
Testing During Refactoring: Adding Aspects to Legacy Systems

Michael Mortensen
Hewlett-Packard

3404 E. Harmony Road, MS 88
Fort Collins, CO 80528

Sudipto Ghosh, James M. Bieman
Computer Science Department

Colorado State University,
Fort Collins CO 80523, USA

Abstract

Moving program code that implements cross-cutting
concerns into aspects can improve the maintainability of
legacy systems. This kind of refactoring, called aspectu-
alization, can also introduce faults into a system. A test
driven approach can identify these faults during the refac-
toring process so that they can be removed. We perform sys-
tematic testing as we aspectualize commercial VLSI CAD
applications. The process of refactoring these applications
revealed the kinds of faults that can arise during aspectual-
ization, and helped us to develop techniques to reduce their
occurrences.

Keywords: Aspect-oriented programming, refactoring,
legacy systems, test driven development, regression testing,
mock system, test coverage

1. Introduction

Refactoring systems by replacing cross-cutting code
with aspects can improve design structure [16]. The use of
aspects in the refactored aspectualized system helps mod-
ularize cross-cutting code concerns, thereby enhancing un-
derstandability and maintainability. As with any refactoring
technique, a systematic approach to testing is needed to en-
sure that new faults are not introduced.

In an aspect-oriented program, cross-cutting concerns
are modularized into aspects. The aspects are woven into
the primary code by a preprocessor, compiler, or run-time
system. An aspect includes advice, which is the function-
ality to be woven in, and a point-cut, which identifies the
locations in the primary code, called joinpoints, where the
advice is inserted. Advice specifies when it executes; thus
before advice executes before the joinpoint and after advice
executes after the joinpoint, while around advice executes
instead of the joinpoint but can execute the original join-
point. Aspect languages such as AspectJ and AspectC++
offer a set of pattern-matching mechanisms to match advice
to joinpoints. We use AspectC++ in this work, since we are

refactoring a legacy C++ system.
Our approach involves (1) identifying cross-cutting code

concerns and creating aspects, and (2) removing cross-
cutting code from the system and weaving in the aspects.
We are investigating the use of aspects in legacy systems to
improve modularity of scattered code, to enable fast debug-
ging, and to automatically enforce design policies.

Legacy systems present a challenge because of their
large size. During the creation of aspects, it is difficult to
experiment with changes in aspect pointcuts and advice due
to long compilation and weave times. We use mock systems,
“stub” systems that are orders of magnitude smaller than
the real application, to develop and validate aspect point-
cuts and advice before weaving them into the real applica-
tion. Using the mock system serves as a unit testing phase
in which we (1) identify essential characteristics of the real
application to create the mock system, (2) analyze the weav-
ing process to evaluate the use of aspects, and (3) apply
test coverage criteria defined in terms of the connections
between the aspects and the mock system.

In the integration testing phase, we test the refactored
legacy system to ensure that the original functionality has
not been broken. Again, we analyze the weaving process
and apply coverage criteria to ensure that the aspects are
woven correctly.

We developed a suite of tools to support weave analyses,
test execution, and coverage measurement. We used our ap-
proach to refactor two VLSI CAD applications. The weave
analysis and testing process detected a number of faults that
were introduced during aspect creation and aspect integra-
tion. This paper describes our test approach, the faults that
we detected, and potential faults that can occur.

In Section 2 we describe the applications being refac-
tored and some identified aspects. We explain our mock-
based unit testing and integration testing approach in Sec-
tion 3. We describe faults found during unit testing in Sec-
tion 4, and potential faults and actual faults found during
integration testing in Section 5. Related work is discussed
in Section 6, followed by our conclusions and directions for
future work in Section 7.

1

bieman
Text Box
Preprint. Published in Proc. Int. Symp. Software Reliability Engineering (ISSRE 06), pp. 221-230, 2006. 



2. Aspectualizing VLSI CAD Applications

We are refactoring VLSI CAD applications with As-
pectC++ [14]. These applications are based on an object-
oriented framework developed at Hewlett-Packard. The
refactored applications use our newly created aspect library
and continue to use the framework. This paper reports our
work with two framework-based applications: PowerAna-
lyzer and ErcChecker.

The PowerAnalyzer, which estimates power dissipa-
tion of electrical circuits, consists of 12,000 lines of C++.
The PowerAnalyzer is composed of 3 related executables
(PowerSrc, PowerCap, and PowerEst), and an application-
specific library (libPower) of common functions and
classes.

The ErcChecker performs electrical circuit checks such
as checking for proper transistor ratios and fan-out limits.
The ErcChecker tool consists of approximately 80,000 lines
of C++ code.

���������	��

����������������������

����� �����

We are refactoring cross-cutting concerns as aspects.
In order to provide necessary context for the refactoring-
related faults, we describe several of the aspects below.

2.1.1. An Extra-Functional Timing Aspect

Extra-functional concerns contain functionality that is not
part of the central task of an application [11]. The Power-
Analyzer contains a class, Timer, which is used through-
out the code to record the time taken by processing steps.
We re-implemented the calls using around advice to call
the Timer class so that we could instantiate the Timer be-
fore the joinpoint, execute the joinpoint, and then measure
and write the elapsed time to the log after the joinpoint.

2.1.2. An ErcChecker Policy for the Query Hierarchy

The ErcChecker implements 58 different electrical checks
as subclasses of an abstract base class ErcQuery. A static
method in each class, createQueries(), calls a com-
mon set of virtual methods in a manner similar to the Tem-
plate Method design pattern [6].

For each query, createQuery() performs the same
six conceptual steps. The first three steps identify circuit
data, create instances of query objects, and call the ex-
ecuteQuery() method. The last three steps add failing
queries to a container class (LevelManager), write query
data to a log file, and delete queries that did not find electri-
cal problems. Because of algorithmic and circuit-specific
differences, each query has its own executeQuery()
implementation. We created a QueryPolicy aspect for

steps 4 through 6 as after advice for the call to execute-
Query().

2.1.3. A Caching Aspect

Caching can improve performance of complex functions.
An aspect-oriented solution is more modular and plug-
gable, and can be shared across many different cached func-
tions [10].

We identified cached functions idiomatically since they
use a static set or map. The ErcChecker contains 38 func-
tions that separately implement caching. The aspect uses a
list of pointcut expressions to specify where caching should
be woven in. In addition, the aspect can enable or disable
features such as cache profiling [13].

3. Unit and Integration Testing of Aspects

The process of aspectualization can be summarized with
the following steps:

1. Inspect application code for duplicate, tangled code.

2. Create an aspect by using a small mock system to iter-
atively develop and unit test a prototype aspect.

3. Refactor the application to use aspects by removing
duplicate or cross-cutting code from the application
and then weaving the aspects.

4. Conduct integration testing of the refactored applica-
tion by running regression tests.

The process is iterative — we repeat Steps 2, 3, and 4
to develop each aspect. At the end of the overall process
many aspects can be created. This section focuses on the
unit testing of aspects with the mock system and the integra-
tion testing of the aspectualized application with regression
tests.

!"���#�$��
&%#� ��'(�
�*)+

'�,-�

Our coverage goals depend on the phase of the aspectual-
ization process. Testing the mock system with aspects (Step
2, above) aims to identify problems with the introduced as-
pects and how they are woven with the mock system. Inte-
gration testing of the refactored application (Step 4, above)
focuses on regression testing.

Coverage of the Woven Mock System: To test the refac-
torings with the mock system, we want to ensure that each
introduced aspect is covered by the test cases. We define
joinpoint coverage as testing each advice body in the con-
text of each matching joinpoint. We also seek to satisfy
statement coverage of the woven mock system.

2



Coverage of the Refactored Application: We evaluate
joinpoint coverage for testing the mock system to verify that
advice has been tested in all execution contexts. We relax
the requirement of full system statement coverage. Since
regression tests already exist for the original application,
coverage of the application primarily measures the effec-
tiveness of the existing regression tests.

!"�.�/�102�3�4�65������������876�4��9:'*;<
"�>=:?
@"���A� B

The mock system is created before an aspect is imple-
mented. The mock system’s joinpoints must use naming
conventions and structures that are consistent with the real
application structure but on a much smaller scale: hundreds
of lines of code instead of tens of thousands. Such similar-
ity allows aspects to be moved with little or no change to
the real application for weaving.

We can create the mock system by implementing a small
subset of the classes and methods of the real application.
The mock system implements just enough functionality to
test the aspects. The aspect is created and tested within the
mock system. To perform unit testing, we weave the aspect
with the mock system, and test until we satisfy joinpoint
coverage.

Analysis of the weave identifies unused advice as an er-
ror. In addition, for each advice of each aspect, we annotate
some methods or functions in the mock system to indicate
whether or not they should have advice. These annotated
methods are checked to ensure that the expected advice was
woven or not, depending on the annotation. Weave analysis
is done during unit and integration testing.

!"�C!��	D��
�A���
��'E���-

�F5�� �G�������H
#IJ��9��LKJ��MN� �O����'�,.�
�-P���QRKJM�MS,��4��'E���-
/�

Once the aspects have been tested with the mock sys-
tem, they are ready to be woven with the real application.
The application is prepared for weaving by removing du-
plicated scattered code, and restructuring or renaming core
concerns so that pointcut statements in the aspect can match
the desired joinpoints in the program. The aspects are then
woven with the application. We use the existing regression
test suite associated with the application to perform integra-
tion testing with the aspects.

Joinpoints that are not executed by the integration tests
are flagged as untested. If tests fail during integration test-
ing, the aspect developer typically needs to determine the
root cause of a defect. Suspected root causes can be simu-
lated in the mock system before taking the time to modify,
weave, and compile the real application.

The aspects are instrumented to gather joinpoint cov-
erage data during integration testing, and the weave is

checked for advised methods without advice and for unused
aspect advice.

!"�UT��15�
"
/,V?��3�4�A�

We implemented three new tools to be used in our ap-
proach:

1. Advice Instrumentation: supports coverage analysis.

2. Aspect and System Coverage Measurement: analyzes
dynamic test results to measure joinpoint coverage to
check statement coverage of the mock system.

3. Weave Analysis: checks for unused advice or advised
methods without advice.

The testing concepts are general and can be applied to
other languages such as AspectJ. However, our tools are
specific to AspectC++. They leverage features of the As-
pectC++ weaver, which writes information about the weave
to an XML file for use by IDEs such as Eclipse1. The XML
weave file documents the methods and functions associated
with advice and joinpoints [15].

Weave Analysis: The weave analyzer parses the XML
weave file to identify any unused aspects and unadvised
methods. The XML file lists each aspect with its pointcuts
and advice locations (with file identifiers and line numbers).
Each joinpoint in the C++ program that matched a pointcut
is listed, along with a source code identifier and line num-
ber. This information is used to generate a list of unused
advice. Weave analysis also checks annotations, which can
specify that a method should or should not be advised. An-
notations can also specify by name the aspect that should
(or should not) advise a method.

The list of annotated methods and functions is cross-
referenced against the line numbers of function and method
bodies associated with joinpoints in the XML weave file.

Advice Instrumentation: Advice instrumentation pro-
vides us with coverage of aspects with respect to the context
(joinpoint) in which they were executed. Existing statement
coverage tools work on the woven code, but determining
advice coverage requires knowledge of the original (pre-
weave) aspect and core concern code.

We preprocess the advice and insert a C++ macro with
the original source line number and an AspectC++ con-
struct, JoinPoint::JPID, which corresponds to the
joinpoint id. This information allows us to compute join-
point coverage, as explained below.

1www.eclipse.org

3



Coverage Analysis: Existing statement coverage tools
can check coverage of all mock code during unit testing.
We use gcov2 on the woven code to measure statement
coverage and filter out AspectC++-specific constructs from
the results so that we can measure coverage of the original
(pre-woven) system. The mock system coverage has helped
us identify unnecessary mock system code (e.g., base class
method that is always overridden) and untested code (e.g.,
error-handling code in the mock system).

Joinpoint coverage data is generated during regression
runs from code inserted during advice instrumentation. The
generated data includes the original source code line num-
ber of the advice and the joinpoint id, which is cross-
referenced with the XML weave file to determine if join-
points with advice were missed during testing.

4. Faults Uncovered During Unit Testing of As-
pects

The following discussion describes faults that we en-
countered during aspect development in the mock system
and how we found them.

T������NWX
/�-�
�������65�
"
Y?/�A��

���

If the pattern used in a pointcut is too strong or restric-
tive, some required joinpoints may be missed [1]. The
most extreme case of a pointcut being too strong is when
it matches no part of the mock system. This occurred sev-
eral times during the initial development of an aspect (due
to an incorrect pattern, or failure to account for C++ name-
spaces, or an incorrect return type). The weave analysis
identifies such unused advice as an error.

T��.�/�NWX
/�-�
�������65�
"
[ZH� '(=

A pointcut that is too weak results in advice matching
unintended joinpoints in the mock system [1]. Annotations
can catch some of these joinpoints. For example, annota-
tions used in the mock system that tested caching perfor-
mance flagged advice that applied to too many functions.

Weak pointcuts are difficult to detect with annotations
since finding them depends on how many annotations are
in the mock system. Annotating every method could
strengthen the analysis, but the cost of so many annotations,
even in the mock system, would be high.

Joinpoint coverage ensures that we test all contexts
where advice is used. Advice woven in unexpected places
can cause program state changes or output changes, which
would then be caught by tests.

2http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

T��C!"�SD�����

����� �O�6KJQ�%��-���]\^� 9�'�%��4

�

Even when pointcuts are correct, the advice woven in can
contain errors. Alexander et al. [1] give several examples of
how this can happen, including failures related to postcon-
ditions, control flow, and program state. Joinpoint coverage
helps detect these behavioral (run-time) errors by requiring
that advice be tested in the context of each joinpoint of the
mock system.

T��UT��1KJQ�%��-���_?
@��
��'E`:ab����

���

Because AspectC++ uses a source-to-source weaver, the
woven code must be compiled. While many syntax errors
in advice cause a weave-time error, some errors in the ad-
vice body are not caught until compiling the woven code.
As long as the advice is woven somewhere in the system,
this error will be caught. For example, template-based ad-
vice and static joinpoint types in AspectC++ may weave
correctly, but result in syntax errors when the woven code
is compiled. Our approach helps in two ways. First, un-
used advice is flagged. Second, using a small mock system
provides fast feedback since mock systems compile in sec-
onds, while compilation of the ErcChecker takes 15 minutes
on our current system.

5. Potential and Observed Integration Faults

Faults can and did occur during the process of integrat-
ing the aspects into the application code. The fault types
described in this section include actual faults that we dis-
covered during integration testing, and faults that can po-
tentially occur.

c����#�SD�����
/���A�-�G�A�&�
�JdJ� ��'�B8�����

Explicit calls to the Timer module were removed from
the PowerAnalyzer. Because the code lacks common struc-
ture and naming conventions, the methods that used the
Timer class were renamed to begin with a common prefix
(tmr) so that a single pointcut in the TimeEvent aspect
would match them.

We renamed the methods manually, although an Inte-
grated Development Environment (IDE) could help auto-
mate this process. Failure to update calls to renamed meth-
ods resulted in compiler errors, making this fault easy to
find. Annotations were used to check the weave output to
ensure that advice was woven to methods after renaming.

c��.���$;e�-����� QLD��
%#
"��'E���-
/�R
#IbaX`��A��'(�O�A� Qf;<����9"�

"Q��

Another challenge was that some of the application code
was written as large, procedural functions with many calls

4



to the Timer module. For this function, Fowler’s “Ex-
tract Method” refactoring [5] was first used, with the ex-
tracted method names beginning with tmr so that the point-
cut would match them. When a new method is extracted, we
must ensure that it is invoked where it is extracted. State-
ment code coverage can help identify dead code.

Using name-based pointcuts results in tight coupling that
can break during maintenance due to name changes in meth-
ods [17]. This naming convention must be maintained over
time so that exactly the desired methods are associated with
the TimeEvent aspect. Since the PowerEstimator’s re-
gression tests focus on functionality, an error associated
with timing might not be immediately detected.

c��C!��
�	
/B8B*
/�2WX
/,-�-��@2gh
"� �ji2
#�VkV�4�XK+,�,��	'(��� �

When refactoring ErcQuery subclasses in the Erc-
Checker to use an aspect, we found that some classes
had a much simpler structure. This simplified structure
meant that a method that the aspect always calls, error-
Generated(), was not used by those subclasses.

The aspect-based refactoring could insert a fault if
the executeQuery() method of a subclass failed to
set an object state variable that is used by the error-
Generated() method. We inspected the methods of all
the sub-classes to validate that their respective execute-
Query()methods set the required attribute used by the in-
herited method. Refactoring to an aspect did not introduce
a defect, but it was a source for a potential defect.

c��UT"���	
/����� l"��� ����� �VIm��
/Bn\^'(���o��,-'(���b��9�'����#� �

Some sub-classes of ErcQuery contained class-
specific code that called methods not inherited from the base
class to record query-specific details used for validating and
debugging the electrical checks.

We refactored the class-specific code into a new method,
logQueryDetails() that is directly called by the pol-
icy aspect. This required modifying the base class to pro-
vide an empty default implementation for queries that do
not need this functionality. Classes that did not need the
functionality simply overrode the logQueryDetails()
method.

Since adding an empty method to the base class is
a one line change, we added the method directly to the
C++ header file rather than using an AspectC++ introduc-
tion. Creating logQueryDetails() required moving
the query-specific code into the method body and changing
method invocations to intra-class calls.

We must ensure that we removed all the query-specific
logging from createQueries(), since any missed code
would reference a deleted object and result in program ter-
mination. Integration testing must ensure that all modified

queries are tested.

c��.c��1KJ�����-Q��&�
�A'�,p��
"Q��qgr��M3,��-��'(���-

�

The QueryPolicy aspect deletes query objects that
do not find electrical errors. When refactoring core con-
cerns, code that deletes these objects must be removed, or
else the same object may be deleted twice, introducing a
defect. Manual aspect-oriented refactoring is asymmetric,
since the duplicated code (such as delete) must be man-
ually removed, but the advice code is automatically woven
in. One occurrence of this defect was found during integra-
tion testing, resulting in a memory fault. We modified the
mock system to recreate this fault. Embedding a fault in
the mock system used the mock as a canonical example of
incorrect usage and helped validate the root cause.

c��Cs"�1\^��

=��&�tdJ� �#��� ���A�-

�t5������A�

Refactoring scattered code to a single aspect standard-
ized output logging. This caused system regression tests
that use output logs to fail. Although output standardiza-
tion should improve the maintainability of the ErcChecker,
it does require a one-time update of the expected test output
files and manual inspection of the changed output to vali-
date its correctness.

c��-u
�XKJ��MN� �O�v?/�A'���Q�'���QS�-P�'E���-
/�wdJ��%#� '�,-�[Wx�>�4

�
k�'��3,4�A�

The QueryPolicy aspect is woven into all calls
to executeQuery(), consistently applying the policy
through advice. During refactoring, we found that one
query failed to provide any information to the log file, but
was otherwise correct. Changing to the aspect fixed this
oversight, eliminating an existing subtle defect. Although
this defect could have been found through inspection, using
an aspect ensures the policy will be enforced.

6. Related Work

Several researchers have exlored techniques for refactor-
ing systems using aspects [4, 7, 16]. Our work focuses on
mock systems and on applying aspects to framework-based
applications. Bruntink et al. [3] explored identifying aspects
using clone detection tools.

We use two key ideas from test driven development:
mock systems and using tests to drive development [2]. Our
mock systems are analogous to mock objects created dur-
ing test driven development to emulate a complex system
dependency.

Lesiecki [9] uses mock objects and mock targets to help
unit test aspects and uses visual markup in the Eclipse

5



IDE to verify that pointcuts affected the expected program
points. A mock target is similar to our concept of a mock
system. However, a mock target is created from an aspect to
unit test pointcut matching. By contrast, our mock systems
are created from the real system based on how we expect
aspects to be used in that system.

Alexander, Bieman, and Andrews [1] describe key prob-
lems related to testing aspects and potential faults. Our
joinpoint coverage is similar that used by Mortensen and
Alexander [12]. Other proposed aspect coverage criteria in-
clude dataflow coverage [19], path coverage [8], and state-
based coverage [18]. Dataflow and path coverage require
static program analysis that is beyond the scope of our work.
Our legacy systems do not have state diagrams that could
guide state-based testing.

7. Conclusions and Future Work

We presented a systematic approach to aspectualizing
and testing large legacy systems. Mock systems enable as-
pect developers to quickly experiment with different point-
cuts and advice, and iteratively develop and test aspects.
Weave analysis and coverage-based testing help validate as-
pects within the mock system. Regression testing, weave
analysis, and code coverage analysis ensure that aspects do
not introduce new faults in the original system.

We are developing guidelines and patterns for creat-
ing and using mock systems when refactoring large sys-
tems. We are also interested in the evolution of refac-
tored systems, and the co-evolution of mock systems. Prag-
matic work can also explore the newly updated AspectC++
Eclipse plug-in to evaluate how well IDE features could be
used along with our approach.

Our approach has focused on before, after, and
around advice. We could also explore using mock sys-
tems with other aspect constructs, including introductions,
exception softening, and advice precedence.

References

[1] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards
the Systematic Testing of Aspect-Oriented Programs. Tech-
nical Report CS-4-105, Dept. of Computer Science, Col-
orado State University, March 2004.

[2] D. Astels. Test Driven development: A Practical Guide.
Prentice Hall Professional Technical Reference, 2003.

[3] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwe. On the use of clone detection for identify-
ing crosscutting concern code. IEEE Trans. Softw. Eng.,
31(10):804–818, 2005.

[4] Y. Coady and G. Kiczales. Back to the future: A retroac-
tive study of aspect evolution in operating system code. In
M. Akşit, editor, Proc. 2nd Int’ Conf. on Aspect-Oriented

Software Development (AOSD-2003), pages 50–59. ACM
Press, Mar. 2003.

[5] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Aug. 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1995.

[7] R. Laddad. Aspect-oriented refactoring part 1: Overview
and process. Technical report, TheServerSide.com, 2003.

[8] O. A. L. Lemos, J. C. Maldonado, and P. C. Masiero. Struc-
tural unit testing of AspectJ programs. In 2005 Workshop on
Testing Aspect-Oriented Programs (held in conjunction with
AOSD 2005), March 2005.

[9] N. Lesiecki. Unit test your aspects. Technical report, Java
Technology Zone for IBM’s Developer Works, Nov. 2005.

[10] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic ad-
vice: On the combination of AOP with generative program-
ming in AspectC++. In Third International Conference
on Generative Programming and Component Engineering
(GPCE’04). ACM, 2004.

[11] D. Lohmann, O. Spinczyk, and W. Schrder-Preikschat. On
the configuration of non-functional properties in operating
system product lines. In D. H. Lorenz and Y. Coady, editors,
ACP4IS: Aspects, Components, and Patterns for Infrastruc-
ture Software, Mar. 2005.

[12] M. Mortensen and R. T. Alexander. An Approach for Ad-
equate Testing of AspectJ Programs. In 2005 Workshop on
Testing Aspect-Oriented Programs (held in conjunction with
AOSD 2005), March 2005.

[13] M. Mortensen and S. Ghosh. Creating pluggable and
reusable non-functional aspects in AspectC++. In Proceed-
ings of the Fifth AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, Bonn, Germany,
Mar. 20 2006.

[14] M. Mortensen and S. Ghosh. Using aspects with object-
oriented frameworks. In Proceedings of the 5th Interna-
tional Conference on Aspect-Oriented Software Develop-
ment (AOSD 2006) Industry Track, March 2006.

[15] Olaf Spinczyk and pure-systems GmbH. Documen-
tation: AspectC++ Compiler Manual, May 2005.
http://www.aspectc.org/fileadmin/documentation/ac-
compilerman.pdf.

[16] P. Tonella and M. Ceccato. Refactoring the aspectizable in-
terfaces: An empirical assessment. IEEE Trans. Softw. Eng.,
31(10):819–832, 2005.

[17] T. Tourwé, J. Brichau, and K. Gybels. On the existence of
the AOSD-evolution paradox. In L. Bergmans, J. Brichau,
P. Tarr, and E. Ernst, editors, SPLAT: Software engineer-
ing Properties of Languages for Aspect Technologies, Mar.
2003.

[18] D. Xu and W. Xu. State-based incremental testing of
aspect-oriented programs. In Proceedings of the 5th Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD 2006), March 2006.

[19] J. Zhao. Unit testing for aspect-oriented programs. Tech-
nical Report SE-141-6, Information Processing Society of
Japan (IPSJ), May 2003.

6




