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Abstract

During design or maintenance, software developers often use intuition, rather than an objective set of criteria, to determine or

recapture the design structure of a software system. A decision process based on intuition alone can miss alternative design options

that are easier to implement, test, maintain, and reuse. The concept of design-level cohesion can provide both visual and quantitative

guidance for comparing alternative software designs. The visual support can supplement human intuition; an ordinal design-level

cohesion measure provides objective criteria for comparing alternative design structures. The process for visualizing and quantifying

design-level cohesion can be readily automated and can be used to re-engineer software. Ó 1998 Elsevier Science Inc. All rights

reserved.
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1. Introduction

Poorly structured software designs can result in sys-
tems that are di�cult to test, upgrade, maintain, and
reuse, and are unreliable. Thus, the life cycle costs of
poorly designed software systems can be much higher
than that of well designed systems. An inferior design
can be due to inadequate choices during the initial de-
sign of a system, or can be a natural result of software
evolution.

Objective criteria for evaluating design alternatives
are needed. Many existing criteria are applicable to im-
plementations, not designs. Examples of objective crite-
ria for evaluating code structure include principles of
structured programming, the cyclomatic number [1],
functional cohesion [2], and many others. The principles
of information hiding and data abstraction provide
guidance for structuring a design, but do not give objec-

tive means for comparing alternative structures. Func-
tion points are used to predict the expected size of an
implementation rather than to evaluate design structure
[3]. The object-oriented design measures proposed by
Chidamber and Kemerer [4] provide a mechanism to
gather quantitative information about classes in ob-
ject-oriented software, but they do not provide guidance
to help evaluate design alternatives. Gamma et al. [5]
describe a set of structural design patterns for object-ori-
ented software and objective, but not quantitative, crite-
ria for choosing a particular pattern.

Visual displays of software designs and ordinal mea-
sures of design attributes are potential tools to identify
and evaluate design alternatives. A visual display of a
design structure will increase the accuracy of decisions
based on intuition. Measures that provide objective,
quantitative characterizations of a design add further in-
sight, and can potentially be used in an automated struc-
turing system.

Design visualization and measurement tools can help
in developing an initial design, and they can be used to
re-engineer existing software. The most di�cult software
to re-engineer is legacy software, which often has no
available design documentation. To re-engineer such
software we need to recapture the design structure from
the implementation. Software visualization tools can
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certainly help here. After the design is recaptured, the
system can be restructured.

Our objective is to create design visualization and
measurement tools that can be applied to design-level
entities. These tools should support the visualization
and quantitative evaluation of design structure, and be
useful in restructuring a software design.

In the remainder of this paper we show that the con-
cept of design-level cohesion can be used to visualize,
quantify, and restructure software. The term ``software
cohesion'', which was introduced more than 20 years
ago [6], refers to the relatedness of module components.
A highly cohesive software module is a module whose
components are tightly coupled. Cohesive modules are
di�cult to split into separate components. Thus, the de-
gree of cohesiveness should be an attribute that is useful
for evaluating the structure of modules.

A clear understanding of an attribute like design-level
cohesion is required before the attribute can be mea-
sured in a meaningful way [7,8]. A model that captures
the essence of the attribute is also needed [9]. A design
model that can help make design attributes visible can
be exceptionally valuable.

2. A model for visualizing software designs

A number of program representations for analyzing
and maintaining procedural programs have been pro-
posed in the literature, and are surveyed by Cimitile et
al. [10]. Lakhotia [11] uses a variable dependence graph
to model control and data ¯ow in a program. We adapt
Lakhotia's model to develop an input±output depen-
dence graph (IODG) which models a design-level view
of a module. The IODG model is based on the data
and control dependence relationships between input
and output components of a module.

Input components of a module include in-parameters
and referenced global variables. Output components in-
clude out-parameters, modi®ed global variables, and
`function return' values. An in-out-parameter becomes
two components, an input component and an output
component. The term `component' refers to a static en-
tity. An array, a linked list, a record, or a ®le is one com-
ponent rather than a group of components. We de®ne
the data and control dependence informally using the
notation of Lakhotia; more formal de®nitions are given
in compiler texts, for example, see [12]. The ®rst two of
the following relations are from Lokhotia [11].

De®nition 1. A variable y has a data dependence on
another variable x (x!d y) if x `reaches' y through a path
consisting of a `de®nition-use' and `use-de®nition' chain.
(Here by data dependence, we mean the `true depen-
dence' determined by examining the data ¯ow of the
static components.) A typical case of data dependence

between two variables is that a variable is used to
compute the other through a sequence of assignment
statements.

De®nition 2. A variable y has a control dependence on
another variable x if the value of x determines whether
or not the statement containing y will be performed.

De®nition 3. A variable y is dependent on another
variable x (x ! y) when there is a path from x to y
through a sequence of data or control dependence. We
call the path a dependence path.

De®nition 4. A variable y has condition-control depen-
dence on another variable x (x!cc

y) if y has control
dependence on x, and x is used in the predicate of a
decision (i.e., if-than-else) structure. For example, all
variables in the `then' and `else' bodies of an `if'
statement are condition-control dependent on variables
used in the predicate of the decision.

De®nition 5. A variable y has iteration-control depen-
dence on another variable x (x!ic y) if y has control
dependence on x, and x is used in the predicate of an
iteration structure. For example, all variables in a `while'
body are iteration-control dependent on variables used
in the loop predicate.

De®nition 6. A variable y has c-control dependence on
another variable x (x!c y) if the dependence path
between x and y contains a condition-control depen-
dence but no iteration-control dependence. For exam-
ple, for (1) x!cc

y and (2) x!d a!cc
b!d y, y has c-control

dependence on x. The c-control dependence between an
input and an output variable means that the output
value is controlled by the input value through a decision
structure.

De®nition 7. A variable y has i-control dependence on
another variable x (x!i y) if the dependence path
between x and y contains an iteration-control depen-
dence. For example, for (1) x!ic y and (2) x!d a!cc

b!ic
c!d y, y has i-control dependence on x. When an output
has i-control dependence on an input, the output value
is a�ected by the execution of a iteration process whose
execution count is a�ected directly or indirectly by the
input.

In our model, a dependence between an input and an
output of module is either data, c-control, or i-control
dependence.

IODG De®nition. The input±output dependence graph
(IODG) of a module M is a directed graph, GM � (V, E)
where V is a set of input±output components of M, and E
is a set of edges labeled with dependence types such
that E � f�x; y� 2 V � V j y has data; c-control; and=
or i-control dependence on xg:
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The graph contains the information how input±out-
put components are related. Each input contributes to
one or more outputs; they are used to compute out-
put(s), as input data, decision invariant, and/or loop in-
variant. The dependence between components can be
determined by data ¯ow analysis using a compiler-like
tool when an implementation is available. Without an
implementation, a designer must specify the dependen-
cies between input and output components. Such a spec-
i®cation is a key component of a detailed design. An
IODG can be readily displayed visually as shown in
Fig. 1.

The caller±callee relationship is represented by in-
cluding the input±output dependence relationship of
the callee in the corresponding place of the I=O depen-
dence diagram of the caller. In such a digram, an input
is represented by a circle, and an output by a square.
The texts in each circle and square are the names of
input and output variables. Each arrow indicates the
dependence between two components.

Fig. 1 shows two IODG's, one for procedure
Asum_Hsum and another for procedure Fibo_A-
mean_Hmean. Fibo_Amean_Hmean generates an array
of n Fibonacci numbers and computes the arithmetic
mean and harmonic mean of the numbers by calling
procedure Asum_Hsum.

The IODG of Fibo_Amean_Hmean shows the caller±
callee relationship: Asum_Hsum is called by procedure
Fibo_Amean_Hmean. The call relationship is represent-
ed by the callee's IODG within the rounded square in
the IODG of the caller. Each dependence relation be-
tween the caller and the callee is represented by an arrow
with a dependence type(s). If a callee contains a function
call, the dependence information of the callee are includ-
ed in the caller. So, the IODG of the callee must be de-
termined before generating the caller's IODG.

The extended IODG contains the complete depen-
dence paths between inputs and outputs of a module.
Thus, we can determine exact dependence relation-
ships between input/output components. For example,
consider input n and output amean of the IODG of
Fibo_Amean_Hmean. We ®nd three dependence paths
between them: (1) n!d amean, (2) n!d input parameter
!i output parameter!d amean, and (3) n!i fib arr!d
input parameter!d output parameter!d amean. Accord-
ing to our dependence de®nitions, amean has data and
i-control dependencies on n.

To simplify the representation, the arrow in the
IODG indicates only a direct dependence between input
and output. An indirect dependence is implied through a
sequence of direct dependences. The IODG of Fibo_A-
mean_Hmean shows that the direct and indirect depen-
dence relationship between input n and output amean
and hmean.

The IODG shows the relationship between input and
output components of a module. In its graphical form,
the IODG visually displays the functional structure of
the module. This representation is used to de®ne a
design-level cohesion measure and is applied to the
problem of restructuring software at design and mainte-
nance stages. The visualization of an IODG is not nec-
essary to take the cohesion measurements, but
visualization is an aid in the restructuring process.

3. Measuring design cohesion

Software cohesion, as described by Stevens, Myers,
and Constantine (SMC Cohesion) [6], provides an intu-
itive mechanism for assessing the relatedness of the com-
ponents in an individual module. It can be used to
determine whether the components of a module actually

Fig. 1. Input±output dependence graph representation for Asum_Hsum and Fibo_Amean_Hmean.

B.-K. Kang, J. M. Bieman / The Journal of Systems and Software 42 (1998) 175±187 177



belong together. After describing SMC Cohesion, we
show that SMC Cohesion can be applied directly to
the IODG representation of a module to evaluate the
design-level cohesiveness of the module. We use the
ordering imparted by SMC Cohesion on the set of all
IODG's as an empirical relation system to show that
our own automatable design-level cohesion measure
(DLC) satis®es the representation condition of measure-
ment [7,8]. That is, we show that the DLC measure is
consistent with the intuition provided by SMC Cohe-
sion.

3.1. SMC cohesion as an empirical relation system

Stevens, Myers and Constantine de®ned seven levels
of cohesion on an ordinal scale [6]. The SMC Cohesion
of a module is determined by inspecting the association
between all pairs of its processing elements. The purpose
of SMC Cohesion is to predict properties of implemen-
tations that will be created from a given design, so a pro-
cessing element is a module behavior that may not yet be
reduced to code. SMC Cohesion is based on seven dis-
tinct associative principles between each pair of process-
ing elements in a module. These seven levels are listed in
order of increasing strength of association:
1. Coincidental association: there is no relationship be-

tween the processing elements.
2. Logical association: both processing elements belong

to the same logical class of related functions.
3. Temporal association: each occurrence of both pro-

cessing elements occurs within the same limited peri-
od of time during execution.

4. Procedural association: both processing elements are
elements of a common procedural unit which is an it-
eration or decision process.

5. Communicational association: both processing ele-
ments operate upon the same input data set and/or
produce the same output data.

6. Sequential association: the output data from one pro-
cessing element is input to the other processing ele-
ment.

7. Functional association: both processing elements are
essential to the performance of a single function.

When a pair of processing elements exhibit more than
one cohesion level, the cohesion for the pair is their
highest association level. When a module contains more
than one pair of processing elements, the module's cohe-
sion is the lowest association level of all pairs.

Because of its intuitive nature, the assessment of
SMC Cohesion requires the judgment of human raters.
As a result, SMC Cohesion cannot be readily applied
to measure cohesion in practice [13].

Though not a measure, SMC Cohesion de®nes an in-
tuitive notion of the cohesion attribute of design compo-
nents. Since SMC Cohesion also imparts an ordering on
design components, we can use it as an empirical rela-

tion system to help us to de®ne a quantitative cohesion
measure that can be readily automated.

3.2. A design-level cohesion (DLC) measure

The DLC measure is derived from the design-level
view of module, modeled by the IODG. In deriving
the DLC measure, we follow the approach used to de-
velop SMC Cohesion and by Lakhotia [11]. We de®ne
six relations between a pair of output components based
on the IODG representation. The corresponding cohe-
sion level is based on six relations:
1. Coincidental relation (R1):

R1�o1; o2� � :�o1 ! o2� ^ :�o2 ! o1� ^ :9x ��x
! o1� ^ �x ! o2��:

Two outputs o1 and o2 of a module have neither de-
pendence relationship with each other, nor depen-
dence on a common input.

2. Conditional relation (R2):

R2�o1; o2� � 9x ��x!c o1� ^ �x!c o2��:
Two outputs are c-control dependent on a common
input.

3. Iterative relation (R3):

R3�o1; o2� � 9x ��x!i o1� ^ �x!i o2��:
Two outputs are i-control dependent on a common
input.

4. Communicational relation (R4):R4�o1; o2� � 9x
���x!d o1� ^ �x!d o2�� _ ��x!p o1� ^ �x!q o2���,

where p; q 2 fd; c; ig, and p 6� q. Two outputs are de-
pendent on a common input. An input is used to
compute both outputs, but not as a condition ¯ag
to select one of two outputs, nor as a loop invariant
to compute both outputs.

5. Sequential relation (R5):

R5�o1; o2� � �o1 ! o2� _ �o2 ! o1�:
One output is dependent on the other output.

6. Functional relation (R6): There is only one output in a
module.

These six relations are on an ordinal scale; cohesion
strength increases from R1 to R6. These six relations cor-
respond to six association principles (temporal cohesion
is not included) of SMC Cohesion with some degree of
overlap. (The correspondence is shown in Section 3.3.)
Relations 1, 4, and 5 are from corresponding relations
of Lakhotia [11]. The DLC measure is de®ned in terms
of the six relations following the approach of SMC Co-
hesion and Lakhotia.

DLC Measure De®nition. The cohesion level of a
module is determined by the relation levels of output
pairs. For each pair of outputs, the strongest relation
for that pair is used. The cohesion level of the module
is the weakest (lowest level) of all of the pairs. That is,
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the output pair with the weakest cohesion determines
the cohesion of the module.

Consider the IODG's of Fig. 1. Outputs hsum and
asum of module Asum_Hsum have iterative and commu-
nicational relations. Since the communicational relation
is stronger than the iterative relation, the cohesion level
of module Asum_Hsum is communicational cohesion.
Module Fibo_Amean_Hmean has three pairs of outputs.
The output pair ®b_arr and amean has three relations,
iterative, communicational, and sequential. Since the se-
quential relation is the strongest, the pair has a sequen-
tial relation. Similarly, the output pair ®b_arr and
hmean has a sequential relation, and the output pair
amean and hmean has a communicational relation. Since
the communicational relation is the weakest among the
relations of all pairs, the entire module exhibits a com-
municational cohesion.

Fig. 2 shows six cohesion levels for six simple mod-
ules. The ®gure visually displays the intuition behind
each DLC cohesion level.

3.3. The relationship between the DLC measure and SMC
cohesion

SMC Cohesion is intended to be used to predict the
quality attributes of modules that would be created from
a given design. It is de®ned in terms of ``processing ele-
ments'', which is processing that must be done in a mod-
ule but may not yet be reduced to code. The DLC
measure treats each output component as part of a mod-
ule's functionality, which is how functional cohesion
measures [2] and Lakhotia's rules to compute module
cohesion [11] have been de®ned. The ``processing ele-
ment'' of SMC Cohesion, therefore, corresponds to
the output component of the DLC measure.

Fig. 3 shows the relationship between the DLC mea-
sure and SMC Cohesion. We omit the temporal associ-
ation of SMC Cohesion because the DLC measure
cannot indicate temporal cohesion.

For SMC Cohesion, procedurally associated pro-
cessing elements are elements of the same procedural
unit. The common procedural units are an iteration
and decision process. We separate procedural associa-
tion into two categories, the decision unit (procedur-
al-I) and the iteration unit (procedural-II). We now
examine the relationship between the relation levels of
DLC measure and the association principles of SMC
Cohesion.

1. Coincidental relation vs. coincidental association:
When a pair of output components has a coincidental
relation, the data tokens having dependence on one out-
put do not have any connection with the data tokens
corresponding to the other output ± there are two inde-
pendent functions. Thus, the coincidental relation
matches the intuition of the coincidental association of
SMC Cohesion.

2. Conditional relation vs. logical/procedural-I associa-
tions: Consider two cases: (1) a pair of outputs are c-
control dependent on a common input and (2) one out-
put is c-control dependent on an input and the other
output is i-control dependent on the same input. Case
(1) includes both the logical and procedural-I associa-
tions of SMC Cohesion since processing elements of
both associations always share a common decision unit.
Case (2) does not match any of SMC's association prin-
ciples. We include case (2) in the DLC conditional rela-
tion because it is, intuitively, clearly stronger than the
coincidental relation and weaker than the iterative rela-
tion. The conditional relation includes both logical and
procedural-I associations but not other associations.
Thus, we can reasonably match the conditional relation
with both logical and procedural-I associations.

3. Iterative relation vs. procedural-II association: Since
processing elements of procedure-II association share a
common iteration unit, the iterative relation includes
procedure-II association. It cannot include other associ-
ations. (The iterative relation includes some rare cases of
communicational association. See the following discus-
sion of communicational relation.) The iterative relation
reasonably matches procedural-II association.

4. Communicational relation vs. communicational asso-
ciation: Processing elements in a communicational asso-
ciation operate upon the same input and/or produce the
same output. An example is a pair of components that
have data dependence on one input. A processing ele-
ment can operate upon input data without causing data
dependence between them. For example, the summation
of numbers from 1 to n can be implemented by direct
computation (n�n� 1�=2) or by iteration. When using it-
eration, the sum is not data dependent on the input n; it
is only control dependent. However, such cases are rare
and are not included in our analysis.

5. Sequential relation vs. sequential association: In a
sequential association, the output data from one pro-
cessing element serve as input to the next processing el-
ement. This is clearly represented by the dependence of
the data ¯ow graph between the two processing ele-
ments. The sequential relation matches the intuition of
sequential association.

6. Functional relation vs. functional association: When
a module contains only one output, the module has
functional relation. Thus, the functional relation match-
es the function association of SMC cohesion.

Since the six association principles of SMC Cohesion
are on ordinal scale, we claim the following relationship
between the six relation levels of the DLC measure:

Coincidental < Conditional6 Iterative

< Communicational < Sequential < Functional

The DLC measure is on an ordinal scale as long as we
accept the ordering implied by the association principles
of SMC Cohesion.
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3.4. Measurement tool

We have developed a prototype tool, FUNCO, that
automatically generate the DLC measure. The tool pro-
cesses C programs in a UNIX workstation environment.

It has been installed and tested for SUN SPARC-sta-
tions running SUN-OS and IBM RS6000 systems run-
ning AIX. The beta version of Funco is available at
URL http://www.cs.colostate.edu/bieman/

funco.html.

Fig. 2. IODG's and DLC levels for six simple procedures.
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4. Restructuring software designs

The DLC cohesion level can be used as a criterion to
determine whether or not a given module should be rede-
signed or restructured. An IODG provides visual help to
determine how to perform the restructuring. The restruc-
turing process is a sequence of restructuring operations.

4.1. Restructuring operations

Fig. 4 shows eight basic restructuring operations
using the IODG. Fig. 4(a) shows the decomposition of
a module that exhibits coincidental cohesion. Since each
group of data tokens corresponding to each output does
not have any dependence relation on the other group,
the decomposition simply requires the separation of
the groups.

Fig. 4(b) shows the decomposition of a module with
conditional, iterative, or communicational cohesion.
The decomposition process copies all common and
non-common data tokens in a dependence relationship
with the each output into the resulting module.

Fig. 4(c) shows two operations: (1) the decomposi-
tion of a module with sequential cohesion and (2) the
composition of two modules with a sequential relation-
ship. The output of a module (producer module) is used
as the input of the other (user module). In case (1), a
module with sequential cohesion becomes two modules
that have a sequential relationship. The producer mod-
ule includes all data tokens on which the ®rst output

Fig. 4. Eight basic operations for module restructuring.

Fig. 3. The relationship between the six association principles of SMC

Cohesion and the six relation levels of DLC measure.
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depends. The user module includes all data tokens on
which the second output depends without the data to-
kens on which the ®rst output has dependence. The op-
eration of case (2) is the inverse of case (1).

Fig. 4(d) shows another way of decomposing a mod-
ule with sequential cohesion. An output component de-
noted by M1:O1 is replaced by a module call and is
factored out into a separate module (callee). The callee
includes the output and all data tokens that the output
depends on. The output and data tokens of the callee
are removed from the caller and replaced by a module
call statement.

Fig. 4(e) shows the composition of two modules with
a caller/callee relationship, the reverse of the operation
in Fig. 4(d). The call statement is replaced by the tokens
of the callee. The composition may be appropriate when
the callee is called only by the caller. The composition
process can reduce unnecessary coupling.

Fig. 4(f) contains two operations, `hide' and `reveal'.
Using hide, H(M1:O1), output O1 of module M1 is hid-
den by changing the output into a local variable. This
operation removes an unnecessarily exposed output;
the output is not used outside of its module.

`Reveal' is the inverse of hide. Using reveal,
R(M1:O1), a local variable O1 of M1 is revealed by
changing the local variable into an output variable.
The operation reveals a hidden function and exports
it. Reveal can be used to separate a hidden function
from a large module. We simply reveal the local variable
corresponding to the hidden function and apply the ap-
propriate decomposition operation.

Existing software can potentially be restructured
automatically by applying the restructuring operations.
The data dependences, IODG's, and the DLC mea-
sure can be generated using practical code analysis
technique. A system based on graph rewriting rules
can be implemented for IODG's. We can follow the
example of Engels et al. [14] who use attributed gram-
mars to model, specify and manipulate software docu-
ments.

4.2. A restructuring process

There are many possible processes that can be used to
restructure a system based on the IODG representation.
We propose the following restructuring process, which
consists of a sequence of restructuring operations, to im-
prove the design structure of software system:

1. Generate IODG's of the modules of interest. If the
software is at the design stage, the designer draws the
IODG for each module. (Ideally, a software tool would
construct an IODG from a design.) During mainte-
nance, the input±output dependence information can
be automatically generated using a tool (a DLC tool)
and an IODG can be drawn based on the information.

2. Compute the DLC level from each IODG. It is
straightforward to compute DLC level from the IODG
information. This step can also be automated by the
DLC tool.

3. Locate the modules with low DLC levels and deter-
mine the poorly designed modules among them. Mod-
ules with multiple independent functions will be
identi®ed. The optimal DLC level will depend on the ap-
plication, the required reusability, readability, and
maintainability of software. Managers need to specify
expected marginal DLC levels of modules.

4. Decompose the IODG of each module that has
been identi®ed as poorly designed one. This step in-
cludes two sub-steps:

(a) Partition the output components of the IODG so
that when decomposed according to the partition,
each resulting IODG has higher DLC level. The
IODG and DLC measure guides the partitioning
process. The partitioning process can be automated
by computing DLC values for all possible partitions.
The number of output components of a module is
generally limited to a tractable number.
(b) Decompose each IODG according to its parti-
tion. Each resulting IODG includes input±output
components that have dependence relation with
the partitioned outputs. The dependence type (i.e.,
data, i-control, or c-control dependence) between
components is also copied.

To decompose two IODG's with a caller±callee relation-
ship, the callee is examined ®rst. The corresponding in-
vocation in the caller is changed to re¯ect the callee's
decomposition, and then the decomposition is applied
to the caller. This step is repeated until the DLC level
of each resulting IODG is acceptable.

5. Locate unnecessarily decomposed (i.e., overmodul-
arized) modules and compose them. When a system is
overmodularized, the overall interaction between mod-
ules is unnecessarily increased, i.e., the coupling of the
system is high. To locate overmodularized modules, a
practitioner can use other quality measures such as cou-
pling, size, and/or reuse measures. The IODG can help
an engineer visualize the module structure to help iden-
tify candidates for composition.

6. Generate module code. If the software being re-
structured is an existing product, the ®nal step is gener-
ating module code corresponding to each IODG. The
process of code generation can also be automated by
the DLC tool. The tool uses the data tokens and the de-
pendence information that was obtained from the initial
modules during step 1. Appropriate tokens can be iden-
ti®ed from mappings through the original abstract syn-
tax tree and new code can be generated to match
restructured IODG's. Our process relies on data and
control ¯ow analysis rather than other formalisms, for
example category theory as used by Maggiolo±Schettini
et al. [15].
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4.3. Restructuring examples

Example 1. Fig. 5 shows the restructuring process ap-
plied to procedure Sum_Prod_Avg, which computes the
sum and average of the values in one array and the prod-
uct of the values in another array. If development is in
the design stage, only IODG's are available. During main-
tenance, the corresponding program code is available.

Assume that the code of procedure Sum_Prod_Avg
exists and is considered for restructuring. First the
IODG information of Sum_Prod_Avg is generated,
and the corresponding DLC level is computed. The
graph shows that sum and prod have an iterative rela-
tion, sum and avg have sequential and communicational
relations, and avg and prod have iterative and communi-
cational relations.

Since sum and avg have two relations and sequential
relation is ranked higher than communicational rela-
tion, sequential relation is chosen for the output pair.
Since avg and prod have also two relations and commu-
nicational relation has higher rank than iterative rela-
tion, communicational relation is chosen for the
output pair. Because among three pairs of outputs sum
and prod have lowest rank of relation, iterative relation,
the corresponding cohesion level of the procedure is
therefore iterative cohesion.

We want to decompose the procedure into two proce-
dures with higher cohesion levels. The optimal partition

of output components of the procedure among all pos-
sibilities is one partition for sum and avg, and another
partition for prod. Decomposed IODG's Sum_Avg and
Prod corresponding to each partition are generated.
The cohesion level of procedure Sum_Avg is sequential
cohesion and that of Prod is functional cohesion. We
do not decompose the procedures further and generate
program code corresponding to the IODG's.

Example 2. Fig. 6 shows the restructuring process of
modules Asum_Hsum and Fibo_Amean_Hmean of
Fig. 1. The restructuring involves the caller±callee rela-
tionship between the two procedures and several
restructuring operations. The resulting restructured
modules are given in Fig. 7. At the start of the
restructuring process, both modules exhibit communi-
cational cohesion. The modules are restructured into
three modules that exhibit functional cohesion, the
strongest cohesion level. The restructured modules
should be easier to understand, maintain, and reuse.

Example 3. Fig. 8 shows the restructuring process of
modules with the sequential relationship, i.e., an output
of a module is used as an input of another module.
Assume that procedure BasicSalary is called only by
procedure Salary_Bonus and the functionality `salary' of
procedure Salary_Bonus is sometimes used indepen-
dently from `bonus' of the module. Their design

Fig. 5. Example 1: Restructuring procedure Sum_Prod_Avg.
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structures viewed from IODG representation is not
desirable since the functionality `basic_salary' is exposed
unnecessarily and the functionality `salary' needs to be
in an independent module. The given modules, Basic-
Salary and Salary_Bonus are the examples of poorly
designed software even though they have relatively high

DLC cohesion levels, sequential cohesion and functional
cohesion. In this example, the IODG representation
plays a more important role than the DLC measure. The
resulting modules, after the restructuring process, are
Salary and Bonus whose DLC cohesion level are both
functional cohesion.

Fig. 6. Example 2: Restructuring procedures Asum_Hsum and Fibo_Amean_Hmean of Fig. 1.
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5. Related work

Closely related work has focused on code-level cohe-
sion measures and restructuring based on code-level co-
hesion. Lakhotia uses the output variables of a module
as the processing elements of SMC Cohesion and de®nes
rules for designating a cohesion level which preserve the
intent of the SMC Cohesion [11]. The associative princi-
ples of SMC Cohesion are transformed to relate the out-
put variables based on their data dependence
relationships. A `variable dependence graph' models
the control and data dependences between module vari-
ables. The rules for designating a cohesion level are de-
®ned using a strict interpretation of the association
principles of SMC Cohesion. The rules to determine co-
hesion levels are formal. Thus, a tool can automatically
perform the classi®cation. The technique, as originally
described, can be applied only after the coding stage
since it is de®ned upon the implementation details.

Bieman and Ott [2] develop cohesion measures that
indicate the extent to which a module approaches the
ideal of functional cohesion. They introduce three mea-
sures of functional cohesion based on ``data slices'' of a
procedure. Bieman and Ott show that the measures sat-
isfy the requirements of an ordinal scale. The functional
cohesion measures are formally de®ned, and cohesion
measurement tools have been built. However, the mea-
sures also depend on the implementation details of mod-
ule and can be applied only after coding stage of
software development process.

Bieman and Kang de®ne `class cohesion' measures
for object-oriented programs [16]. Class cohesion is an
attribute of a class that refers to the ``relatedness'' or
the ``connectivity'' among components of the class.
The components of a class are the instance variables
and methods de®ned in the class plus those that are in-
herited. A method and an instance variable are related
by the way that an instance variable is used by the meth-
od. Two methods are related (connected) through in-

stance variable(s) if both methods use the instance
variable(s). Class cohesion measures are de®ned in terms
of the relative number of directly and/or indirectly con-
nected methods in the class. These measures can be ap-
plied to object-oriented and object-based software.

Kim et al. [17] introduce restructuring methods where
module strength (cohesion) is used as a criterion to re-
structure modules. They de®ne processing blocks which
are similar to the `data slices' of Bieman and Ott. A pro-
cessing block is a group of data tokens with data or con-
trol dependence relationship with an output variable. A
rule recognizes `logically associated' module functions
that are dependent together on an output. Each of these
logically associated functions are also considered as a
processing block. Unfortunately, these logically associ-
ated functions cannot always be automatically detected
by analyzing program code. An examination of depen-
dencies alone cannot determine whether a predicate
variable is used to select a function or to compute a
function.

Module strength is de®ned in terms of data sharing,
control sharing, and level of sharing. Depending on its
module strength, a module is restructured by either `sep-
arating' or `grouping'. A module with low module
strength is split into new modules, while other modules
are decomposed and the resulting components are
grouped into a package. The decision to group process-
ing blocks into a package cannot be made using only
module strength. The process of making a package re-
quires an understanding of both module functions and
design decisions.

Like our approach, module strength is used as a cri-
terion for software restructuring. However, Kim et al.
de®ne cohesion based only on the code implementation.
The attributes that are actually quanti®ed by the mea-
sure are not speci®ed. For restructuring, the measure
computes the average of the relatedness between pro-
cessing blocks rather than ®nding the most weakly con-
nected blocks.

Fig. 7. Procedures produced after restructuring the procedures of Fig. 1.
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Our approach is unique in that we use only design-
level information to determine the cohesion and restruc-
turing options. Our design-level cohesion measure quan-
ti®es well-de®ned attributes in a consistent fashion.
Finally, our cohesion measure, cohesion model and re-
structuring process can be automated.

6. Conclusions

The choice of a good software design structure should
be made in the most objective fashion possible. We ap-
ply the notion of design cohesion to the problem of vi-
sualizing, quantifying, and restructuring a software

Fig. 8. Example 3: Restructuring procedures with sequential relationship.
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system. Our method is based on the notion of cohesion
developed by Stevens et al. [6]. In this paper, we report
the following progress towards improving the ability to
make objective software design decisions:
1. We de®ne the IODG, a graph model that represents a

design-level view of a module. The IODG, adapted
from Lakhotia's variable dependence graph [11],
models the dependency relationships between inputs
and outputs of a module. It can be used to graphical-
ly visualize the design structure of a module. The
IODG with its formal basis and graphic presentation
can surely help one to understand the functionalities
of a module.

2. Following the approach introduced by Lakhotia [11],
we derive a design-level cohesion (DLC) measure
based on the IODG representation of module, and
we show that DLC is consistent with the intuition
provided by SMC Cohesion. The DLC measure pro-
vides an objective criteria for evaluating and compar-
ing alternative design structures.

3. We de®ne eight basic restructuring operations based
on the IODG representation and the DLC measure.
We describe a process for applying the restructuring
operations to improve design of system modules.
We show that the restructuring process can improve
the design-level cohesion in three examples.
The IODG representation, DLC measure, and re-

structuring process can be applied during software de-
sign or maintenance. During design, IODG's can be
constructed from design information. Implementation
details are not needed. During maintenance, IODG's
can be generated using a compiler-like code analysis
tool. Such a tool can be used to recapture designs from
existing, possibly legacy, systems. The DLC measure can
be easily computed once an IODG is generated.

Our prototype FUNCO toolkit, available at URL
http://www.cs.colostate.edu/bieman/fun-

co.html, can generate IODG's and DLC measures
from code. We plan to evaluate the e�ects of restructur-
ing on external quality attributes such as testability, re-
usability, reliability, and maintainability.
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