets, often making it 
difficult to find associated constraints.  In the new proposed version of Alloy 
([Ja01a], [Ja01b]), all the information about a set is kept together, thus packaging 
relevant information. 

• The Alloy and UML/OCL models of the ATM network monitoring system do not 
specify temporal constraints.  The temporal constraints in the case study are simple, 
but they do need to be included in the specification.  (These constraints are noted in 
Section 2.) 
Neither Alloy nor UML/OCL address the notion of time events directly, although 
UML does define sequence models.  But sequence models are not sufficient to 
specify both temporal constraints of the ATM network monitoring system.  One 
temporal constraint that can be expressed in sequence models is a time bound on 
individual configuration actions.  Such a bound can be shown in UML sequence 
diagrams, however this capability is not integrated into OCL.  However, sequence 
diagrams are used for instances of classes; they are not used as specifications 
unless they reference roles.  The other temporal constraint, the minimum time 



between attempts to move to a new desired configuration, cannot be specified with 
sequence diagrams.  This bound needs to be expressed as a time from the start of 
the last move to a new configuration to the start of the next move to a new 
configuration. 

 Another approach to specify temporal constraints is to add additional time-related 
concepts in the specification, such as temporal logic.  We used three different types 
of temporal logic, and found that the most applicable for this problem were RTL-
style occurrence relations.  (The temporal logic systems we used are RTL [JMS98], 
TILCO [MN01], and intervals [MP92]).  The RTL-style constraints were easy to 
develop, but, since event time is not part of UML/OCL or Alloy, we can only add 
them as comments in the overall model.  (Examples of temporal constraints can be 
seen in the compare-change operation in the complete Alloy model of the case 
study system.  This is available as www.cs.colostate.edu/~georg/alloy-atm.pdf.)  

• Tool support for UML/OCL is minimal; research tools such as USE exist, but some 
only support a subset of the full UML/OCL language.  In addition, the USE tool 
requires a model to be completely written in OCL, rather than allowing a 
combination graphical/textual representation of a model.  Similarly, the Alloy tool 
requires a completely textual model of a system written in Alloy for its operation. 

6 Conclusions 

It is not possible to create a complete specification of software item run-time 
configuration management for the case study using either UML/OCL or Alloy, due to the 
lack of temporal operations.  Other than this limitation, both UML/OCL and Alloy can 
be used to specify the other requirements of the run-time configuration management of 
the ATM/IP network monitoring system.   
Both UML/OCL and Alloy need to be extended to include support for temporal 
specifications based on events.  The simple time-related needs of this case study 
specification do not require extensive temporal operations; they are most easily specified 
with a notation that is based on events (e.g. RTL [JMS98], TILCO [MN01]) rather than 
intervals ([MP92]). 
We prefer the current tool support for Alloy over that of UML/OCL. The Alloy tool 
implements the complete Alloy language and thus is a good match for Alloy models.  It 
has syntactic, semantic, and analysis support for Alloy models.  By contrast, the OCL 
tool we tested did not support the full OCL language.  However, both tools require 
complete models in a textual format; they do not support any graphical input.  While 
textual formats may be necessary for processing purposes, the automatic translation of 
graphical elements to text could be used to provide templates for more complete textual 
models.   
In an industrial software development environment, some sort of verification is needed 
for specification and design models.  In our experience, this often consists of peer 
review, and its quality is directly related to previous knowledge and experience of the 
participants.  In order for modeling languages such as OCL or Alloy to be widely used, 
additional, more automated verification must be available since most architects/designers 
are not experienced in these languages. 



This case study comparison requires further research to investigate the understandability 
of specifications develop in the two languages, as well as their ability to lead to system 
implementations that exhibit the required run-time configuration management behavior.  
The languages also need to be compared using case study systems in other problem 
domains. 
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