
Using Algebraic Speci�cations To Find Sequencing Defects

Kurt M. Olender James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, CO 80523

Abstract

One class of program defect results from illegal se-

quences of otherwise legal operations in software im-

plementations. Expressions that specify the correct

sequences can be written in the Cecil sequencing con-

straint language. Programs can then be checked at

compile time by the Cesar analysis system.

Explicit statement of sequencing constraints, how-

ever, is not a common activity when specifying soft-

ware even when using formal speci�cation methods. In

this paper, we describe methods to derive constraints

on program execution sequences from algebraic speci-

�cations. We provide heuristic methods for generating

these constraints from the speci�cations and general-

ize the methods into automatable rules. Using these

generated constraints, we can then detect sequencing

defects in software before dynamic testing begins.

1 Introduction

If we hope to produce reliable software, we must

have practical techniques to ensure that software per-

forms its intended function. We can partition this

general problem into three components: (1) creating

complete and self-consistent speci�cations that accu-

rately re
ect the needs of the end users of the software,

(2) producing implementations consistent with those

speci�cations, and (3) verifying that the implementa-

tion is indeed consistent.

In this work, we attack portions of the �rst and

third problems. These jobs are easier when as much

of the checking as possible is done automatically from

a formal speci�cation. Unfortunately, a completely

automatic veri�cation is impossible; the problem is

undecidable. However, we can restrict the kinds of

behavior or properties to be checked to those that are

completely automatable. Not all behaviors or proper-

ties can be veri�ed with automatic and tractible meth-

ods, but for those that can, no human intervention is

required. Static, compile-time methods that detect

data
ow anomalies or perform automatic type check-

ing are examples. Many of the existing automated

static analysis tools, however, can check only limited

kinds of behavior. Often, the behaviors checked ap-

ply to all programs, and are built into the tool. Data

ow anomalies, for example, translate to sequencing

constraints like \in every program, no variable will be

used before it is de�ned". Tools that verify these prop-

erties generally check those and only those properties.

Olender and Osterweil[1, 2] show that static data

ow analysis methods can be extended so that user-

de�ned constraints can be automatically checked.

These constraints restrict the relative sequencing of

computational events that occur during program ex-

ecution. For example, we might want to place con-

straints on the order in which interface routines of a

new module might be called. These are certainly not

part of the programming language, and so a tool built

to look for \canned" sequencing problems would not

be able to check it.

While such constraints on operation sequencing are

useful, software systems are not typically speci�ed

solely in terms of sequencing, but rather as infor-

mal natural language requirements, or more frequently

than in the past, with semi-formal and formal speci-

�cation languages. These speci�cations de�ne much

more comprehensive behavior than the order in which

computations occur. A tool capable of automatically

checking sequencing properties will be more conve-

nient and useful if it can also automatically extract

the sequencing properties from a speci�cation written

in a more general language. The speci�er need only

learn one language, but can still perform automated

checking of a program for its conformance to at least

a subset of the intended behavior.

Like Leveson's approach to safety analysis of soft-

ware [3], we restrict our focus to an important sub-

set of software behavior that can be more easily (and

in our case automatically) veri�ed with con�dence.

Leveson seeks methods to demonstrate that certain

catastrophic failure conditions cannot occur. We seek

methods to show that certain failure-inducing (or

sometimes defect-symptomatic) sequences of compu-

tational events do not occur. Rather than burden the

software speci�er with a second speci�cation language,

we aim to automatically construct the appropriate se-

quencing constraints from an existing speci�cation.

Thus, while the correct sequencing of events is only

one component of a speci�cation, it is a component

that can be checked by machine. The focus of this

paper is the generation of sequencing constraints from

formal algebraic speci�cations, which can then be used

to automatically �nd defects in the sequencing of com-

putations at compile time.

1.1 Algebraic Speci�cations

Formal speci�cations describe the behavior of sys-

tems using mathematical techniques, with several ap-

proaches including abstract modeling [4, 5], algebraic

speci�cations [6, 7], trace speci�cations [8, 9], and

knowledge-based methods [10, 11]. Algebraic speci-

�cations were selected in our initial investigation be-

cause languages that support them, such as Larch [12],

are widely known and are well-supported by tools. In

addition, the equational nature of algebraic speci�ca-

tions appears to be well suited for our purposes.

Using algebraic speci�cations, a system is speci�ed

primarily as a collection of abstract data types (ADT),

each of which includes a speci�cation of the ADT oper-

ation syntax and semantics with type signatures and

algebraic axioms. Illegal or unde�ned sequences of

operations can either be speci�ed explicitly using \er-

ror" or exception values as results in the axioms, or

implicitly by omission of an axiom. In this paper, we

assume that error conditions are explicitly noted in

the axioms, so that the axiomatization is su�ciently

complete.

Figure 1 is an example speci�cation of a stack ADT.

For simplicity, we use the notation from Guttag [7].

For additional information on algebraic speci�cation

techniques, see [13].

1.2 Cecil

Cecil is a language for expressing sequencing con-

straints in software. A sequencing constraint is an as-

sertion that de�nes legal sequences of particular com-

putations, or \events", that may occur during some

execution of a program. For example, if we are con-

cerned that variables are assigned values before those

signatures

new: stack

push: stack � item ! stack

pop: stack ! stack [ferrorg

top: stack ! item [ferrorg

isnew: stack ! Boolean

semantic axioms

isnew(new) = true

pop(new) = error

top(new) = error

isnew(push(s,i)) = false

pop(push(s,i))= s

top(push(s,i))= i

Figure 1: An algebraic speci�cation of a stack

values are used, then the events are assignments to and

uses of that variable. If we are instead concerned with

operations on stacks, then those events are the code

fragments that implement the operations. A sequenc-

ing constraint will restrict the relative order in which

these events can occur, for example, that assignment

events for a given variable always precede use events in

every possible execution of the program. Cecil allows

us to specify such program sequencing constraints in

a way amenable to static checking.

We can view the execution of a program as if it

generates a sequence, or trace, of the events in which

we are interested. Cecil allows us to specify the events

and write regular expressions that the traces of these

events must match. Since we may be interested only

in certain segments of a trace, Cecil also allows us to

specify bounding events, or anchors, that delimit the

subtraces of interest. Lastly, Cecil allows us to con-

strain either all, or perhaps only some of the bounded

subtraces. So our constraints will be independent of

the programming language used to code a program,

the mapping of the event names to program state-

ments is speci�ed separately. A detailed exposition of

Cecil is outside the scope of this paper. We brie
y

illustrate the important properties with a simple ex-

ample. A detailed description of Cecil can be found in

in [2].

Figure 2 is a Cecil sequencing constraint for a write-

only �le. The events open, write, and close indicate

the execution of the respective operations on some par-

ticular �le. We are also interested in the start and

fopen, close, writeg

[s] forall (open; write�; close)� [t]

Figure 2: A Cecil constraint for a write-only �le

termination of program execution, which are denoted

by the events s and t respectively. The constraint

in the �gure expresses a safety property of �le oper-

ations, since a violation of the sequencing will cause

program failure. Namely, we must ensure that �les are

opened before they are written, and closed when we

are �nished with them. We can read the expression as:

every possible subtrace (forall) from program start

([s]) to termination ([t]) must satisfy the the reg-

ular expression as given. Again, the mapping of the

event names (e.g. open) to program statements would

be speci�ed separately.

Cecil is a powerful language for specifying con-

straints on the sequencing of computational events.

The Cesar system can be used to enforce these Ce-

cil constraints. Given a Cecil constraint, the Cesar

system automatically determines if a given program

satis�es the constraint. Currently Cesar can check Ce-

cil constraints in fortran programs, although other

languages can also be supported. The Cesar system is

described in detail in [1].

1.3 Organization of the Paper

In the remainder of this paper, we address the prob-

lem of generating Cecil sequencing constraints from al-

gebraic speci�cations. We develop heuristic methods

for generating Cecil constraints and generalize these

methods into automatable rules when possible.

Section 2 de�nes categories for operations in an al-

gebraic speci�cation. Heuristics for generating safety

constraints that guard against those event sequences

that cause program failure are described in Section 3.

To simplify our presentation, we describe our method

in terms of a simple example, a stack data abstraction.

The technique can, however, be applied to more com-

plex problems. Our conclusions and plans for future

work are in Section 4.

2 Operation Categories

We assume that equations are interpreted as rewrite

rules and that the set of equations is su�ciently com-

plete and convergent (thus disallowing an axiom of

commutativity, for example). We also assume that no

equations are conditional, that is, all rewrite rules are

applicable when the form on the left hand side of the

rule is present in an expression.

We partition the operations in an algebraic speci�-

cation into relevant categories based on their type sig-

natures and semantic equations. It is relatively easy

to determine the appropriate category for any given

operation. We de�ne a set of signature and axiom

patterns, one for each operation category.

This classi�cation scheme is similar to those used

by others. Guttag [7] partitions operations into con-

structors, modi�ers, and selectors to demonstrate a

method for creating su�ciently complete axiomatiza-

tions. The Larch Shared Language allows operations

to be declared as either generating or partitioning

ADT values to aid analysis of Larch speci�cations [12].

Our classi�cations are intended to assist the genera-

tion of sequencing constraints and so may not be iden-

tical to other schemes.

In de�ning the operation categories, we use the fol-

lowing notation for patterns of operation signatures.

Let T match the type being de�ned. Let V match

any other type, and let ? match any type at all. Pat-

tern X�Y matches the cross-product of types match-

ing X and Y in either order. Thus, for pattern pur-

poses, we allow � to be commutative. The unit or

empty type matches the pattern (). Z� matches zero

or more cross-products of types matching Z. The

nullary cross-product is equivalent to the unit type.

Square braces represent an optional portion of a signa-

ture pattern. Thus the pattern [?��]T ! V matches

the signature of any function that has at least one

argument of the ADT being de�ned (and possibly ar-

guments of any other types, in any order) and returns

a result of some other type. We also assume that B

is the Boolean type, and that T is never B. Boolean

types are nearly always directly provided by program-

ming languages, and so need not be speci�ed as an

ADT.

We also use patterns on the semantic equations.

An identi�er matches an operation name. An ellipsis

(: : :) matches zero or more arguments to an opera-

tion. Thus, the pattern, d(: : : ; v; : : :) = x matches an

equation de�ning the result of a single operation with

at least one argument.

2.1 Creator operations

A creator is an operation that generates a value

of the type being de�ned out of whole cloth, that is,

it converts arguments of other types into the type of

interest. A creator operation has a signature that

matches the pattern, V � ! T . The new operation

for stacks is a creator operation. We denote the set of

creator operators for an ADT by C.

2.2 Modi�er operations

Operations that transform an existing value of an

ADT are termed modi�ers. They have signatures that

match the pattern, [?��]T ! T , converting at least

one value of type T into some new value of T . In the

stack example, push and pop are modi�ers since they

convert an input stack into a new stack value. We

denote the set of modi�ers for an ADT by M . The

union of the creators and modi�ers are constructors

which we denote by K = C [M .

2.3 Selector Operations

The set of selectors, S, are the operations that re-

turn some subcomponent of a type that is not of that

same type itself. Thus, a selector has a signature

matching the pattern, [?��]T ! V . We must know

that V is a subcomponent of T to distinguish between

a selector operation and other categories subsequently

to be de�ned. If a semantic equation exists of the form

s(:::; k(:::; v; :::); :::) = v, so that a non-ADT value, v,

used to construct an ADT value (via constructor k) is

directly recovered by the operation s, we consider the

type of v to be a subcomponent of the ADT and s to

be a selector. A cursory examination of the semantic

equations is su�cient to determine this. In the stack

example, top is a selector.

2.4 Discriminator Operations

Functions that take a single argument of T and re-

turn a value of some other type and are not selectors

are included in the discriminator set, D. Often, these

operations are used to partition values of the type into

equivalence classes based on some intrinsic property

of the value. Discriminators match the signature pat-

tern, T ! V . The isnew operation is a discriminator

in the stack example.

2.5 Interrogator Operations

Predicates taking multiple arguments, including at

least one of the ADT T in question, and at least one

of a subcomponent type (as de�ned above), are inter-

rogators, denoted by I. These operations are normally

used to determine the existence or non-existence of

some property of the value. The stack example has

no interrogator operations, but the membership pred-

icate in the algebraic speci�cation of a set is an inter-

rogator. Interrogator operations match the signature

C = fnewg

M = fpush, popg

K = fnew, push, popg

S = ftopg

D = fisnewg

I = ;

Figure 3: Stack ADT operators

pattern [?��]V �T ! B, where there exist correspond-

ing constructor and selector operations that add and

extract values of type V from T . Again, a cursory ex-

amination of the semantic equations can show whether

V is a subcomponent of T .

2.6 Stack ADT operation categories

The categorization of the operations in our stack

ADT example are given in Figure 3. Given these clas-

si�cations, we can begin to construct the sequencing

constraints for the ADT.

3 Generating Constraints

The algebraic speci�cation for a stack in Figure 1

clearly states that popping a new stack is an error.

The equation returns an exception value rather than

a stack. Thus, the sequence new;pop directly results

in an error. In this section, we codify some heuris-

tics for specifying sequences of operations that cannot

result in such errors. Note that for the purposes of

denoting sequences of operations, we ignore the argu-

ments to the operations. Assume that in the above

sequence new;pop, the stack result of new is passed by

unspeci�ed means as an argument to pop. When non-

stack arguments are irrelevant for the discussion, we

shall omit those as well. For example, the sequence

push; pop indicates we �rst push some unspeci�ed

value onto a stack, and then pop the same stack.

3.1 Requiring Initializations

The value of an variable of any type must be de-

�ned before other operation can be performed on it,

so a creator operation must precede any other opera-

tion on every execution path. In some cases, the cre-

ator operation may not be directly visible in the code,

but it must be present. C++, for example, allows

the de�nition of \constructor" operations that implic-

itly initialize a value of a type de�ned by a class at

the declaration of a C++ variable or constant. Also,

some objects may be initialized by the run-time sys-

tem. For example, the \cout" and \cin" iostreams

are not explicitly opened in a C++ program source.

These implicit events still occur however, and the Ce-

sar analysis system accounts for them.

In the following discussion, let C;M; S; I and D be

the set of creators, modi�ers, selectors, interrogators,

and discriminators, respectively for a particular ADT.

Let O be the set of all ADT operations. We use the

lowercase c;m; s; i; d and o to represent some speci�c

operation in each respective category.

Using Cecil, we specify that a creator operation al-

ways precedes any other operation with the expres-

sion:

fOg [s] forall (c1 j c2 j : : : j cn);?* [O nC]

In this expression, O is substituted by a comma-

separated list of all operations, O n C is the list of

all non-creator operations, c1 through cn are the cre-

ator operations (C = fc1; : : : ; cng) and s represents

the start of program execution. This Cecil speci�ca-

tion requires the �rst operation on every path from the

start of execution leading to a non-creator operation

to be a creator. For the stack example, we write

fnew,push,pop,top,isnewg

[s] forall new;?* [push,pop,top,isnew]

The Cesar system can examine the program code that

uses the stack implementation to insure that this Cecil

expression is not violated.

3.2 Preventing Exceptions

The semantic equations for the stack indicate that

the sequences new;pop and new;top result in an ex-

ception. With the (usually) reasonable assumption

that exception results are to be avoided, we want

to generate constraints that prohibit such sequences.

These two sequences are not the only ones that can

result in an exception, however. Applying either pop

or top to any stack that happens to be empty (regard-

less of how it became so) will cause an exception. We

must statically identify when these sequences might

occur.

Some operations can return exception values. We

call these operations failure operations and let F be

the set of failure operations for ADT T . In the stack

example, F = fpop, topg. Failure operations are not

guaranteed to fail, they are simply those that might

fail. We can see in our stack example that the se-

quences new;pop and new;top are guaranteed to fail,

but that other sequences, such as push;popwould not.

Some non-failure operations are safe in that when

they precede a failure operation, they will never

cause failure. For example, the sequence push;pop

or push;top will never produce an error for the un-

bounded stack in our algebraic speci�cation. We call

these safe operations guards. We denote the set of

guards for failure operation f as G(f). On the other

hand, other non-failure operations are unsafe as they

always cause a following failure operation to fail. The

sequence new;pop will always fail since we cannot pop

an empty stack. We call these unsafe operations anti-

guards. The set of anti-guards for failure operation f

is denoted A(f). In our stack example, we know that

G(top) includes push and A(top) includes new, but

there may be other operations in these sets as well.

A suitable safety constraint for a failure operation

f is constructed in the following manner. Given con-

structor operations K, G(f) = fg1; : : : ; gng and A(f),

we require f be preceded on all control paths by a

guard operation with a Cecil constraint of the form:

fK;G(f); A(f)g forall (g1 j : : : j gn) [f]

In words, for all execution sequences that include con-

structors and the known guards and anti-guards for f ,

the failure operation must be immediately preceded by

a guard, thus no non-guard constructor or anti-guard

can occur in an execution sequence between the guard

and f . Operations not in K, G(f), or A(f) are not

relevant to the sequencing as they cannot change the

state of the ADT value or otherwise protect against

failure.

To write appropriate constraints, we obviously

must determine the guard and anti-guard sets for each

failure operation. In the ensuing discussion, let lower-

case f and g represent an arbitrary failure or guard op-

eration, respectively. We examine all of the semantic

equations that de�ne the result of f and identify the

equations that produce valid results (that is, produce

non-exception values). The operations in the ADT ar-

gument positions of these equations are guards. For

example, pop is a failure operation when its argument

is the result of new. However, when the result of push

is the argument to pop a valid result is speci�ed. Thus

push is a guard for pop, and similarly for top.

Suppose an equation de�nes the result of a discrim-

inator operation, d, when applied to the result of a

known guard. (This analysis is also relevant when an

interrogator operation is applied to a known guard.)

Such an equation might look something like:

d(: : :, g(: : :), : : :) = v

In the stack example, isnew(push(s,i)) = false is

an equation de�ning the result of a discriminator ap-

plied to a known guard. We assume that value v above

is characteristic of the guard call. The call of this dis-

criminator producing a particular value can be de�ned

as an \event", call it d=v. Since this event (with result

v) is characteristic of the guard call, then d=v 2 G(f).

Thus, isnew=false is a guard for top in the stack ex-

ample.

We have partitioned d into two events: d=v and

d6=v (isnew=false and isnew6=false for the stack

isnew operation). We must statically determine that

event d=v (or isnew=false) occurs in a given pro-

gram. While this is in general undecidable, most

discriminator (or interrogator) calls appear in condi-

tional expressions of control statements, resulting in

constructs such as:

if (d(x) = v) then : : :else : : :end if;

where x is a variable of our ADT type. We know that

the \then" clause is only executed when d is equal to

v and so the control path to the \then" is associated

with event d=v. Cesar associates such discriminator

events with program control
ow edges, and can thus

statically recognize these events.

The guard discriminator (and interrogator) events

are added to the respective sets G(f) so that if g 2

G(f) and d=v is characteristic of g then d=v 2 G(f).

We must also keep tabs on the complementary events,

however, as they will be signi�cant in the sequencing.

Thus, whenever we add event d=v to G(f), we must

add the complementary operation d6=v to the set of

anti-guards A(f), since these operations may be char-

acteristic of failures.

In the stack example, the equations show that

isnew is false for the known guard push, so we add

event isnew=false to the G sets for top and pop,

and isnew 6=false to the corresponding A sets.

To complete the analysis, we examine all remaining

constructor operations not yet in G(f). Essentially,

we must prove a theorem that for all values of the

ADT as arguments to the constructor, a known dis-

criminator guard returns a value characteristic of its

application to a known constructor guard. This is sim-

ple in our stack example. The remaining constructor

operation is pop. We can easily �nd the counterex-

ample pop(push(x,new)) = new from the equations.

Therefore, pop is not a guard.

The �nal constructor, guard, anti-guard, and fail-

ure sets for the stack ADT are:

K = fnew, push, popg

F = fpop, topg

A = fisnew6=falseg

G(pop) = G(top) = fpush, isnew=falseg

We note that when two or more failure operations

share the same guard sets, their separate constraints

will be isomorphic, and we can merge them into a sin-

gle AQRE with both failure operations listed in the

end anchor. The resulting Cecil constraint for our

stack example is:

fnew,push,pop,isnew=false,isnew6=falseg

forall (push j isnew=false) [pop,top]

This means that push or isnew=false must immedi-

ately precede pop or top in any execution sequence

that contains a constructor or discriminator operation

call. If the above constraint is satis�ed, pop and top

will not produce exception values.

This is a conservative estimate of the sequencing

constraint for a stack, which is actually a context-free

language. However, it is impossible to statically check

the sequencing against the proper context-free con-

straint. Typical defensive programming practices re-

quire guard operations that protect against possible

failure. The Cecil constraint above codi�es such a de-

fensive programming practice and the Cesar system

allows for its automatic enforcement. Thus, this Cecil

constraint is reasonable, though more restrictive than

might be necessary. We have presented our method in

the context of a simple stack data abstraction, but it

is more generally applicable to a rich set6 of speci�ca-

tions.

3.3 Other constraints

The preceding section describes the generation of

constraints that are intended as safety conditions. We

wish to avoid exceptions during program execution.

Thus, we check the order of operations on the data ab-

straction to ensure that sequences resulting in excep-

tions cannot occur. In other situations, we may want

to verify that particular sequences do occur, at least

on some program executions. We characterize these

latter constraints as describing liveness properties for

the software. As one example, we may want to ensure,

in the �le example from Section 1.2, that there is at

least one possible execution in which a write event

occurs. Otherwise, we may wonder why we bother

opening the �le!

A second complication is that the correct sequenc-

ing of the events may depend on the value of the ar-

guments to an operation. Table data abstractions, for

example, require a successful lookup of a key in a table

be preceded by a successful insertion of the same key.

In these situations, we must parameterize the events

in the constraints.

We have studied both the generation of liveness

constraints and the situations where parameterized

events are needed, but our results are outside the scope

of this paper. Interested readers may consult [14].

4 Conclusions

We demonstrate a technique to generate sequencing

constraints from algebraic speci�cations. These con-

straints can be used to discover execution order defects

in software. Using the method, we identify operations

that may result in software failures, and specify the

event traces that guarantee that the failure will not

occur. A program can be statically analyzed to deter-

mine if the sequences of operations in the implemen-

tation satisfy the constraints. Thus, certain classes of

program errors can be ruled out without running the

program.

These methods do have certain limitations. Obvi-

ously, any static compile time method must be able

to �nd the events of interest at compile time. As

we brie
y mentioned above in Section 3.3, there are

situations where this may be di�cult or impossible.

However, in many cases, we can design the software

to reduce or eliminate these cases. Apart from the

advantage of enhancing automatic checking, design-

ing with statically-checked constraints in mind will aid

the readability and well-structuredness of the software

and promote \defensive programming".

Our method also assumes that the syntactic form of

the algebraic speci�cations is indicative of the seman-

tic meaning of the equations. In general, this may

not be true. It is not hard, for example, to write

an algebraic speci�cation for a stack that will fool

our method. However, we believe that such degen-

erate speci�cations run counter to the principles of

good software engineering. We desire easily under-

stood code and speci�cations. This is greatly helped

when the syntactic forms and semantic meaning are as

closely aligned as possible. Thus, for the same reason

that we choose meaningful names for variables and

procedures in code, we should choose speci�cations

whose syntax re
ect their semantics. Our informal ex-

aminations of existing sets of algebraic speci�cations,

such as those distributed with the Larch toolset, ap-

pear to bear out this assumption.

We are currently planning the implementation of an

automatic constraint generator from algebraic speci�-

cations. We also plan to expand our investigation to

include other speci�cation techniques, for example ab-

stract model speci�cations written in languages like Z

or VDM's meta iv [4, 5].

References

[1] K. M. Olender and L. J. Osterweil. Interprocedu-
ral static analysis of sequencing constraints. ACM

Transactions on Software Engineering and Methodol-

ogy, 1(1):21{52, January 1992.

[2] K. M. Olender and L. J. Osterweil. Cecil: a sequenc-

ing constraint language for automatic static analysis

generation. IEEE Trans. on Software Engineering,
16(3):66{74, March 1990.

[3] N. G. Leveson. Software safety in embedded computer
systems. Communications of the ACM, 34(2):34{46,

February 1991.

[4] C. B. Jones. Systematic Software Development Using
VDM. Computer Science Series. Prentice-Hall, En-

glewood Cli�s, NJ, second edition, 1990.

[5] J. M. Spivey. The Z Notation: A Reference Man-

ual. Computer Science Series. Prentice-Hall, Engle-

wood Cli�s, NJ, 1989.

[6] J. V. Guttag, E. Horning, and D. R. Musser. Abstract

data types and software validation. Communications

of the ACM, 21:1048{1064, January 1979.

[7] J. V. Guttag and J. J. Horning. The algebraic spec-

i�cation of abstract data types. Acta Informatica,
10:27{52, 1978.

[8] W. Bartussek and D. L. Parnas. Using traces to write
abstract speci�cations for software modules. Techni-

cal Report 77-12, Dept. of Computer Science, Univ.

of North Carolina, Chapel Hill, 1977.

[9] J. McLean. A formal method for the abstract speci�-

cation of software. Journal of the ACM, 31:600{627,

July 1984.

[10] M. S. Feather. Language support for the speci�cation

and development of composite systems. ACM Trans.

on Programming Languages and Systems, 9(2):198{

234, April 1987.

[11] D. R. Smith, G. B. Kotik, and S. J. Westfold. Re-

search on knowledge-based software environments at

Kestrel Institute. IEEE Trans. on Software Engineer-

ing, SE-11(11):1278{1295, November 1985.

[12] J. V. Guttag, J. J. Horning, and Andr�es Modet. Re-

port on the Larch Shared Language: Version 2.3.
Technical Report Techical Report 58, Digital Systems

Research Center, April 1990.

[13] J. A. Bergstra, J. Heering, and P. Kling, editors. Al-

gebraic Speci�cation. ACM Press, New York, 1989.

[14] K. M. Olender and J. M. Bieman. Generating se-
quencing constraints from algebraic speci�cations.

Technical Report CSU{TR{91{104, Colorado State
University, Dept. of Computer Science, February

1991.

