
Using Alloy and UML/OCL to Specify Run-Time
Configuration Management: A Case Study

Geri Georg

Agilent Laborator ies, Agi lent Technologies, 4380 Zeigler Road,
Fort Col l ins, Colorado 80525

geri_georg@agilent.com

James Bieman

Computer Science Department, Colorado State University,
Fort Col l ins, Colorado 80523

bieman@cs.colostate.edu

Robert France

Computer Science Department, Colorado State University,
Fort Col l ins, Colorado 80523

france@cs.colostate.edu

Abstract: There are many different ways to specify the requirements of complex software
systems, and the optimal methods often vary according to the problem domain. We apply and
compare two languages, UML/OCL and Alloy, to specify a problem in one domain, the run-time
configuration management of a loosely coupled distributed system, to determine which is more
appropriate for this domain. The specific problem that we specify in the case study involves the
run-time configuration management of an Asynchronous Transfer Mode / Internet Protocol
(ATM/IP) Network Monitoring System. Neither Alloy nor UML/OCL supports the specification
of key temporal aspects of the problem. This paper addresses the representation of requirements
specification; continuing research will compare the usefulness of the specifications for modeling
and design purposes.

1 Introduction

There are many different ways to specify the requirements of complex software systems,
and the optimal methods often vary between different problem domains. We apply two
languages, UML/OCL ([FK97], [OM01], [WK99]) and Alloy ([Ja99], [Ja00a], [Ja00b],
[Ja01c], [JSS00]) to the domain of run-time configuration management of a loosely
coupled distributed system.
Run-time configuration management refers to physical changes made to a loosely
coupled distributed system once it has been deployed and is executing. From time to
time in a large system, changes in computers, measurement devices, software
applications, etc. must be made while the overall system continues to run. A common

example occurs when a new application or service is created that needs to be deployed
across the system and its execution begun while other parts of the system continue to
execute properly. In a large distributed system changes like this must also be
accomplished in the context of unexpected network errors that inhibit communication
between computers or measurement devices.
The run-time configuration of loosely coupled distributed systems must be flexible and
extensible. Flexible means that it is possible to logically or physically move portions of
the system. Extensible means that it is possible to create a new entity by logically
grouping resources, or to physically add an entity to a computer. Yet, in our industrial
experience, the specification methods often used to describe system requirements are
UML class diagrams (without accompanying OCL constraints) and/or structural box
diagrams along with textual descriptions. The resulting specifications do not specify
system run-time configuration management flexibility, extensibility, or any other
system-wide behavior. As a result, many distributed systems do not meet their run-time
configuration management flexibility and extensibility requirements, and these systems
often require large amounts of engineering resources to maintain and enhance.
The notation used to specify run-time configuration management requirements of these
systems must be expressive, yet easy to use for both a system architect developing the
architectural models of the system, and system designers/implementers who are involved
in the actual creation of an implementation of the system. This paper discusses the first
part of this problem, choosing a notation that is expressive and easy for a system
architect to use. The second part of the problem, ensuring that the notation is precise and
comprehensible to system designers and implementers, is the subject of on-going
research.
We use the run-time configuration management requirements of an existing
Asynchronous Transfer Mode/Internet Protocol (ATM/IP) Hybrid Network Monitoring
System to compare two specification languages. We use UML/OCL (initially as
implemented in the USE tool from the University of Bremen ([RG00]), then
subsequently the full UML/OCL language [OM01])1 and Alloy (version 1.0 from MIT
[Ja00b]; a newer version of Alloy has been proposed but is not yet available as part of a
validation tool [Ja01a], [Ja01b]) to specify the run-time configuration management
capabilities of the case study system. Both of these tools are currently research tools.
UML is a popular modeling language widely used in industry, however in our industrial
experience, the typical models consist only of static class diagrams without OCL
constraints. These diagrams do not contain enough information to completely specify
run-time configuration management requirements. Constraints can be expressed using
OCL, although, in our experience, formal constraints are rarely used in industry, except
in domains where perfect operation is required (e.g. medical and aviation domains
[Ha96]) and then formal specification and design methods are often used and
automatically verified for proper behavior. We are interested in evaluating the
usefulness of OCL to complete UML diagrams in an industrial software environment.
Alloy is a modeling language designed to provide precise semantics for specification and
modeling purposes. We selected Alloy because of its reputed expressive power and

1 Additional OCL tools have been brought to our attention since this research began, however the USE tool is
the only one discussed in this paper.

because a tool is available that can validate its models. The Alloy tool provides syntactic
as well as invariant and operation validation of an Alloy model. We are also interested
in evaluating the usefulness of Alloy to complement UML diagrams in an industrial
software environment.
The paper is structured as follows. Section 2 provides a high-level description of the
Agilent Technologies ATM/IP monitoring system and its run-time configuration
management requirements. Section 2 describes the problem domain context for
interpretation of the models presented in subsequent sections. Section 3 describes the
UML/OCL specification of a portion of the run-time configuration management needs of
the monitoring system. This section also contains an explanation of the kind of UML
models that are used as well as some explanation of the notations used in those models.
Section 4 describes the corresponding Alloy specification. Section 5 compares the use of
the two languages to specify the dynamic configuration management of the ATM
network monitoring system. Finally Section 6 presents conclusions.

2 An Asynchronous Transfer Mode/Internet Protocol (ATM/IP)
hybrid network monitoring system; the problem domain context for
model interpretation

The Agilent Technologies accessATM/IP Network Monitoring System is an extension to
a previous internet protocol–only network monitoring system (accesSS7).
AccessATM/IP can monitor the behavior of a hybrid ATM/IP network. For example, it
monitors quality of service (e.g. delay, lost packets, peak bandwidth, etc.) between
various points of the network. Hardware probes are connected to local area networks
(LANs) at various local monitoring sites, which also contain site server computers and
routers. Data is consolidated at the geographical level at these local sites. Operators can
access the monitored information that has been collected throughout the monitoring
network from workstations, as well as direct the operation of the overall system. A
simplified version of this entire system is shown in Figure 1.2
Hardware monitoring probes in the monitoring system must be located outside the core
ATM portion of the network, due to the high speed of the core (up to OC192 speeds,
approximately 10Gb). Network speed at the probes is approximately 155Mb, or OC3
speeds. (See [Za99] for a description of ATM networks.) Probes are connected locally
to monitoring system site server computers that perform the analysis of the header
information they obtain, and these local monitoring networks are further connected via
wide area networks (WANs) to a central server. Workstations at the central site of the
monitoring system control the observations of the probes and the analysis of header
information at local sites. The monitoring system may be comprised of tens of
thousands of probes with each local site having on the order of tens of probes. There is
one probe for each link being monitored in the system.

2 Graphic developed with the help of G. Pollock and D. Thompson of Agilent Laboratories.

 Figure 1. A simplified hybrid ATM/IP network and its monitoring system.

In the ATM/IP network monitoring system, probes that capture packet headers are
physically attached to the network. Relevant information is stripped off and analyzed
(looking for patterns) at site servers. The site servers are connected via LAN or WAN
(depending on their geographical locations), to a central server computer where final
analysis and decision making occur. Due to the huge amount of data in this system, a
primary task is to perform as much processing as possible at the source of the data in
order to cut down on the amount of information that has to pass among computers at
different "levels" and geographical locations in the system. The probe data can be mined
for many types of information, such as quality of service, connection information for
billing purposes, and also patterns that indicate fraudulent use of the network. Data is
static and also time-sensitive; after some relatively short period of time it has no value.
The system is very dynamic; it can be changed from one that monitors network
performance to one that searches for fraudulent use by changing the recognition patterns
used in the system. This transformation requires changing applications that are running
on the various local site computers. Since the computing and probe system is very large
(typically thousands of probes and hundreds of computers are involved over large
geographical areas), the task of getting the correct version of the correct application to
the correct computer presents a significant challenge. A related problem is getting the
correct services/applications operating on the correct computers, in the correct sequence.
For example, if a probe is to begin searching for a new pattern, the local computer must

ATM Switch

Router

User Access

Network

Server

Database

Modem

P Probe

Hybrid ATM/IP Network and Monitoring System

LAN

WAN

P P

Legend

PP

Site Server

Central Server

Site Server

IPATM

already be running the new correlation and analysis program before it can correctly
analyze new data from the probe.
Another interesting aspect of the monitoring system is that since it is using many
networks (including LAN and WAN) that are geographically dispersed, portions of the
overall monitoring system may be operating or not, solely depending on network status.
New probes/computers may also be added at any time, further complicating the situation.
Whenever the monitoring system topology changes, the system must somehow
determine its current configuration, determine what software needs to be in place on the
changed parts of the system, and effect configuration changes to make all parts of the
system run properly.
In order to focus this case study, we only specify run-time configuration management
needs of software items. We focus on moving particular pieces or versions of software
around the system, instantiating them on particular machines, placing them in particular
states, etc. There are also temporal constraints on run-time configuration management.
These are:
(1) An attempt to move toward a new desired configuration must not take place unless a

minimum time has passed since the last configuration change began. (This allows
the entire system to converge on a particular desired configuration.)

(2) Configuration changes must happen within a defined acceptable time.

3 The UML/OCL Specification

We use a type model to specify run-time software configuration management. The
model is accompanied by a completely textual OCL specification of additional
constraints and operations. Two portions of the model are presented and discussed in
this paper. The entire model is too large to be included in this paper.

3.1 Model choice and notation

A type model consists of concepts, UML types, and the relations between them. In the
UML, a “…Type is used to specify a domain of objects together with operations
applicable to the objects without defining the physical implementation of those objects”
([OM01]). A concept is a domain of objects. (See [La98] for a discussion of concepts.)
We use the problem domain to identify concepts. Once we identify operations related to
a concept, it becomes a type. For this case study problem, we are only interested in
partial operation signatures and pre- and post-conditions. We are not interested in
specific return values of operations at this level of abstraction, so the operation
signatures do not include return values.
We show behavior in two ways. First, operation signatures (excluding return value
types) are shown in the <<operations>> section of the concept in the type model.
Second, a state transition diagram is shown in the type's <<state machine>> section.
These two sections show the operations as well as their effect on the state of the object.
OCL descriptions of the operations use information from the state diagram, as shown in
Figure 3.

3.2 UML/OCL Type Models

 Figure 2 shows the configuration management types, concepts, and their relations.
Figure 3 shows the operations and state transitions effected by the operations of
RunnableItem.
There are five basic types that need to be managed in the model of configuration
management software items. These are SourceCode, ObjectCode (created to run on a
particular combination of a machine type and a compiler, called a Platform), Object (this
is a concept of the problem domain, not an instance of a type), Service (a related set of
operations that provide functionality to multiple applications), and Application (an
Application makes use of services to achieve a functional goal). Depending on the
particular application, not all of these software items may exist in the system, but in all
cases there will at least be source code, object code, and some sort of executing code.
All five types of software exist in the ATM network monitoring system. We show these
types as specializations of ConfigItem.
Configuration changes are made to executing or executable applications, services, and
objects in the ATM/IP network monitoring system. These are specializations of
RunnableItem. RunnableItem contains the operations needed to perform these
configuration changes (see Figure 3).
Figure 2 also shows a configuration service, ConfigService. ConfigService is a
specialization of Service. Since it performs configuration management operations on
software items, it has additional operations that must be implemented (e.g. compare-
change, which is shown in Figure 3). Any particular ConfigService has an association
with a single LocalSet. A LocalSet is a partition of the overall system that allows
dynamic configuration management.
In order for an application, service, or object to be successfully executed in the ATM/IP
network monitoring system, there are often other applications, services, or objects that
must also execute. For example, an application may need to use a trading service to find
a particular kind of object. In this case the application is dependent on a service as well
as an object. This kind of dependence leads to the notion of a dependency set, and the
dependsOn relation. This relation is used to define the dependency set for each kind of
configuration management software item in the system in Figure 2. It is shown as a
relation for ConfigItem (with the roles CIDependsOn and depCI), and is further defined
in the <<constraints>> section of the other types. Specifically, the dependency relation
is constrained so that Object types can only depend on other Object types, Service types
can depend only on Object types and other Service types, and Application types can
depend on Object types and Service types.

Figure 2. A type model containing concepts, UML types, and associations of the case study system
that need to be dynamically configured.

Figure 3 shows the operations of RunnableItem, both in terms of calling arguments
(<<operations>> section) and operation effect on state (<<state machine>> section).

Figure 3. Operations provided by and state machine details of RunnableItem and ConfigService.

Figure 3 shows the operations needed by each RunnableItem that allow it to be
dynamically configured. The <<operations>> section shows the calling signatures of
the operations and the <<state machine>> section shows how each operation effects
state. Transition lines are labeled with operation names that effect the state transition.

Figure 3 also shows the operations and state machine for ConfigService. ConfigService
is a specialization of Service, and is responsible for the dynamic configuration
management of the runnable items in the system. It therefore has additional operations
that need to be defined. These operations use the other operations defined in the
RunnableItem type to accomplish dynamic configuration management. The state
machine section of ConfigService shows the making changes state, which is equivalent
to the running state in RunnableItem.

4 The Alloy Specification

Alloy is a modeling language ([Ja99], [JSS00]), and is supported by an associated tool,
that tests assertions, invariants, and operations of an Alloy model. Version 1.0 of Alloy
is discussed in this case study. A second version has been proposed, but its associated
tool is not yet available and so it is not considered in this case study ([Ja01a], [Ja01b]).
An Alloy model cannot contain a UML diagram. The entire Alloy model must be built
textually using its associated tool. An Alloy model consists of several parts. A key part
is an initial list of sets that are fundamental to the model (the domain statement). Other
sets can then be defined in terms of these initial sets, and relations between sets can also
be created (the state statement). Definitions of the relations are included in the model
(def statements), as are invariants (inv statements) and assertions (assert statements)
regarding the sets and their relationships. Finally, operations (op statements) that are
performed on the sets are also defined.
Figure 4 shows a portion of the Alloy model for the dynamic software configuration
management of the case study system. This figure shows the structure of an Alloy 1.0
model, as well as showing some example relations (e.g. platformMT, platformC, and
dependsOn), invariants dealing with a LocalSet, and an operation (deploy). This subset
model compiles and is shown to be consistent using the Alloy tool.3
The subset of the full Alloy model shown in Figure 4 highlights some of the structural
components of Alloy. The domain and state sections are shown, along with definition
(def) and invariant (inv) statements. An operation (op) is also shown. Notation used in
the state section includes partition (subsequent names are subsets of the name after the
colon, do not share any members, and are its only subsets), colon (the first name is a
subset of the second name), and exclamation mark (singleton set). The model
components shown include the platformC and platformMT relations (required to define
the Platform tuple), the dependsOn relation (initially defined as existing between
ConfigItems and then explicitly defined in a def statement), and invariants
(oneCSControls and oneCSControlsAll which are used to specify independent
configuration of local sets). In the operation definition, primed values of state
components indicate the post state of the variables that are primed. The notation

3 The Alloy tool creates a boolean satisfaction formula from an Alloy model, and assigns a scope to the
formula. The analysis determines if an instance exists for the formula within the scope (the number of
elements in each domain set). If one does exist, then the Alloy model is consistent. The tool can also be used
to look for theorem (assertion) counterexamples that indicate model inconsistency. Failing to find an instance
of a formula does not necessarily indicate that the model is inconsistent; it may simply have an instance at a
higher scope. Similarly, failing to find a counter example to an assertion does not mean that the assertion is
consistent; a counter example may exist at a higher scope.

+createdFrom indicates one or more uses of the createdFrom relation, in order to reach
the associated ObjectCode set (which has the relation developedToRunOn). The //
notation is used to begin a comment. This Alloy model defines a LocalSet based upon a
partitioning of the machines on which RunnableItems are executing. The full Alloy
model of the dynamic software configuration management of the ATM monitoring
system is available on-line at http://www.cs.colostate.edu/~georg/alloy-atm.pdf.

model ATM-monitoring-CM-example {
domain { Machine, LocalSetId, Platform, Compiler, MachineType, ConfigItem, OpAttempted, ReturnValue,
Version }
state {
 partition SourceCode, ObjectCode, Object, Service, Application : ConfigItem
 NotOCode : ConfigItem
 RunnableItem : ConfigItem
 ConfigService : Service
 partition deployed, located, bound : OpAttempted
 OK : ReturnValue
 Error : ReturnValue
 controlledBy (~controls) : RunnableItem -> ConfigService !
 on (~riOn) : RunnableItem -> Machine !
 LocalSet (~lsRI) : RunnableItem -> LocalSetId !
 LocalIndex (~mach) : Machine -> LocalSetId !
 dependsOn : ConfigItem -> ConfigItem
 createdFrom : ConfigItem -> ConfigItem
 platformC : Platform -> Compiler !
 platformMT : Platform -> MachineType !
 FeedBack : OpAttempted -> ReturnValue
 hasMType : Machine -> MachineType !
 hasVersion : NotOCode -> Version !
 developedToRunOn : ObjectCode -> Platform }

 def NotOCode { NotOCode = SourceCode + Object + Service + Application }
 def RunnableItem { RunnableItem = Object + Service + Application }
 def LocalSet { all ri | ri.LocalSet = ri.on.LocalIndex }
 def controlledBy { all ri : RunnableItem | one cs : ConfigService | ri.controlledBy = cs -> ri.on.LocalIndex =
cs.on.LocalIndex }
 def dependsOn { all ci | (no ci1 : ConfigItem |ci.dependsOn = ci1) } // The complete definition is too
long to include in this figure.
 def createdFrom { all ci | (ci in SourceCode -> ci.createdFrom = ci) && (ci in ObjectCode -> one src :
SourceCode | ci.createdFrom = src) && (ci in Object -> some oc : ObjectCode | ci.createdFrom = oc) && (ci
in Service -> some obj : Object | ci.createdFrom = obj) && (ci in Application -> some obj : Object |
ci.createdFrom = obj) }
 inv oneCSControls { all cs1, cs2 : ConfigService | no ri : RunnableItem | ri in cs1.controls & cs2.controls
&& ! (cs1 = cs2) }
 inv oneCSControlsAll { all lsid : LocalSetId | one cs : ConfigService | cs in lsid.lsRI && lsid.lsRI =
cs.controls }
 op deploy (ri : RunnableItem !, ver : Version !, m : Machine !) {
 m.hasMType in ri.+createdFrom.developedToRunOn.platformMT
 ri.hasVersion = ver
 ri.on' = m
 deployed.FeedBack' in OK }
}

Figure 4. A portion of the Alloy model of dynamic software configuration management for the
ATM network monitoring system.

Some observations about the Alloy model include:

• The type model (excluding state machines and OCL expressions) must be
duplicated in Alloy before the specification can be completed using Alloy. While
this is time consuming, it does seem to be possible to follow a method to create an
Alloy model from type models, which also implies that an automated tool could be
developed to aid in this initial process.

• We developed an Alloy model from an earlier set of UML type models. These
initial models did not include any OCL constraints nor state machine descriptions.
Development of the Alloy model pointed out changes that needed to be made to the
UML models. In addition, as the UML models were refined, changes that needed
to be made to the Alloy model became clear. Thus, the effort of developing both
models semi-concurrently was very synergistic, and resulted in better models.

• In modeling the case study system it is important to be able to declare relations and
refine their definitions as the problem becomes clearer. Alloy allows relations to
be declared, then to be precisely defined using the def notation. The dependsOn
relation is initially declared as a relation between ConfigItems. The def
(definition) notation is then used to precisely state the nature of this relation
between applications, services, objects, object code and source code. We
accomplish the same thing in the type model using the dependsOn relation with
roles CIDependsOn and depCI for the ConfigItem generalization. OCL constraints
precisely define this relation for applicable specializations.

• One problem with using version 1.0 of Alloy is that it requires one relation for each
part of an aggregation. To model the Platform aggregation, two relations are added
to the Alloy model. Thus, the relation platformC is included in the Alloy model to
map between a Platform and a Compiler, and the relation platformMT is added to
map between a Platform and the Machine type it represents. If Alloy supported
tuples directly, these multiple relations could be replaced by a single relation.

• System-level constraints on behavior can be included in the Alloy model. For
example, the notion that local sets can work independently, moving toward a new
desired configuration can be included in the model as a set of invariants associated
with local sets and configuration services.

• The temporal constraints of configuration management operations noted in Section
2 are not specified in the Alloy model since Alloy has no direct notion of time.
(See Section 5 for a discussion of this problem with respect to both UML and
Alloy.)

5 Comparing UML/OCL and Alloy for Run-Time Configuration
Management Specifications

We compare UML/OCL and Alloy based on using them to specify the software run-time
configuration management requirements of the ATM network monitoring system. This
comparison does not include a deep analysis of the two languages. It also does not
address open issues such as the understandability of specifications written in the
languages, nor the ability of those specifications to lead through design and
implementation to systems that exhibit the required behavior. These are topics for future
research.

• OCL/UML allows development of models containing concepts and types, relations,
and operations. It has built-in data types (e.g. Integer and Set) and operations on
them (e.g. mathematical operations on Integers and operations such as union and
iterate on Sets). These built in data types and their associated operations can cause
a subtle shift in the viewpoint of the modeler to the more concrete aspects of a
system, thus potentially turning specification into design. Operations like iterate
exacerbate this problem. The shift from abstraction to concrete aspects is less
likely to occur when the modeler only uses sets to model the system (as when using
Alloy), although no doubt experience can help keep the specification process at an
abstract level. We experienced this problem when writing OCL post conditions for
operations like deploy. The deploy operation must ensure that the runnable item
being deployed was built for the machine type where it will be running. This can
be accomplished by iterating through its associated object code, however there are
no doubt many ways to accomplish the check. An OCL expression that uses the
iterate operation can be interpreted as the correct design, precluding other methods
that accomplish the machine type check. A more abstract expression uses the
forAll operation on the associated object code.

• Alloy does not include the notion of sequencing. Thus, it is difficult to specify that
particular operations need to be sequenced. For example, one version of an
application may need to be stopped and then another version started, perhaps
because the resources used by the first version need to be released before the
second version is started. This is the case in the compare-change operation of a
ConfigService, when a request for a different version of a runnable item is part of a
desired configuration. It is not possible to express this kind of sequence
specification in Alloy. We are forced to create additional operations that compose
the post conditions of operations we need to sequence. The language constructs of
OCL (e.g. if-then-else-endif) allow explicit sequencing of operations, so this is not
an issue with OCL.

• The Alloy specification suffers from a structural problem; definitions (i.e. def
statements) and invariants (i.e. inv statements) of relations and subsets are included
in the model after the declarations of these relations and subsets, often making it
difficult to find associated constraints. In the new proposed version of Alloy
([Ja01a], [Ja01b]), all the information about a set is kept together, thus packaging
relevant information.

• The Alloy and UML/OCL models of the ATM network monitoring system do not
specify temporal constraints. The temporal constraints in the case study are simple,
but they do need to be included in the specification. (These constraints are noted in
Section 2.)
Neither Alloy nor UML/OCL address the notion of time events directly, although
UML does define sequence models. But sequence models are not sufficient to
specify both temporal constraints of the ATM network monitoring system. One
temporal constraint that can be expressed in sequence models is a time bound on
individual configuration actions. Such a bound can be shown in UML sequence
diagrams, however this capability is not integrated into OCL. However, sequence
diagrams are used for instances of classes; they are not used as specifications
unless they reference roles. The other temporal constraint, the minimum time

between attempts to move to a new desired configuration, cannot be specified with
sequence diagrams. This bound needs to be expressed as a time from the start of
the last move to a new configuration to the start of the next move to a new
configuration.

 Another approach to specify temporal constraints is to add additional time-related
concepts in the specification, such as temporal logic. We used three different types
of temporal logic, and found that the most applicable for this problem were RTL-
style occurrence relations. (The temporal logic systems we used are RTL [JMS98],
TILCO [MN01], and intervals [MP92]). The RTL-style constraints were easy to
develop, but, since event time is not part of UML/OCL or Alloy, we can only add
them as comments in the overall model. (Examples of temporal constraints can be
seen in the compare-change operation in the complete Alloy model of the case
study system. This is available as www.cs.colostate.edu/~georg/alloy-atm.pdf.)

• Tool support for UML/OCL is minimal; research tools such as USE exist, but some
only support a subset of the full UML/OCL language. In addition, the USE tool
requires a model to be completely written in OCL, rather than allowing a
combination graphical/textual representation of a model. Similarly, the Alloy tool
requires a completely textual model of a system written in Alloy for its operation.

6 Conclusions

It is not possible to create a complete specification of software item run-time
configuration management for the case study using either UML/OCL or Alloy, due to the
lack of temporal operations. Other than this limitation, both UML/OCL and Alloy can
be used to specify the other requirements of the run-time configuration management of
the ATM/IP network monitoring system.
Both UML/OCL and Alloy need to be extended to include support for temporal
specifications based on events. The simple time-related needs of this case study
specification do not require extensive temporal operations; they are most easily specified
with a notation that is based on events (e.g. RTL [JMS98], TILCO [MN01]) rather than
intervals ([MP92]).
We prefer the current tool support for Alloy over that of UML/OCL. The Alloy tool
implements the complete Alloy language and thus is a good match for Alloy models. It
has syntactic, semantic, and analysis support for Alloy models. By contrast, the OCL
tool we tested did not support the full OCL language. However, both tools require
complete models in a textual format; they do not support any graphical input. While
textual formats may be necessary for processing purposes, the automatic translation of
graphical elements to text could be used to provide templates for more complete textual
models.
In an industrial software development environment, some sort of verification is needed
for specification and design models. In our experience, this often consists of peer
review, and its quality is directly related to previous knowledge and experience of the
participants. In order for modeling languages such as OCL or Alloy to be widely used,
additional, more automated verification must be available since most architects/designers
are not experienced in these languages.

This case study comparison requires further research to investigate the understandability
of specifications develop in the two languages, as well as their ability to lead to system
implementations that exhibit the required run-time configuration management behavior.
The languages also need to be compared using case study systems in other problem
domains.

Bibliography
[FK97] Fowler, M.; Scott, K.: UML Distilled. Addison-Wesley, 1997.
[Ha96] Hall, A.: "Using Formal Methods to Develop an ATC Information System." IEEE

Software March 1996: 66-76.
[Ja99] Jackson, D.: "A Comparison of Object Modeling Notations: Alloy, UML, and Z."

Http://sdg.lcs.mit.edu/~dnj/publications.html, August, 1999.
[Ja00a] Jackson, D.: "Automating First-Order Relational Logic." ACM Foundations of Software

Engineering (2000).
[Ja00b] Jackson, D.: "Enforcing Design Constraints with Object Logic." Static Analysis

Symposium 2000 June/July 2000. Springer Verlag.
[Ja01a] Jackson, D.: "Alloy Revisited." IFIP 2.9, Hawks Cay, Florida, February, 2001.
[Ja01b] Jackson, D.: "Alloy: A Lightweight Specification Language Draft Language Notes."

MIT Lab for Computer Science, January, 2001.
[Ja01c] Jackson, D.: "Alloy: A Micro Modelling Language." IFIP 2.3, Santa Cruz, January,

2001.
[JMS98] Jahanian, F.; Mok, A.; Stuart, D.: "Formal Specification of Real Time Systems." TR-88-

25. Department of Computer Sciences, The University of Texas at Austin, 1988.
[JSS00] Jackson, D.; Schechter, I.; Shlyakhter, I.: "Alcoa: The Alloy Constraint Analyzer."

Proceedings International Conference on Software Engineerin June 2000.
[La98] Larman, C.: Applying UML and Patterns. Prentice Hall, 1998.
[MN01] Mattolini, R.; Nesi, P.: "An Interval Logic for Real-Time System Specification." IEEE

Transactions on Software Engineering March/April 2001.
[MP92] Manna, Z.; Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.

Springer Verlag, 1992.
[OM01] OMG. "OMG Unified Modeling Language Specification." V1.4 draft, February, 2001.
[RG00] Richters, M.; Gogolla, M.: "Validating UML Models and OCL Constraints."

Proceedings UML 2000 (2000).
[WK99] Warmer, J.; Kleppe, A.: The Object Constraint Language : Precise Modeling with UML.

Addison-Wesley, March, 1999.
[Za00] Parallel and Distributed Computing Handbook. Edited by Albert Zomaya. McGraw-

Hill, 1999.

