
TO APPEAR IN Proc. Computer Software & Applications Conf. (COMPSAC 2001), OCT. 2001. 1

Coupling of Design Patterns: Common Practices and Their Benefits

William B. McNatt James M. Bieman
Computer Science Department

Colorado State University
Fort Collins, CO 80525 USA

McNatt: +1-303-971-2271, Bieman: +1-970-491-7096
william.b.mcnatt@lmco.com, bieman@cs.colostate.edu

Abstract

Object-oriented (OO) design patterns define collections
of interconnected classes that serve a particular purpose. A
design pattern is a structural unit in a system built out of pat-
terns, not unlike the way a function is a structural unit in a
procedural program or a class is a structural unit in an OO
system designed without patterns. When designers treat pat-
terns as structural units, they become concerned with issues
such as coupling and cohesion at a new level of abstraction.
We examine the notion of pattern coupling to classify how
designs may include coupled patterns. We find many exam-
ples of coupled patterns; this coupling may be “tight” or
“loose”, and provides both benefits and costs. We qualita-
tively assess the goodness of pattern coupling in terms of ef-
fects on maintainability, factorability, and reusability when
patterns are coupled in various ways.

Keywords: Design patterns, object-oriented design, design
quality, coupling.

1. Introduction

Design patterns are architectural units, just as classes are
implementation units. We can view a system as a collection
of interacting patterns and independent classes. Pattern in-
stance attributes are potentially measurable in a manner sim-
ilar to class attributes. Thus, we can examine notions such
as pattern coupling.

Pattern coupling results from connections between pat-
terns. Common classes can connect two patterns. They play
roles in more than one pattern by referencing common ob-
jects, and by using methods in another pattern. Figure 1
shows a UML class model of two coupled patterns from the
well-known book by Gamma et al [8]. In this example, an
instance of an Abstract Factory pattern is coupled with an
instance of a Visitor pattern through shared classes. Inter-
face ASTNode, classes AST, StmtNode, and DeclNode play

roles in both patterns. A change in parts of one pattern can
affect the behavior of the other pattern.

Figure 1. Overlapping patterns: Abstract Fac-
tory and Visitor.

Although we have not found the notion of pattern cou-
pling discussed in the literature, we found numerous exam-
ples of coupled patterns. In this paper, we study the 23 pat-
terns described in Gamma et al [8]. The design pattern liter-
ature includes many descriptions of actual implementations
that make use of patterns and pattern languages. Published
examples include coupled patterns that are in practical use
today. Review of the pattern coupling techniques used in
practice can reveal characteristics of this coupling, and help
us understand when and how to couple patterns.



2. Approach

We examined the available literature describing specific
design pattern applications to find examples of pattern cou-
pling using the following process:

1. Survey recent literature concerning design pattern ap-
plications for examples of interconnected patterns.

2. Compile a list of all example instances of Gamma et al
design patterns found in the literature.

3. Create a sub-list of all groups of patterns used as pairs
or multiple sets of interacting Gamma et al patterns.

4. Group the list into categories of coupling types (tightly
versus loosely coupled) and interaction types (intersec-
tion, composition, or embedding) with a rationale for
each grouping.

5. Evaluate the identified instances of coupled patterns in
terms of desirable software qualities (maintainability,
factorability, reusability, and ease of implementation)
with rationale for each grouping.

6. Analyze the data to better understand the pattern cou-
pling techniques that, in general, tend to contribute to
design “goodness” and which ones should be used only
to satisfy specific application needs.

We included only those coupled pattern groups that consist
exclusively of patterns defined in Gamma et al.

3. Study Design Patterns

The study pattern set consists of the 23 Gamma et al
OO patterns. The patterns are categorized into their three
main groups and listed below with descriptions quoted from
Gamma et al [8]:

� Creational Patterns.

Factory Method: “Define an interface for creating an
object, but let subclasses decide which class to in-
stantiate.”

Abstract Factory: “Provide an interface for creating
families of related or dependent objects without
specifying their concrete classes.”

Builder: “Separate the construction of a complex ob-
ject from its representation so that the same con-
struction process can create different representa-
tions.”

Prototype: “Specify the kinds of objects to create us-
ing a prototypical instance, and create new ob-
jects by copying this prototype.”

Singleton: “Ensure a class only has one instance, and
provide a global point of access to it.”

� Structural Patterns.

Adapter: “Convert the interface of a class into another
interface clients expect.”

Bridge: “Decouple an abstraction from its implemen-
tation so that the two can vary independently.”

Composite: “Compose objects into tree structures to
represent part-whole hierarchies.”

Decorator: “Attach additional responsibilities to an
object dynamically.”

Facade: “Provide a unified interface to a set of inter-
faces in a subsystem.”

Flyweight: “Use sharing to support large numbers of
fine-grained objects efficiently.”

Proxy: “Provide a surrogate or placeholder for an-
other object to control access to it.”

� Behavioral Patterns.

Chain of Responsibility: “Avoid coupling the sender
of a request to its receiver ... Chain the receiving
objects and pass the request along the chain until
an object handles it.”

Command: “Encapsulate a request as an object,
thereby letting you parameterize clients with dif-
ferent requests...”

Interpreter: Given a language, define a representation
for its grammar along with an interpreter.”

Iterator: Provide a way to access the elements of an
aggregate object sequentially without exposing
its underlying representation.”

Mediator: “Define an object that encapsulates how a
set of objects interact.”

Memento: “Capture and externalize an object’s inter-
nal state so that the object can be restored to this
state later.”

Observer: “Define a one-to-many dependency be-
tween objects so that when one object changes
state, all its dependents are notified and updated.”

State: Allow an object to alter its behavior when its
internal state changes.”

Strategy: “Define a family of algorithms, encapsulate
each one, and make them interchangeable.”

Template: “Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.”

Visitor: “Represent an operation to be performed on
the elements of an object structure.”

2



These patterns represent all of the patterns that we targeted
in this investigation. Although other patterns are docu-
mented in the collection of papers used in this study, we did
not include them in this study. Thus, the pattern combina-
tions discovered are limited to those that can be derived from
pairs or multiples of patterns from Gamma et al [8].

4. Papers Included in the Study

Several criteria were applied to the set of papers to sup-
port consistent analyses of pattern examples:

1. Each paper must have contained at least 1 pattern from
Gamma et al [8] to be included in the study.

2. Papers were not excluded from the study if they did not
contain coupled pattern combinations to add to the total
data set. This allowed a realistic depiction of the actual
prevalence of coupling in practice.

3. Individual pattern recognition was based on the actual
documentation using the name of the pattern.

4. We identify pattern combinations either from actual di-
rect references in the research papers or from their indi-
rect recognition after a review of the pattern structures
presented in the papers.

5. The classification of the patterns into groups accord-
ing to coupling type (loose vs tight) and interaction
type (embedded, interactive, and composite) was ac-
complished via paper inspection by a single reviewer
without subsequent independent validation.

The criteria, especially Criteria 1, allowed us to reject
many papers as sources for data for this study. Approxi-
mately one third of the papers that we found describing pat-
tern use was rejected due to failure to find even one instance
of a documented design pattern from Gamma et al [8]. The
final selected set of 16 papers used in this study consisted of
a fair distribution of papers from industrial applications and
analytical studies. We classified the papers into the follow-
ing four categories based on the nature of the study and the
source of data:

� Pure Analytical Study. Four studies consist of abstract
analytical application of ideas that are not applied to
real world problems [3, 4, 6, 11].

� Analytical study with synthetic examples. Three stud-
ies include synthetic examples which are abstractions
of realistic problems that can occur in commercial soft-
ware development [10, 13, 15].

� Industry case studies of existing code. Five studies lo-
cate existing pattern architectures, or update existing
designs to make use of patterns [1, 2, 7, 9, 18].

� Industry Case Studies of new designs. Four studies
examine new or recent development projects which
deliberately makes use of patterns during the design
phase [5, 14, 16, 17].

5. Pattern Occurrences

The occurrence of patterns in the selected papers was also
quite evenly distributed among the Gamma et al patterns.
Table 1 lists pattern frequencies. Some patterns appear more
frequently, but all patterns are used to some extent. Cer-
tain patterns appear to be more desirable based on their fre-
quent usage. Most of the more popular patterns support in-
terface abstraction and reusability. One example is the Ob-
server pattern. However, the popularity of some of the pat-
terns may be due to the simplicity of the pattern. For exam-
ple, the Singleton pattern is simple, but useful, and is often
embedded in other more complex patterns.

Our data includes far more instances of Behavioral pat-
terns than either Creational or Structural patterns. However,
there are approximately twice as many Creational patterns
in the Gamma et al book than the other two pattern types.
The frequency totals actually correspond very well with the
quantity of pattern types in each subtype. It appears that pat-
tern usage is much more dependent on the individual pattern
type than its particular subtype grouping.

6. Pattern Coupling

We identified all coupled patterns. Such coupled patterns
consist of all pattern pairs or multiples that are connected.
We classified the sets of connected patterns in terms of loose
vs. tight coupling, and pattern interaction types:

� Coupling types.

Loosely Coupled: Patterns are loosely tied together
with few connections, making it easier to separate
the patterns. They should promote quicker, sim-
pler future design changes.

Tightly Coupled: Patterns are tightly tied together
with many links and dependencies. Minor
changes to one of the patterns will be difficult
without affecting the other(s).

� Pattern Interaction Types.

Intersection: Intersecting patterns exhibit a “talks
to” or “uses a” communication and interaction
scheme. We classified a pattern as an intersection
type when there was no evidence that it was either
a Composite, or an Embedded type.

3



Table 1. The frequency of occurrences of de-
sign patterns in the referenced papers.

Pattern Pattern Group
Creational Structural Behavioral

Factory Method 6
Abstract Factory 7

Builder 3
Prototype 1
Singleton 6
Adapter 4
Bridge 2

Composite 8
Decorator 2

Facade 3
Flyweight 2

Proxy 5
Chain of

Responsibility 2
Command 4
Interpreter 2

Iterator 3
Mediator 5
Memento 1
Observer 11

State 4
Strategy 8
Template 6
Visitor 4

Totals 23 26 50

Composite: Composite patterns have pattern ele-
ments as components. These components are
wholly contained in the composite pattern. Com-
posite patterns are recognizable as a “together
make up a” relationship — the composite has
emergent properties not found in the parts. The
composites that we found are not listed as patterns
in Gamma et al [8].

Embedded: Embedded patterns represents the inter-
action best described as a “has a” relationship.
The parent pattern includes an instance of the em-
bedded pattern in it. It differs from the compos-
ite in that the parent pattern is not a composite of
multiple patterns, but has independent content in
addition to the embedded pattern. It differs from
the intersection “uses a” scheme; the used pattern
is entirely within the using pattern’s structure.

We found 17 coupled pattern multiples. The identification
of coupled patterns was easy in some cases using the de-
scriptions in the examples. In other cases, the reviewer rec-
ognized patterns by examining the class structure. Figure 2

shows an example of one of the coupled patterns found in
Masuda et al [10]. In this example, an instance of a Tem-
plate Method pattern is coupled with an instance of a Builder
pattern through a shared class. Class Translator plays a role
in both patterns. The interaction is of the type “talks with
a” which places the patterns into the “Intersection” group-
ing. Table 6 shows the tabulation of patterns grouped into
coupling types.

Figure 2. Coupled Patterns in Masuda et al
[10].

There are clearly more cases of the intersection category
of pattern coupling in the tabulated data. Most of the sets of
coupled patterns are intersections.

7. Pattern Coupling and Design Quality

Ultimately, we are concerned with the relationship be-
tween pattern use and external quality factors such as main-
tainability, reusability, and factorability — the ability to re-
structure a system design.

If we assume that the authors of the papers in our data
set had the intention of producing reusable and adaptable de-
signs, then many of our results should have been expected.
Embedded patterns are not easily modified without affecting
the parent pattern, and modifications of composite patterns
affect their “composite parent”. The use of an embedded or
composite pattern set is best delegated to those application
specific needs where there is not likely to be a need for future
modification of the component patterns in lieu of modifying
the overall parent.

Embedding patterns results in a tendency to treat the par-
ent pattern as the modular unit, with only limited future ac-
cess to the embedded component. The same is true of com-
posite pattern sets. Large-scale macro pattern languages
may make the patterns in the Embedded and Composite cat-
egories as easy to use and as flexible as those in the Inter-
section category. We expect the use of pattern Intersections
to continue to predominate in pattern coupling instances,
since the need to connect patterns with each other to promote

4



Table 2. Classification of Pattern Couplings

Subtype Strength
Coupled Patterns Embedded

Intersection Composite (parent listed 1st) Loose Tight

Strategy–Abstract Factory 1 1
Visitor–Template 1 1
Builder–Template-Strategy 1 1
Abstract Factory–Factory 1 1
Mediator–Observer 1 1
Composite–Visitor 1 1
Factory–Prototype 1 1
Singleton–State–Command 2 2
Singleton–State–Observer 1 1
Composite–Decorator–Flyweight 1 1
Observer–Facade–Template 1 1
Bridge–Proxy–Flyweight 1 1
Facade–Observer 1 1
Mediator–Strategy 1 1
Adapter–Strategy 1 1
State–Singleton 1 1
Interpreter–Builder–Abstract Factory 1 1
Visitor–Command 1 1
Composite–Proxy 1 1
Observer–Singleton 1 1
Strategy–Observer–Composite 1 1
Bridge–Observer–Proxy–Abstract Factory–Factory 1 1
Mediator–Observer–Chain of Responsibility–Composite 1 1
Composite–Interpreter 1 1

Totals 17 4 4 12 13

modularity and factorability will remain and that is what In-
tersection type couplings can support.

Unfortunately, the use of Intersection type pattern cou-
plings does not guarantee good software designs. Intersec-
tions can create both loosely and tightly coupled patterns. A
tightly coupled class structure can result in a design that is
very hard to break apart and modularize, making the design
difficult to modify. Changing one class affects other related
classes in a tightly coupled structure.

Our initial assumption was that the research data set
would represent “good” uses of design patterns and that
most instances of pattern coupling would represent good de-
sign practices. At the very least, the research data set repre-
sents the most visible examples of coupled patterns. We are
most interested in the occurrences of loosely verses tightly
coupled pattern sets. As expected, all of the embedded cou-
plings are tightly coupled. The composite couplings are
evenly divided between loosely and tightly coupled pattern
sets, in part, because, if there were tight couplings between
any of the patterns (i.e. one embedded pattern), then we
classified the entire pattern set was as tightly coupled. My-
ers first suggested using the strongest connection to classify
instances of coupling [12]. To lower the strength of cou-
pling, eliminate the strongest connections.

We expected a high preponderance of loosely coupled

pattern sets among those classified as Intersection couplings.
However, seven of the 17 Intersection couplings are tightly
coupled, which, with our small sample, includes far more
tightly coupled Intersections that we expected. One expla-
nation is that the Singleton pattern is a popular embedded
type and its use resulted in a classification of tightly coupled
wherever it is applied. Couplings involving the Singleton
pattern are notable exceptions to the rule that patterns should
be loosely coupled. In many applications the use of a Sin-
gleton type pattern can result in code efficiencies due to re-
moval of redundant code (i.e. as a single null node shared for
all linked lists in a module). Although instances of the Sin-
gleton pattern tend to be tightly coupled to other patterns, it
is typically used in an application specific context that de-
velopers do not expect to be modified after the first use in a
design. Of course, it is difficult to predict what kind of mod-
ifications will be needed in an uncertain future.

If we eliminate the effect on our results of the Singleton
pattern on the coupling classifications, then the Intersection
couplings exhibited loose coupling. Only three of the seven
pattern groups that are tightly coupled and exhibit Intersec-
tion coupling are tightly coupled for reasons other than the
use of the Singleton pattern.

The results of the study tend to bear out the traditional
views on designing for software quality. Maintainability,

5



factorability, and reusability are all supported by modular
software with loosely coupled interfaces and abstraction of
details to prevent modification of one component from im-
pacting others. The design pattern couplings most often
used in the research data set supports this traditional view.
Both industry and academic software development papers
were in agreement on the value of modular software. The
use of patterns not conducive to loose coupling is not elimi-
nated, but rather delegated to specific applications where the
impact on modularity is minimized.

8. Limitations

The greatest threat to the validity of our results is a lim-
ited data set. First, the composite pattern sets are all from
the same data source [15]. We expect that composite pat-
tern couplings will play an increasing role in pattern based
design as more and more macro level design structures are
developed. Second, we classified coupled pattern sets into
the default “Intersection” category if it did not meet the cri-
teria of another category. Finally, we depended on a manual
process for classification using one evaluator, the first au-
thor. Future research should use an expanded data set, more
refined classification criteria, and either an automated clas-
sification mechanism or independent expert assessments.

9. Conclusions

We find examples of coupled OO design patterns in theo-
retical and applied research as well as in industry case stud-
ies. The examples are split nearly evenly between sets of
tightly coupled patterns and sets of loosely coupled patterns.
Sets of coupled patterns classified as exhibiting Composite
Coupling and those containing an instance of the Singleton
pattern tend to be tightly coupled. However, expanded data
is needed to generalize the results to the set of all OO soft-
ware designs.

Further studies should lead to an understanding of which
pattern constructs are effective and lead to more adaptable
systems for particular applications. Eventually this work
may lead to mechanisms to evaluate macro pattern cou-
plings for new Composite patterns or pattern languages.

Patterns are clearly becoming a popular design mecha-
nism, and as their use increases, there will be a growing need
for good pattern coupling methods — if we design a system
as a set of patterns, these patterns must communicate. By
examining how patterns have been coupled in published ex-
amples, we can better understand the benefits and costs of
design options involving connected patterns.

10. Acknowledgements

This work is partially supported by U.S. National Sci-
ence Foundation grant CCR-0098202, and by a grant from
the Colorado Advanced Software Institute (CASI). CASI is
sponsored in part by the Colorado Commission on Higher
Education (CCHE), an agency of the State of Colorado.

References

[1] F. Balaguer, S. Gordillo, and F. Das Neves. Generating the
architecture of gis applications with design patterns. Proc.
5th Int. Workshop on Advances in Geographic Information
Systems, pages 30–34, 1997.

[2] S. Barkataki, S. Harte, and T. Dinh. Reengineering a legacy
system using design patterns and Ada-95 object-oriented fea-
tures. Proc. ACM Int. Conf. Ada Technology, page 148, 1998.

[3] M. P. Cline. The pros and cons of adopting and applying de-
sign patterns in the real world. Communications of the ACM,
39(10):47–49, Oct. 1996.

[4] J. W. Cooper. Using design patterns. Communications of the
ACM, 41(6):65–68, June 1998.

[5] P. Dagermo and J. Knutsson. Development of an object-
oriented framework for vessel control systems. Dover Con-
sortium 96. ftp://st.cs.uiuc.edu/pub/patterns/papers/Dover.ps.

[6] M. Duell, J. Goodsen, and L. Rising. Non-software examples
of software design patterns. OOPSLA’97 Addendum, pages
120–124, 1997.

[7] R. Engel, H. Hüni, and R. Johnson. A framework for network
protocol software. Proc. OOPSLA’95, pages 358–369, 1995.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[9] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. Proc.
OOPSLA’95, pages 342–357, 1995.

[10] G. Masuda, N. Sakamoto, and K. Ushijima. Applying de-
sign patterns to decision tree learning system. Proc. ACM
SIGSOFT Int. Symp. Foundations of Software Engineering,
pages 111–120, 1998.

[11] T. Mikkonen. Formalizing design patterns. Proc. Int. Conf.
Software Engineering (ICSE’98, pages 115–124, 1998.

[12] G. Myers. Composite/Structural Design. Van Nostrand
Reinhold, 1978.

[13] D. Nguyen. Design patterns for data structures. Proc.
SIGCSE Symp., pages 336–340, 1998.

[14] G. Odenthal and K. Quibeldey-Cirkel. Using patterns for de-
sign and documentation. Proc. ECOOP’97, 1997.

[15] D. Riehle. Composite design patterns. Proc. OOPSLA’97,
pages 218–228, 1997.

[16] H. A. Schmid. Creating the architecture of a manufactur-
ing framework by design patterns. Proc. OOPSLA’95, pages
370–384, 1995.

[17] D. C. Schmidt. Using design patterns to develop reusable
object-oriented communication software. Communications
of the ACM, 38(10):65–74, Oct. 1995.

[18] P. M. Yelland. Creating host compliance in a portable frame-
work: a study in the reuse of design patterns. Proc. OOP-
SLA’96, pages 18–29, 1996.

6


