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SUMMARY

Scientific programmers can speed up function evaluation by precomputing and storing function results in
lookup table (LUTS), thereby replacing costly evaluation code with an inexpensive memory access. A code
transform that replaces computation with LUT code can improve performance, however, accuracy is reduced
because of error inherent in reconstructing values from LUT data. LUT transforms are commonly used to
approximate expensive elementary functions. The current practice is for software developers to (1) manually
identify expressions that can benefit from a LUT transform, (2) modify the code by hand to implement the
LUT transform, and (3) run experiments to determine if the resulting error is within application requirements.
This approach reduces productivity, obfuscates code, and limits programmer control over accuracy and
performance. We propose source code analysis and program transformation to substantially automate the
application of LUT transforms. Our approach uses a novel optimization algorithm that selects Pareto Optimal
sets of expressions that benefit most from LUT transformation, based on error and performance estimates.
We demonstrate our methodology with the Mesa tool, which achieves speedups of 1.4-6.9x on scientific
codes while managing introduced error. Our tool makes the programmer more productive and improves the
chances of finding an effective solution. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Math-intensive scientific codes are often performance limited by elementary functions such as
sin, exp, and log that consume many CPU cycles. For example, calling cos in the math library
is 35-45x slower than floating-point addition on current architectures. A lookup table (LUT)
improves the performance of function evaluation by precomputing and storing function results,
thereby allowing replacement of subsequent evaluations with less expensive memory lookups [1, 2].
Practical concerns limit the size and accuracy of LUT results, so LUT methods inevitably introduce
error to gain performance.

Hardware designers have long used LUTs to improve elementary function performance [3, 4].
Dedicated memory is expensive in hardware, but linear interpolation and polynomial reconstruction
can provide high accuracy with small LUTs [5]. Scientific programmers use similar LUT techniques
to expedite function evaluation. For example, the Fastest Fourier Transforms in the West (FFTW)
libraries incorporate cos and sin tables to achieve “significant reductions in computation time” [6].
As another example, the Rapid Radiative Transfer Model (RRTM) software uses LUT transforms
for exponential and tau functions, yielding a 1.75 x improvement on code that consumes 25% of the
execution time of a global climate model [7].
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2 C. WILCOX ET AL.

Table 1. Results of LUT optimization with Mesa.

(Intel Core 2 Duo, E8300, family 6, model 23, 2.83GHz, single core)

Application Original | Optimized | Performance Maximum Memory
Name Time Time Speedup Error Usage

Saxs Scattering 19655 39,05 6.8X 4.06 x 10°%
(discrete)
Saxs Scattering 14 4 2.55 4.0X 148x10*%  4MB
(continuous)
Stillinger-Weber 44 ¢ 10.4s 14X 291x10%%  1MB
(simulation)
Dcuralie f ozl B=T0% 3.65 22X 870x10%%  4MB
(logistics)
Neural Network 4 g 3.9s 2.8x 630x10"%  4MB
(hypertan)
ERRLE 242ns S6ns 43X 821x10°%  4MB
(slope aspect)
ERMS 13.7s 6.1s 22X 297x10*%  4MB

(solar radiation)

Lacking a methodology and tools, scientific programmers typically transform source code by
manually inserting LUT code. The ad hoc nature of such transforms makes it difficult to predict
and control application accuracy and performance. Developing performance code by hand is also a
substantial effort that impacts programmer productivity [8] and can obfuscate application code [9].
We propose a methodology and algorithms that make LUT development more efficient and effective.
We demonstrate our approach with Mesa [10], a tool that uses program analysis and transformation
to substantially automate the application of LUT transforms.

Our interest in LUT methods started with application code that we wrote for the Small Angle X-
ray Scattering (SAXS) project [11]. We reduced the execution time of our original code by manually
incorporating a LUT transform for the dominant calculation. Through lengthy experimentation we
achieved an application speedup of 6-7x while maintaining reasonable accuracy. However, the
manual process was inefficient and provided limited control over accuracy and performance.

Table I shows the results achieved using the latest version of Mesa to performance-tune the SAXS
code and five additional scientific applications. The performance speedup, calculated as the ratio of
the original time divided by the optimized time, varies from 1.4-6.9x. The maximum error shown
is the difference between the output of the original and optimized applications. The evaluation of
these applications is described in Section 6.

In prior papers, we described versions 1.0 [12] and 1.1 [13] of Mesa. Mesa 1.0 lacked support
for domain profiling and linear interpolation and required the user to manually identify candidate
expressions in the source code. With Mesa 1.1 a user could apply LUT transformation to expressions
in C and C++ source code by identifying the relevant statements with pragmas, thereby operating
directly on application source code. The dissertation by Wilcox [14] includes a comprehensive
description of our research on automated LUT transformation and the development of Mesa 2.0.
This paper extends our SCAM 2012 conference paper [15] by adding information on analytic versus
numerical error analysis algorithms, several optimizations associated with expression enumeration,
a more thorough treatment of threats to validity and related work, and more information on trends
in cache availability and the parallel efficiency of code generated by Mesa.

This paper introduces our approach to optimizing the selection of expressions for LUT
transformation to maximize the benefits and minimize costs. The current version of Mesa is
a source-to-source translation tool that automatically finds and evaluates candidate expressions
through source code analysis and program transformation. Mesa finds the most effective set of
LUT transforms by building and solving a multi-objective LUT optimization problem. Our goal
is to identify sets of expressions that provide the most performance benefit with the least impact
on accuracy. Error analysis and a performance model provide the criteria for choosing between
potential LUT transforms.

The contributions of this research are as follows:

* A comprehensive methodology and tool support to apply LUT transforms to source code,
* error estimation and a performance model to characterize LUT transforms,

* anovel LUT optimization technique that maximizes performance and minimizes error, and
* case studies that demonstrate the effectiveness of our methodology and tool.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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Figure 1. Table Data for Exponential Function

2. BACKGROUND

We present LUT terminology using example LUT data for exp(z), as shown in Figure 1. We restrict
the input values to 0 < z < 1 so the LUT domain is limited to [0, 1]. The exponential function is
f(z) and its approximation via the LUT is [(x). Tables are created by partitioning the domain into
uniform intervals, and assigning a LUT entry for each interval. The number of intervals is the LUT
size, which is 16 for our example. The interval width represents the LUT granularity. Equation 1
shows the relationship between domain, granularity, and size, from which we compute a granularity
of 0.0625 for both tables.

Granularity = Domain/Size (1)

The performance and accuracy of a LUT transform depend on how LUT data is sampled.
Common sampling methods are direct access and linear interpolation. Direct access simply finds
the interval that contains the input value and returns its LUT entry. Linear interpolation selects the
two closest LUT entries and combines them according to their respective distances from the exact
input. Figure 1 shows direct access and linear interpolation sampling for a table with 16 entries.

LUT error is the absolute difference between a function and its LUT approximation. In Figure 1
the error is the distance between f(z) and I(x), plotted separately as e(xz). Each step in I(x)
represents a single LUT entry. For direct access the maximum absolute error is 0.0836; for linear
interpolation the maximum absolute error is 0.0013. The equations for computing the maximum
error are given in Section 4. The graphs illustrate that linear interpolation yields much smaller error
terms (we reduced the error scale as shown on the right side of the graph by two orders of magnitude
for linear interpolation to make the smaller error visible).

Regardless of the sampling method, the purpose of a LUT transform is a reduction in execution
time that we refer to as LUT benefit. We compute the benefit as the difference between the cost
of expression evaluation and the cost of LUT access. Linear interpolation has less benefit because
of the extra LUT access and computation, and is therefore 1.5-1.8x slower than direct access on
current architectures.

3. DEFINING THE LUT OPTIMIZATION PROBLEM

Following current practice a programmer must explicitly identify candidate expressions and
manually apply LUT transforms. The primary contribution of this paper is the automatic selection
of expressions for which LUT transforms are most effective, meaning they provide the highest
performance benefit with the least error. Our algorithm (1) enumerates expressions within the
subroutines specified by the programmer, (2) estimates the error and performance impact of
applying a LUT transform to each of these expressions, and (3) constructs and solves a numerical
optimization problem that selects the most beneficial expressions from the enumeration.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOL: 10.1002/smr



4 C. WILCOX ET AL.

INPUT VALUES

D;: real - input domain for expression
M;: real - maximum slope for expression
B;: real - potential benefit for expression
C'S: integer - cache size

VARIABLE DEFINITIONS

X;: boolean - expression selector

S;: integer - table size (0 < S; < CS)

E;: real - computed as (D;/S;) * (M;/2.0)

PROBLEM OBJECTIVES
maximize TotalBenefit = ) ((X;?1:0)*B;) - maximize benefit
minimize TotalError = > ((X;?1:0)*E;) - minimize error

CACHE CONSTRAINT
>>S; = CS - use entire cache

INTERSECTION CONSTRAINTS
X; + X; <1, for intersecting X; and X;

Figure 2. Mathematical definition of optimization problem.

To find the most effective set of LUT transforms, Mesa builds and solves a mixed-integer, non-
linear, multi-objective optimization problem. The problem is mixed-integer because error terms
are represented as real numbers and memory usage and performance benefits are integer values.
The relationship between error and memory usage is non-linear. The problem is multi-objective
because it attempts to minimize error while maximizing performance, thus it optimizes multiple
independent objective functions. Optimization theory provides several methods for finding Pareto
Optimal solutions to multi-objective problems, which are defined as those solutions that have the
most favorable tradeoff between conflicting objectives.

In optimization terms, a solution is a set of expressions (X;) for which we wish to minimize
the sum of errors (£;) and maximize the sum of benefits (B;). The error is computed based on an
equation that takes into account the LUT size (5;), domain (D;), and slope (};) of the function
within the domain. The optimization constrains LUT data to fit within the cache size specified by
the programmer. Figure 2 shows the mathematical definition of the LUT optimization problem.

Before running Mesa, the programmer identifies the optimization scope by inserting pragmas
above subroutine definitions in C source code (or method definitions in C++). Mesa considers LUT
transforms for expressions in the bodies of these subroutines. Mesa can optimize any number of
methods in a single pass, however, the cost of analysis increases quickly as methods are added.
Within the specified methods, Mesa enumerates only expressions that contain elementary function
calls, and the optimization is based on a model of the error and benefit for each of these expressions.

The complexity of the LUT optimization problem is exponential, with up to 2V solutions for N
expressions. To reduce the computational complexity, we have developed an algorithm for culling
the solution space when [V is large. The LUT optimization problem has competing objectives, thus
it produces multiple optimal solutions. Our algorithm discards suboptimal solutions, leaving the
programmer to select from the much smaller set of Pareto Optimal solutions, which are ranked by
accuracy and performance.

4. SOLVING THE LUT OPTIMIZATION PROBLEM

As previously stated, the LUT optimization problem is mixed-integer and non-linear. Optimization
frameworks exist that handle these attributes, however, our problem is unusual because the solver
must simultaneously select expressions and allocate cache for them. As a result we have not yet been
able to use existing solvers including Couenne, Bonmin, and MINLP [16]. Our solution to the LUT
optimization problem is divided into two parts. The first part allocates cache memory for the LUT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOL: 10.1002/smr



LUT PROGRAM TRANSFORMATIONS 5

data associated with each solution. We call this local optimization. The second part selects the set of
LUT transforms that are Pareto Optimal. We call this global optimization. We now present several
algorithms that we use to construct and solve the LUT optimization problem. First we describe
estimation of the error introduced by a LUT transform. Next we describe the performance model
that estimates the potential benefit of a LUT transform. Finally we address our methodology for
solving the local and global optimization problems.

4.1. Error Analysis

Error analysis provides an estimate of the maximum error for single LUT transforms, which we
use as a proxy for application error. A better solution would be to characterize the propagated error
error through the entire application. Techniques such as interval analysis can bound introduced
error through a sequence of operations [17], but this is beyond the scope of our work as we discuss
in 7. Our methodology instead provides support for empirically measuring application error for
representative inputs.

Equation (2) shows the error equation for direct access. The maximum error depends on the LUT
size, input domain, and the function slope over the domain. The domain is known so we compute
only the maximum slope, deferring the LUT size computation until local optimization. The error is
inversely proportional to LUT size, so a 2x increase in size decreases error by 2x.

MaxError = (Domain/Size) * (MaxSlope/2) ()

Equation (3) shows the error computation for linear interpolation [18]. The maximum delta is the
maximum change in the function slope over the domain because the error for linear interpolation is
related to the curvature of the function over the interval. Because the error term contains the square
of the granularity, a 2x increase in size decreases the error by 4.

MaxError = (Domain/Size)? * (MaxDelta/8) 3)

The error equations require the maximum slope (direct access) or delta slope (linear interpolation)
of the function that we are replacing with a table lookup. For elementary functions we can use
analytic methods to find the maximum slope over the domain interval. This requires the integral (and
sometimes the derivative) of the function, which is not trivial to compute for arbitrary expressions.
For this reason Mesa uses numerical methods, which are slower but more robust. Numerical methods
must traverse the entire domain to find the maximum slope or delta slope.

The most straightforward numerical method is exhaustive traversal of the domain. This method
is highly accurate but requires extensive sampling. To improve performance we experimented
with stochastic sampling, which greatly reduces the number of samples, but we have not found
a reliable method for deciding how many samples are needed to get an accurate estimate of the
slope. We found the most reliable method to be boundary sampling, which evaluates the slopes at
the boundaries of each LUT interval. For direct access, the method evaluates the function at the left
and right boundary of each LUT interval, giving us the two values needed compute the slope. For
linear interpolation, the method adds an evaluation at the interval center, which gives us the three
values needed to compute the delta slope. The boundary method has proven to be very accurate for
tables of all sizes, and it has the advantage that the number of samples required is proportional to
the LUT size instead of the domain size. A comparison of error methods is shown in [14].

4.2. Performance Modeling

Performance modeling estimates the benefit associated with each LUT transform based on
the execution time of arithmetic operators, elementary functions, and memory access. Mesa
incorporates a benchmark that measures the average performance of these operations for direct
access and linear interpolation.

Equation 4 shows the performance model, which uses a count of the arithmetic operators and
elementary function calls per expression. These counts are multiplied by the cost of each operation,

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOL: 10.1002/smr
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and the LUT access time is subtracted. For linear interpolation, the result is divided by the relative
performance compared to direct access. This result is an estimate of the benefit of replacing the
expression with a LUT access.

Benefit = ((Cost(Op) * Count(Op)) — Cost(Access)) * Frequency 4)

For example, consider the optimization of an expression with a cosine call. On our test system the
sine call takes 45ns. Subtracting 7.4ns for the LUT access gives a savings of 37.6ns per execution.
We multiply this by the call frequency to get the total expression benefit. For example, a call
frequency of 108 for the same expression would yield a benefit 37.6nsx 10® or 3.76s. When the
expression is optimized with linear interpolation, the benefit would be reduced by the relative factor,
which is ~1.8x on our test system, leading to a benefit of 2.09s.

We do not expect the performance model to predict exact timing. Instead, it establishes the relative
performance to allow comparison of solutions. Even so, we are often within 5-10% when estimating
performance speedup for individual elementary functions. When optimizing code with multiple
elementary function calls, the model tends to overestimate benefit, mainly because it does not model
compiler optimizations. However, our case studies show that our estimates are usually within ~1-2x
of the actual performance benefit.

4.3. Local Optimization

The purpose of local optimization is to find the optimal allocation of cache resources for the set of
expressions within each solution. Equation (5) shows the closed-form formula that computes LUT
sizes for each LUT transform to minimize solution error [14]. A variant of the formula directly
computes the maximum error for a single LUT access, as shown in Equation (6).

S;=CS/| > \/(M;D;/M; D) 5)

j=1l.n

E;=MD; | Y \/(M;D;/M;D;) | /CS (6)
=1..

i n

J

4.4. Global Optimization

We find Pareto Optimal solutions by sorting the solutions by estimated error and performance, and
selecting solutions that lie on the convex hull. To find the convex hull we use a modified Graham
Scan algorithm [19]. Figure 3 shows the Pareto chart for the example code presented in Section 5.
Solution error is on the x-axis and solution benefit is on y-axis. To make the chart we plotted both
the Pareto Optimal (circles) and suboptimal (triangle) solutions. The Pareto solutions are joined
by a line called the Pareto curve. The optimal solutions CO through C4 lie above and the left of
suboptimal solutions, because they provide more performance with the same or less error.
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Figure 3. Pareto chart for example program.
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LUT PROGRAM TRANSFORMATIONS 7

As demonstrated in Figure 3, the Pareto curve gives insight into the effectiveness of the LUT
transforms that are combined into Pareto solutions. LUT transforms that contribute lots of benefit
but little error appear on the steep left side of the curve. LUT transforms that introduce lots of error
but little performance appear on the flatter right side of the curve. The programmer can examine the
Pareto curve and decide how much benefit is possible for the amount of error they can tolerate.

5. MESA TOOL

We have implemented error and performance models and optimization algorithms from Section 4 in
a standalone tool called Mesa. Mesa incorporates ROSE compiler infrastructure [20, 21] to support
static and dynamic source analysis and program transformation on C/C++ application code. Figure 4
shows the automated optimization methodology implemented by Mesa.

Figure 5 shows the example program that we use to explain our methodology and tool. The
performance of this code is limited by the computation of elementary functions, and the domain
of input values for the program enables us to satisfy accuracy requirements while fitting in cache
memory. We now describe the six stages of the methodology displayed in Figure 4 in terms of the

example code.
Original
Code o
 Interaction

Performance Profiling & |
Scope Identification

User
=1 Interaction
Expression Enumeration &
Domain Profiling

Error Analysis &
Performance Modeling _

R >
Construct & Solve
Optimization Problem |

L )
Code Generation & |
Integration

T

Optimized
Code :
User N
Interaction

Performance & Accuracy
Evaluation

Figure 4. Methodology for automated optimization.

#pragma LUTOPTIMIZE
double ScatterSample (Sample sample,

{
S35 double dProduct

S36 double dSumO = 1.0;
S37 double dSuml = 1.0;
S38
S39 /] Iterate geometry
S40 for (int j = 0; j < vGeometry.size (); j++)
S41 {
S42 dProduct = (sample.x % vGeometry[j].x)
S43 dSum0 += exp(dProduct) + sin(dProduct);
S44 dSuml += exp(dProduct) + cos(dProduct);
S45 }
S46
S47 // Return answer
S48 return dSumO % dSumO + dSuml * dSuml;
}
Figure 5. Source listing for example program.
Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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8 C. WILCOX ET AL.

Table II. Enumerated expressions for example code.

Expression Expression Statement Input
Identifier Description Identifiers Variables
X0 S43

exp(dProduct) dProduct
X1 sin(dProduct) S43 dProduct
X2 exp(dProduct) * sin(dProduct) S43 dProduct
X3 exp(dProduct) S44 dProduct
X4 cos(dProduct) S44 dProduct
X5 exp(dProduct) * cos(dProduct) S44 dProduct

Original : X0 N X2, X1 Nn X2, X3 N X5, X4 n X5
Introduced: X0 N X6, X3 N X6
Inherited: X2 N X6, X5 N X6

Figure 6. Intersection constraints for example program.

5.1. Stage 1: Performance Profiling and Scope Identification

In the first stage the user profiles performance by manually running a tool such as gprof to find the
most costly subroutines. For the example code, the subroutine ScatterSample consumes >90% of
the execution time. The user inserts the pragma shown in Figure 5 to identify the optimization scope
as the body of this subroutine. The pragma causes Mesa to evaluate expressions in statements S35
through S48 for potential LUT transforms.

5.2. Stage 2: Expression Enumeration and Domain Profiling

In the next stage Mesa enumerates expressions that are candidates for LUT transformation. Our
enumeration extracts expressions from statements within the optimization scope specified by
the user, rejecting those that do not match our criteria. For example, expressions must contain
one or more elementary function calls, since these functions are the focus of our methodology.
Enumeration extracts both individual elementary functions and more complex expressions that
combine elementary functions with arithmetic operators. Complex expressions are considered
because additional performance gains can occur when an expression with multiple elementary
functions is handled by a single LUT. The handling of complex expressions can also reduce memory
usage by with reducing the amount of LUT data.

Table II lists the enumerated expressions for statements S43 and S44 in Figure 5, labeled as
X0 to X5. For each expression we show the expression identifier, syntax, statement identifier,
and input variable. Extracted expressions can overlap other expressions in the same statement. For
example, expressions X0 and X1 are subsumed by X2 and expressions X3 and X4 are subsumed
by X35, so they cannot be simultaneously optimized. Mesa maintains infersection constraints that
prevent overlapping expressions from being combined into a solution. Figure 6 shows the original
intersection constraints for the example code.

During the enumeration stage Mesa performs a number of additional transformations that reduce
memory usage. First, Mesa combines similar expressions via expression coalescing. Coalescing
saves memory by sharing LUT code and data between two or more identical expressions. For the
example code, coalescing combines the identical exponential calls in X0 and X3 to create a new
expression X6. The coalesced expression introduces new constraints, since X0 and X3 are subsumed
by X6, and it inherits old constraints as shown in Figure 6

Second, Mesa supports parameter merging, which avoids the realization of unnecessary multi-
dimensional LUTs by merging input variables. To illustrate this we consider optimization of the
statement x = exp(y/z). Mesa extracts expressions for the exponential by itself and the entire
expression with the division. Optimizing the exponential is done with a single-dimensional LUT
indexed by (y/z), whereas the entire expression requires a multi-dimensional LUT indexed by y
and z. The latter requires significantly more memory for the same level of accuracy.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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LUT PROGRAM TRANSFORMATIONS 9

Table III. Input data for optimization problem.

Expression Expression Statement M B
Identifier Description Identifiers d f
X0 S43

exp(dProduct) 2.44 3.31 6.15s
X1 sin(dProduct) S43 2.44 1.00 8.15s
X2 exp(dProduct) + sin(dProduct) S43 2.44 3.67 16.40s
X3 exp(dProduct) S44 2.44 3.31 6.15s
X4 cos(dProduct) S44 2.44 0.95 9.40s
X5 exp(dProduct) + cos(dProduct) S44 2.44 2.38 17.65s
X6 exp(dProduct) S43, S44 2.44 3.31 12.30s

Finally, Mesa implements domain conditioning to take advantage of the cyclical nature of some
elementary functions, thus saving memory by reducing the input domain of the associated LUT
transform. For example, the sine and cosine functions are completely represented by the interval
from O to 27 radians. Input values outside of this domain can be mapped back into the interval by a
modulo operation or repeated addition and subtraction. We call this technique domain conditioning,
also referred to in the literature as parameter folding or range reduction [22].

After expression enumeration Mesa adds domain profiling calls to instrument the source code
to capture runtime data such as the domain of input variables and the execution frequency of
statements. The user must compile and run the instrumented code to perform the dynamic analysis.
At program completion the instrumented code stores profiling results for subsequent stages.

5.3. Stage 3: Error Analysis and Performance Modeling

Mesa applies the algorithms for error analysis and the performance model from Section 4 to compute
the maximum slope and performance benefit. Table III shows the candidate expressions and their
estimated error and benefit parameters, which is the input data for the optimization problem. D, is
the input domain, M; is the maximum slope, and B; is the potential benefit in seconds.

5.4. Stage 4: Solving the Optimization Problem

Mesa builds and solves the LUT optimization problem. Figure 7 is a partial listing from Mesa
that shows the optimization result, ending with the presentation of Pareto Optimal solutions to the
programmer. Mesa displays the number of possible solutions as 27 or 128 for the 7 expressions
extracted from the example code, and the number of actual solutions as 29 after intersection culling.
The 4x decrease in solutions is not unusual when expression coalescing is enabled because of
introduced intersection constraints. From these, Mesa finds five Pareto optimal solutions numbered
from CO to C4. Mesa shows these to the programmer along with the corresponding error and benefit
estimates. The listing gives absolute error, benefit in nanoseconds, and lists the expressions that
comprise each solution.

Figure 7 shows that the solutions range from CO, which has zero benefit and error, to C4, which
has the maximum benefit. The latter combines expressions X2 (exp(dProduct) x sin(dProduct))
and X5 (exp(dProduct) * cos(dProduct)), each of which contains two elementary function calls.
The coalesced exponential call X6 (exp(dProduct)) does not appear in the solution so expression
coalescing has not helped.

The listing further shows user selection of solution C4, which causes Mesa to replace expressions
X2 and X5 with LUT accesses. The X2 expression receives a cache allocation of 2270KB. This
is larger than the 1826KB allocation of X5 because X2 has a larger maximum slope. The global
optimization has identified the most effective LUT transforms based on the error and performance
model, for which the local optimization has allocated the ideal amount of cache.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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10 C. WILCOX ET AL.

128 solutions (possible)
29 solutions (actual)
5 solutions (pareto optimal)

Solution Error Benefit Optimizations
Co 0.000e+00 0.000e+00

Cl 2.759e+02 9.400e+09 X4

Cc2 6.921e+02 1.765e+10 X5

C3 1.881e+03 2.580e+10 X5,Xl1

C4 3.483e+03 3.405e+10 X5,X2

Select solution: 4

X5 Di=2.44 Mi=2.38 Ei=1.553e+03 Bi=1.765e+10
Si = 1869833 (1826KB)

X2 Di=2.44 Mi=3.67 Ei=1.930e+03 Bi=1.640e+10
Si = 2324471 (2270KB)

Mesa 2.0: Generating optimized code

Realizing X5 in statement S44

Realizing X2 in statement S43

Mesa 2.0: Optimization completed.

Figure 7. Mesa optimization result for example code.

5.5. Stage 5: Code Generation and Integration

After the programmer selects a solution, Mesa realizes the code for the specified set of LUT
transforms, including the LUT data, constructor, destructor, initialization code, table access, and
original function. Mesa then integrates the generated code into the application and replaces original
expressions with LUT access calls. An optimized version of the application code is written to the
file specified on the command line. The programmer rebuilds the application using the normal
build process, and the resulting executable should behave in an identical manner to the original
program, except for differences in performance and accuracy. Figure 8 shows a partial listing
of the code generated by Mesa. To save space, we show only the code for the X5 expression
(exp(dProduct) x cos(dProduct)) and the modifications to the original subroutine.

5.6. Stage 6: Accuracy and Performance Evaluation

In the last stage, the programmer evaluates the benefit and accuracy of the optimized program
version against the original version. We compute performance speedup as the original execution
time divided by the optimized execution time. Accuracy is evaluated as the absolute or relative
deviation from original program output. The optimized version of the program shows a 8.1x
speedup over the original version. We compute a relative error of 1.13x107%%, based on the
accumulation of return values from the ScatterSample subroutine.

The evaluation stage completes when the programmer has the accuracy and performance
information needed to evaluate whether the optimization is worthwhile. The programmer can accept
the optimization and use the code generated by Mesa, run Mesa again and select another solution, or
revert to the original code. A Mesa parameter specifies the selection of a solution so that the iterative
process just described can be scripted.

5.7. Mesa Workflow

Figure 9 shows the Mesa workflow. The programmer inserts pragma statements in the source code
to identify the optimization scope, and runs Mesa to instrument the source code for domain profiling
(Step 1). Next the programmer compiles and runs the instrumented code (Step 2) to capture domain
profiles (Step 3). The programmer runs Mesa again to request program optimization (Step 4). Based
on user selection of a Pareto Optimal solution, Mesa generates optimized code (Step 5) that the
programmer compiles, runs, and compares with the original program to evaluate performance and
accuracy differences (Step 6).

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOL: 10.1002/smr



LUT PROGRAM TRANSFORMATIONS

11

// Start of code generated by Mesa,

// LUT constants

const double XS5_lower
const double XS5_upper
const double X5_gran

class CLut {
public:

// LUT Constructor

CLut() {
double dIn

, dOut;

for (double dIn=X5_lower;
dOut = XS5_orig(dInput+(X5_gran/2.0));

X5_data.push_back (dOut);

}

}
// LUT Destructor

“CLut () {
X5_data.cl

ear ();

// LUT function for expressi
float X5_lut(float XS5_param) {

X5_param —

int ulndex

// Original

= X5_lower;

—1.2461340000e+00;
1.1962890000e+00;
5.2249019600e —06;

dIn<=X5_upper;

on

version 2.0

dIn+=X5_gran)

= (int) (XS5_param=(1.0/X5_gran));
return ( X5_data[ulndex]);

expression

double XS5_orig(double dProduct) {
return (exp(dProduct)+cos(dProduct));

}

private:
// LUT data

structures

std :: vector<float> X2_data;

Is
// Object inst
CLut clut;

// End of code generated by Mesa,

/! Expressions

antiation

replaced by Mesa
S43 dSum0 += clut.X2_lut(dProduct);
S44 dSuml += clut.X5_lut(dProduct);

version 2.0

Figure 8. Optimized code generated by Mesa.

Application
Code

Original

Step 1

Instrumentation Run

Step 4

(-profile)
Rose
Compiler
Optimization Run e

(-optimize)

AST

Mesa Tool

Step 2

Domain

Profiling L

Executable

[Performance]

Optimized
(i Comparison

Executable

Figure 9. Diagram of Mesa workflow.

The code instrumentation and generation are implemented by calling the Rose libraries to read
the original code and parse it into an abstract syntax tree (AST). Mesa analyzes the portion of
the AST identified by the pragma to find expressions that may benefit from LUT transforms, then
instruments or optimizes the code by modifying the AST and calling Rose to unparse it back into
C/C++ application code.
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Table IV. Application results from Mesa optimization.

(Intel Core 2 Duo, E8300, family 6, model 23, 2.83GHz, single core)

Application Lines Number of | Possible Actual Pareto Processing
Name of Code Expressions | Solutions Solutions Solutions Time
35 9 512 384 9

PRMS Slope Aspect 13.7s
PRMS Slope Aspect 35 11 2048 425 9 15.5s
PRMS Solar Radiation 7 6 64 64 8 14.1s
SAXS Discrete 60 3 8 4 3 11.2s
SAXS Discrete 60 3 8 4 3 16.5s
SAXS Continuous 30 5 32 20 4 10.8s
Stillinger-Weber 44 6 64 36 3 9.3s
Neural Network (logistics) 5 2 4 3 2 4.9s
Neural Network (hypertan) 5 1 2 2 2 2.8s

5.8. Tool Limitations

The following limitations apply to the tool, not the methodology. Mesa parses only C and C++
code and generates only C++. Mesa also only handles a single source module. Additionally there
are syntactic elements that are not handled, including type casts and structure and pointer access.
Mesa handles only the following functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, exp,
log, and sqrt. In addition, Mesa optimizes assignment expressions and initializers, but will not find
computations in other constructs.

6. EVALUATION

We evaluate our methodology in terms of ease of use, accuracy, and performance by using Mesa to
optimize six scientific applications. Two case studies evaluate the slope aspect and solar radiation
computations from the Precipitation-Runoff Modeling System (PRMS), developed by the United
States Geologic Survey [23]. The third and fourth case studies come from two applications written
for the previously cited SAXS project [11]. The fifth application is Stillinger-Weber, a molecular
dynamics program developed and used for research at Cornell University [24]. The sixth application
is neural network code [25] developed by a faculty member in our department.

6.1. Evaluation Methodology

To evaluate our methodology we apply the process that a programmer would follow to use Mesa. We
run gprof to find bottleneck subroutines that we identify with a pragma. We run Mesa to instrument
the application for domain profiling, and to optimize the application. Part of our evaluation is to
examine the number of possible and actual solutions for each application, and we measure tool
processing time. We finish by compiling and running the original and optimized code and comparing
the benefit and error predicted by Mesa to the actual application performance and accuracy.

6.2. Evaluation Results

Table IV summarizes the results of our case studies. The table shows program and tool statistics:
lines of code analyzed, number of expressions, number of possible, actual, and Pareto Optimal
solutions, followed by the tool processing time. Only the lines of code in the function optimized by
Mesa are listed. For example, the Neural Network code has a simple transfer function with only five
lines of code. Refer to Table I for performance speedup and error relative to the original output. For
example, Mesa extracts 9 expressions from the PRMS slope aspect code, from which it analyzes
384 solutions, and finds 9 to be Pareto Optimal. The processing time is 13.7 seconds.
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6.3. Model Evaluation

We now evaluate our error and performance model when applied to the solar radiation application.
Figure 10 shows that the performance model predicts the trend of the actual performance, but
overestimates the benefit. Some solutions are clearly below the estimated performance, which
may be due to instruction-level parallelism and other compiler optimizations. Figure 11 compares
the estimated maximum error from the error analysis against the actual maximum error of the
optimized application. The model again correctly predicts the trend but has some local variation.
We attribute this to the difficulty of modeling application error. Despite being able to quantify many
aspects of the error introduced by a LUT transform, a general method to compute the effect on
application accuracy remains an open problem. The propagation of error through arbitrary sections
of application code poses a complex numerical analysis problem that is unique to each application.
This implies that some level of experimentation will still be necessary to evaluate the accuracy of a
LUT transform.

6.4. Parallel Execution

Given the prevalence of multi-core architectures, we can justify sequential optimizations only if they
are effective in the context of parallel execution. A critical factor for successful LUT optimization on
multi-core systems is cache availability, because LUT data must reside in cache to be beneficial. A
higher number of cores raises the concern that manufacturers may be unable to maintain the current
levels of per core cache. However, recent cache size trends do not support this hypothesis. Figure 12
shows the combined size of L2 and L3 cache per core, on historical and recent Intel processors with
up to 8 cores. The L2 caches of uniprocessor systems grew quickly from 256KB in 1995 to 1IMB
or more in 2004. Since that time there is no evidence of a reduction in combined L2 and L3 cache
size, despite the growth in the number of cores. In our case studies we confirm that sufficient cache
exists to support LUT transformation on existing multi-core systems.

3MB [ ‘ ‘ ‘ "vv
v vy
3 2MB - v v
3
2 v
g
8] v
1MB [ v
512KB v v v
256KB r v

KB . . . . .
1995 1998 2001 2004 2007 2010
Release Year

Figure 12. Combined L2 and L3 cache per core.
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SAXS Continuous Scattering on Cray
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Figure 13. Parallel efficiency of SAXS continuous scattering application.

To confirm the effectiveness of LUT techniques in multi-core environments, we used Mesa
to evaluate the parallel performance of LUT code generated by Mesa. Figure 13 shows parallel
efficiency of 98% for continuous scattering on a 24-core Cray XT6m computer [13]. We have
replicated this result on multi-core systems including 4 and 8-core Xeons, concluding that our
single-core optimizations are independent from and complementary to parallelization.

6.5. Summary and Evaluation

Our case studies demonstrate that LUT optimizations are effective on the applications shown,
because they show significant performance improvements while meeting the accuracy requirements
of the application. Mesa also reduces the programming effort in several ways. First, our tool
automates source code analysis, which frees the programmer from having to search for candidate
expressions. Second, Mesa gives the programmer error and performance estimates without them
having to manually instrument code. Third, our tool generates and integrates LUT code, freeing the
programmer from coding. Fourth, our tool computes optimal cache allocations for LUT data using
a method that would be very cumbersome by hand. Finally, the tool simplifies experimentation with
different solutions.

Mesa has improved our own process for tuning applications whose performance is bound by
elementary functions. Our original ad hoc LUT implementation for the SAXS discrete code
required several weeks of development time and experimentation, even after the base algorithm was
implemented and tested. Characterization of error and performance was especially time-consuming,
because it required multiple runs of the entire SAXS application. In addition, we simply had no
way to estimate the performance or error impact of our LUT transforms. In contrast, we can now
evaluate applications with Mesa and quickly receive feedback on whether LUT methods will help
the application. For example, we were able to optimize the SAXS continuous code in a matter of
minutes, achieving the results shown in Section 6.

7. THREATS TO VALIDITY

The primary threat to validity for our research is external validity. Empirical research is always
limited with respect to the number and scope of the applications that can be evaluated. Our empirical
evaluation consists of case studies of six applications in four scientific areas, of which two were
partially written by the authors. Further research is required to demonstrate applicability to other
domains. However, we expect that our results will generalize to applications that have the same
limitations on performance caused by elementary function calls, assuming that other environmental
factors (compilers, languages, hardware) are consistent.

Other threats to validity are as follows. First, LUT methods depend on the relative performance
of function evaluation versus memory access, which can change as processor architectures evolve.
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Second, our performance model sometimes overestimates benefit because it does not account
for compiler optimizations. Third, our error model considers only introduced error, not the error
that propagates through the application. With respect to the latter threat, there is considerable
precedence for methods that trade accuracy for performance. Computer precision is inherently
limited, yet the existing floating-point representations have proven to be satisfactory for many
scientific applications. Linderman et al. [26] argue that reducing the precision of computation has
benefits, but caution that a careful analysis is necessary to maintain accuracy. Research suggests that
single-precision arithmetic can sometimes be used in place of double-precision [27]. Some libraries
give the programmer explicit control over accuracy and performance. For example, the Intel Math
Kernel Library (MKL) supports an enhanced performance mode that throws away up to half of the
significand bits for single or double-precision [28].

The existence of methods that trade accuracy for performance does not necessarily imply that
all applications can do so safely. In the citations listed above, the burden of analyzing numerical
stability is placed on the programmer. The numerical stability of an application is determined by
many factors [29], so some applications are more sensitive to the introduction of error than others.
Techniques such as interval analysis can be used to bound error on sequences of operations [17],
but characterizing the error propagation for an entire application is a complex numerical analysis
problem [30]. Our methodology estimates the error introduced by a set of LUT approximations, and
we provide support for empirically measuring application error.

8. RELATED WORK

The reuse of computation is fundamental to a number of optimization techniques. Many programs
exhibit value locality, in which computations are performed repeatedly with a small number of
inputs [31]. Value locality creates redundancy that can be exploited to improve performance.
Optimizations based on value reuse eliminate redundant computation by storing and reusing results
from previous computations [32]. Some compilers implement value reuse by selectively caching
results to avoid future computation [33]. Hardware can also exploit value reuse by caching results
or sequences of instructions, or through speculative value prediction [34]. Most implementations of
value reuse apply the method to a small set of precise inputs over localized areas in a program.

Value reuse can be exploited even without value locality. Consider a program that repeatedly
evaluates one or more expressions with identical or similar inputs. Caching previously computed
results can provide a benefit even when the computation is distributed throughout the program,
if the reuse is applied globally. Performance gains depend on the reuse inherent to the program,
which provides the opportunity to eliminate redundant computation. We use the term precise reuse
when input values must exactly match [35]. Precise reuse provides the same accuracy as the original
expression, if the cache has sufficient precision. Alvarez et al. introduced fuzzy reuse, in which input
values can match imprecisely [36]. Fuzzy reuse improves performance by sharing cached results
between multiple inputs, at the expense of a loss of accuracy. LUT transformation for function
evaluation is based on fuzzy reuse.

Memoization is a related technique that reuses previous evaluation results to avoid future
computation. Memoization employs a mapping function to map input values to cached results.
The mapping function can require precise reuse or the comparison can be imprecise or fuzzy [36].
Memoization differs from LUT methods in that results are cached results only as needed, instead of
computing the entire table in advance [35], thus requiring extra work to determine if a cached result
exists for the current computation.

Some of the history of hardware LUTs is presented in Section 1. Software LUTs have few
academic references, but some books [2, 37] discuss the topic. We have found one tool that supports
software LUT transforms [38]; it is a standalone compiler that analyzes mathematical expressions
written in a language that is similar to MATLAB, and transforms these expressions either into an
FPGA design or C/C++ code. Although the compiler described in the Zhang et al. paper does not
operate directly on source code, their work provides a unique discussion of software LUT issues
that is very relevant to our work.
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We are not aware of other published work on domain profiling, error analysis, or performance
modeling in the context of software LUTs, nor have we seen case studies that characterize the
performance versus accuracy tradeoff, or that explore the cost versus benefit of the various LUT
sampling methods. The issue of whether LUT data must reside in cache to make LUT transformation
beneficial is especially important, but the only related work that we are aware of that discusses
the impact of cache usage is Defour [39]. Defour combines polynomial reconstruction with small
tables, and suggests that LUT data must fit into L1 cache to be effective. Our research has shown a
substantial performance gain even when LUT data resides in L2 or L3 cache [12].

9. CONCLUSION

This paper demonstrates a novel approach to LUT optimization that is supported by error
analysis and performance estimation. Our methodology and Mesa tool substantially automates
the application of LUT optimization to scientific programs. Our approach is effective at speeding
up code that is performance limited by elementary function calls. Case studies demonstrate
speedups from 1.4-6.8 x with reasonable accuracy. Automation improves programmer productivity
by reducing the effort required to identify and implement LUT transforms, and by providing
information that helps the programmer make the critical tradeoff between error and performance.
The Mesa tool provides an alternative to current ad hoc practices that require significant programmer
effort. This paper extends [15] with additional information on analytic versus numerical algorithms
for error analysis, optimizations performed during expression enumeration, trends in cache
availability, and the parallel efficiency of code generated by Mesa.
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