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Abstract—“Software test-coverage measures” quantify the de-
gree of thoroughness of testing. Tools are now available that mea-
sure test-coverage in terms of blocks, branches, computation-uses,
predicate-uses, etc. that are covered. This paper models the rela-
tions among testing time, coverage, and reliability. An LE (log-
arithmic-exponential) model is presented that relates testing ef-
fort to test coverage (block, branch, computation-use, or predi-
cate-use). The model is based on the hypothesis that the enumer-
able elements (like branches or blocks) for any coverage measure
have various probabilities of being exercised; just like defects have
various probabilities of being encountered. This model allows re-
lating a test-coverage measure directly with defect-coverage. The
model is fitted to 4 data-sets for programs with real defects. In the
model, defect coverage can predict thetime to next failure.

The LE model can eliminate variables like test-application
strategy from consideration. It is suitable for high reliability
applications where automatic (or manual) test generation is
used to cover enumerables which have not yet been tested. The
data-sets used suggest the potential of the proposed model. The
model is simple and easily explained, and thus can be suitable
for industrial use. The LE model is based on the time-based
logarithmic software-reliability growth model. It considers that:
at 100% coverage for a given enumerable, all defects might not
yet have been found.

Index Terms—Defect density, reliability-growth model, software
reliability, software testing, test coverage.

DEFINITIONS

• enumerable: structural or data-flow components of a pro-
gram that can be counted (like branches or p-uses).

• subsumption: if complete coverage of enumerableim-
plies complete coverage of enumerable, then the cov-
erage of subsumes the coverage of.

ACRONYMS1

c- computation-
p- predicate-
- implies the technical statistical meaning
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1The singular and plural of an acronym are always spelled the same.

LE logarithmic-exponential (the proposed model)
DC defect coverage
DSi data-set ( )
RGM reliability growth model
TC test coverage

NOTATION

superscript 0 indicates defects
superscripts 1, 2, 3, 4 indicate specific enumerables

,
,

parameters for proposed LE model in terms of enu-
merable used in (4)

, parameters used in (5)

, parameters used for (3)
DC at time
-expected coverage of the enumerables of type

coverage level at which the knee occurs
overall value of fault-exposure ratio
fault or enumerable exposure ratio
total number of initial defects
total number of enumerables of type
time when debugging stops
linear execution time

, logarithmic-model parameters for enumerable

failure intensity.

I. INTRODUCTION

DEVELOPERS can achieve the target reliability of soft-
ware systems in a predictable way by evaluating relia-

bility during development. By evaluating and projecting reli-
ability growth, developers can optimally allocate resources to
meet a deadline with the target reliability [21].

To quantify reliability during testing, the code is executed
using inputs randomly selected following some distribution.
Then, a reliability growth model can be used to predict the
amount of effort required to satisfy product reliability re-
quirements, if the distribution used for testing is the same as
the operational profile. However, the focus of testing is on
finding defects, and defects can be often found much faster
by nonrandom methods [1]. Testing is directed toward inputs
and program-components where errors are more likely. For
example, testing can be conducted to ensure that particular
portions of the program and/or boundary cases are covered.
Models that can measure and predict reliability based on the
status of nonrandom testing are clearly needed. The achieved
reliability is affected by several factors:
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Testing strategy: TC can be based on the functional spec-
ification (black-box), or on internal program structure (white-
box). Strategies can vary in their ability to find defects.

The relationship between calendar time and execution time:
The testing process can be accelerated through the possibly par-
allel, intensive execution of tests at a faster rate than would occur
during operational use.

Testing of rarely executed modules: Such modules include
exception handling or error recovery routines. These modules
rarely run [10], and are notoriously difficult to test. Yet, they
are critical components of a system that must be highly reliable.

Intuition suggests that TC must be related to reliability. Yet,
the connection between structure-based measurements (e.g.,
TC) and reliability is still not well understood.

There are several motivations for investigating the relation be-
tween TC and reliability. TC, rather than test effort, is a direct
measure of how thoroughly a system has been exercised. With
the same test effort (measured in CPU execution time or cal-
endar time), a less effective test strategy might be less efficient in
finding defects. Measuring TC is usually an intrusive approach;
however available tools now allow it to be done automatically.

The effectiveness of testing in finding defects has been re-
cently examined by several researchers. Reference [7] exam-
ines the correlation between TC and the error removal rate.
Reference [3] suggests that the relation between structural cov-
erage and fault coverage is a variant of the Rayleigh distribu-
tion. References [4], [5] add structural coverage to traditional
time-based software reliability models by excluding test cases
that do not increase coverage. Assuming random testing, [24]
analyzes block-coverage growth during function test, and de-
rives an exponential model relating the number of tests to block
coverage. Reference [11] experiments with detection of defects
in small programs. Reference [12]: a) studies detection effec-
tiveness of test sets with various coverage values for realistic
seeded faults; b) finds that a test set with higher coverage has
higher per-test detection probability; c) shows that 100% cov-
erage using a specific measure might not detect all the faults.

This paper explores the connection between TC and relia-
bility by developing a model that relates TC to DC. With this
model the defect density can be estimated. With knowledge of
the fault exposure ratio, reliability can be predicted from TC
measures.

II. COVERAGE OFENUMERABLES

TC in software is measured in terms of structural or data-flow
units that have been exercised. Some of the common coverage
measures are:

Statement (or block) coverage: The fraction of the total
number of statements (blocks) that have been executed by the
test data.

Branch (or decision) coverage: The fraction of the total
number of branches that have been executed by the test data.

C-use coverage: The fraction of the total number of c-uses
that have been covered during testing. A c-use pair includes 2
points in the program, a point where the value of a variable is de-
fined or modified, followed by a point where it is used for com-
putation (without the variable being modified along the path)
[14], [23].

P-use coverage: The fraction of the total number of p-uses
that have been covered during testing. A p-use pair includes 2
points in the program, a point where the value of a variable is
defined or modified, followed by a point which is a destination
of a branching statement where it is used as a predicate (without
modifications to the variable along the path) [14], [23].

To keep this discussion general, the termenumerableindi-
cates a unit covered by testing [17]. For DC, the enumerables
are defects, for branch coverage, the enumerables are branches,
et al.

Enumerable-type implies defects, blocks, branches, c-uses, or
p-uses. The superscript, identifies 1 of the 5
types:

0: defects,
1: blocks,
2: branches,
3: c-uses,
4: p-uses.

It is assumed that no functional changes are being attempted;
and thus no new code is being added to the software under test.

When an enumerable is exercised, one or more associated
faults can be detected. “Counting the number of covered units”
gives a measure of the extent of sampling. Sometimes 85%
branch coverage is considered to be the minimum acceptable
value [9]. The DC in software can be defined in an analogous
manner: the fraction of actual defects initially present that would
be detected by a given test set.

In general, TC increases when more test cases are applied, as
long as the test cases are not repeated and complete TC has not
already been achieved. A few enumerables might not be reach-
able in practice. Assume that the fraction of such enumerables
is negligible.

It has been shown that if all paths in the program have been
exercised, then all p-uses must have been covered. Similarly all
p-use coverage implies all-branches coverage, and all-branches
coverage implies all-instructions coverage. This is termed the
subsumption hierarchy[2], [6], [14].

III. A N EW LE COVERAGE MODEL

This paper uses the Musa–Okumoto logarithmic growth
model [8], [15], [18], [19], [21]. Assume that the DC growth
follows the logarithmic model:

(1)

Because the maximum value of coverage is 1, (1) applies to
coverage values 1.

Assume that coverage growth of enumerablefollows the
logarithmic model ( ):

(2)

Both (1) and (2) can be considered as 2-parameter models. The
maximum value of is 1. Once this value is reached during
testing, it remains 1 with further testing. Equation (2), in the
general form, is

(3)
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Fig. 1. DC versus TC.

Equation (2) relates to the number of tests applied. It is used
to obtain DC in terms of one of the , . Using
(2) solve for ,

Substitute for in (1):

Let

Then write the previous equation using these 3 parameters as,

(4)

Equation (4) is a convenient 3-parameter model for DC in terms
of a measurable TC metric. Equation (4) applies only for
.
Fig. 1 plots the relationship of DC versus TC, as given by

(4). The overall curve is nonlinear, although the initial segment
might not be observed in small programs because even a single
test execution can provide close to 50% enumerable coverage.
The location of the knee of the curve depends on the initial de-
fect density [20]. Fig. 1 shows that the curve can be approxi-
mated by a linear plot when exceeds .

Equation (4) results in a linear expression when
, and when . Analysis of actual data

in Section IV suggests that . Thus
implies: .

The knee at is influenced by the initial defect density
[20]. A low initial defect density can mean that easy-to-find de-
fects have already been found and removed. Thus one would
begin finding new defects only when TC is sufficiently high.

For , a linear approximation for is:

(5)

TABLE I
DATA-SETS USED

TABLE II
COVERAGE DATA: DS3

TABLE III
SUMMARY TABLE FOR DS1

, are the parameters for the linear approximation.
The full TC of an enumerable does not imply full DC. Full

statement coverage can be reached before full branch-coverage
because of the subsumption hierarchy.

IV. A NALYSIS OF DATA

The proposed model, given by (2) and (3) is fitted using the
4 data sets in Table I.

DS1 is from a 12-version automatic airplane landing system
[13] software. It was collected using the ATAC tool developed
at Bellcore. The 12 versions of the software have a total of
30 694 lines of code. The data used are for integration and accep-
tance-test phases, where 66 defects were found. One additional
defect was found during operational testing. The next three data
sets, DS2, DS3, DS4 are from a NASA supported project im-
plementing sensor management in an inertial navigation system
[3]. As an example, DS3 is reproduced in Table II.

The results for data set DS1 are summarized in Table III. Row
#1 gives the total number of enumerables for all versions. Row
#2 gives the average coverage when 21 000 tests had been ap-
plied. The estimated values of, , and LSE are given in the
remaining rows.



MALAIYA et al.: SOFTWARE RELIABILITY GROWTH WITH TEST COVERAGE 423

Fig. 2. Actual and fitted values of DC for DS2, DS3, DS4.

TABLE IV
SUMMARY TABLE FOR DS2

Table IV summarizes the result for DS2; 9 faults were re-
vealed by application of 1196 tests; 1 fault (viz, 10%) is assumed
to be still undetected.

Fig. 2 shows actual and computed values for fault coverage
for data sets DS2, DS3, DS4. The computed values were ob-
tained using branch coverage and (4). The knee occurs at various
branch coverage values. For Data Set DS2 (shown by a solid
line), at 50% branch coverage the fault coverage is still quite
low (about 10%); however with 84% branch coverage, 90% fault
coverage is obtained. Figs. 2 and 4 assume that in each case, 1
fault is still undetected. In practice, estimating the number of
remaining defects is a major challenge that needs further inves-
tigation.

Table V presents the results for DS3 which involves 796 test
cases. The values of the parameters obtained can be compared
with the values for DS2 in Table IV.

Fig. 3 plots the coverage growth of various enumerables.

Fig. 4 plots actual and model DC values against branch cov-
erage for DS3. It shows how the relative defect density declines
as branch coverage increases. The vertical line represents 85%
branch coverage (for reference).

TABLE V
SUMMARY TABLE FOR DS3 (796 TEST CASES)

Table VI summarizes the results for DS4. Fig. 5 illustrates
the correlation of other TC measures,, , , with block
coverage . As anticipated, branch coverage, and to a lesser
extent, p-use coverage, are both strongly correlated with block
coverage. The correlation with c-use coverage is weaker.

V. DEFECTDENSITY AND RELIABILITY

Consider the failure intensity during the operational period.
Assume that debugging stops at, and no further changes in
the program are made. After , the defects remaining are not
removed. Thus no longer depends on time. Becauseis pro-
portional to the number of defects [19], then

Reference [19] shows that the value ofranges from 1 10
to 7.5 10 failures/fault, for several data-sets examined. The
value of does not depend on the program size, but can depend
on defect distribution in the program and the testing approach.

During testing and debugging, the faults found are removed.
If no new faults are introduced during this process, then the total
number of defects to be found by is:
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Fig. 3. Coverage growth of various enumerables (DS3).

Fig. 4. Fault coverage and relative defect density (DS3).

In practice, debugging can be imperfect [22].
Substitute using (4):

Hence, the mean duration between successive failures is:

(6)

Equation (6) can also be used for the operational period with
the appropriate value for the fault-exposure ratio.depends
on the operational profile encountered during the operational
period [21].

VI. FUTURE WORK

Further experimental and theoretical research is needed to
validate the model in this paper. Analysis of additional data sets
will provide further insight into the problem. This paper eval-
uates the values of , , by curve fitting. It will be useful
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Fig. 5. Plot of C2, C3, C4 against C1 (DS4).

TABLE VI
SUMMARY TABLE FOR DS4 (796 TEST CASES)

to obtain initial estimates of the parameter values using empir-
ical methods. That would involve interpreting the parameters
for the logarithmic model [16], [19]. Estimating the number of
remaining defects is another problem that needs further investi-
gation.
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