
Algebraic Speci�cations and Sequencing:

A Defect Detection Method

Kurt M. Olender James M. Bieman

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523 USA
(303) 491-7015, (303) 491-7096

olender@cs.colostate.edu, bieman@cs.colostate.edu

March 20, 1995

Abstract

One class of program defects results from illegal sequences of otherwise legal operations in

software implementations. Explicit statement of sequencing constraints, however, is not a com-

mon activity when specifying software even when using formal speci�cation methods. This paper

shows that constraints on program execution sequences can be derived directly from algebraic

speci�cations. Results include heuristic methods for generating sequencing constraints and a

generalization of these methods into automatable rules. The heuristics can be integrated into a

speci�cation methodology such as Larch. Engineers can use the generated sequencing constraints

to detect sequencing defects in software even before dynamic testing begins. The method can

be used to increase the reliability of software that is speci�ed using algebraic methods.

Keywords: Software Defect Detection, Algebraic Speci�cations, Sequencing Constraints, Static

Analysis, Larch

1 Introduction

Demonstrating that software implementations are correct is easier when as much of the correctness

checking as possible is done automatically. Unfortunately, a completely automatic veri�cation is

impossible; the problem is undecidable.

Some investigators have developed tools (and languages) to support human analysts with the

mass of tedious detail inherent in a complete formal veri�cation. Some examples of these tools

include Gypsy [1, 9], Larch and the Larch Prover (LP) [8], and the B-Tool (Edinburgh Portable

Compilers Ltd) for checking Z speci�cations. While they address the full range of possible soft-

ware behaviors and properties, formal proof techniques, even with tool support, require signi�cant

computation resources and highly skilled human analysts.

Another approach is to automate checkers for subsets of software behavior whose checking is

automatable. Not all properties can be veri�ed with automatic and tractable methods, but for

J. Bieman's research is partially supported by NASA Langley Research Center grant NAG 1-1461, the Colorado

Advanced Software Institute (CASI), Storage Technology Inc., and Micro-Motion Inc. CASI is sponsored in part by

the Colorado Advanced Technology Institute (CATI), an agency of the state of Colorado. CATI promotes advanced

technology teaching and research at universities in Colorado for the purpose of economic development.

1

those that can, no human intervention is required. In general, these properties must be statically

visible in the software source code, since dynamic checks cannot con�rm the absence of errors. A

conservative approach is to use a static check to guarantee that certain errors cannot occur.

Sequencing of events during software execution is one important area where such static checks

are possible. Data
ow anomalies, which indicate erroneous or error-prone conditions, can be

identi�ed through a static check of the ordering of de�nitions and uses. Unfortunately, many

existing automated static analysis tools check only limited kinds of behavior. For example, a tool

may check only one constraint such as \in every program, no variable will be used before it is

de�ned."

Some researchers have attempted to address this problem. Dillon et al. de�ne constrained ex-

pression methods that can demonstrate, for example, deadlock sequences in distributed systems [2].

They analyze inequality systems over event occurrence counts in an execution trace. The QDA

method of Howden and Wieand allows static detection of interface errors (essentially incorrect pairs

of successive events) in software that has been manually annotated with specialized comments [16].

Of immediate interest is the work of Olender and Osterweil [22, 25], who show that static data

ow analysis methods can be extended to user-de�ned constraints on the sequencing of events that

should occur during program execution.

However, software systems are not typically speci�ed solely in terms of sequencing. When a

formal speci�cation language like those mentioned above is used, one would like to specify the

complete range of software behaviors and properties.

It is possible to gain the advantages of both general purpose speci�cation languages and com-

pletely automatable checking of important behavior subsets like sequencing. Tools now being

developed can automatically extract the sequencing properties from a speci�cation written in a

more general language, and then automatically check those sequencing properties in an implemen-

tation. Rather than burden the software speci�er with a second speci�cation language, the speci�er

need only learn and use one speci�cation language, and can automatically check an implementation

for conformance to desired sequencing properties. In addition, automatic extraction of sequenc-

ing constraints from general speci�cations can optimize the veri�cation process. Rather than use

expensive, mathematical methods to verify all details of an implementation, static methods can

identify the potentially dangerous program fragments. The more labor intensive formal methods

can be applied to verify these \dangerous" portions of the program.

The approach used in this investigation, then, which is similar to Leveson's approach to safety

analysis of software [20], is to restrict the focus to an important subset of software behavior that

can be more easily, and, in this case, automatically, veri�ed. Leveson seeks methods to demonstrate

that certain catastrophic failure conditions cannot occur. This investigation seeks methods to show

that certain failure-inducing (or sometimes defect-symptomatic) event sequences do not occur.

Even in cases when the ideal software sequencing behavior is not completely statically detectable,

consistent, though somewhat more restrictive, constraints can be de�ned. These constraints can

be used, in e�ect, as defensive programming tactics that can be automatically enforced.

The speci�c results described in this paper include the development of automatable techniques

and heuristics to generate sequencing constraints from algebraic speci�cations, extending previ-

ous work on generating safety constraints to include the generation of liveness and parameterized

constraints [26]. Also shown is how the method can be integrated into an algebraic speci�cation

methodology using Larch as an example.

2

2 Background

2.1 Algebraic Speci�cations and Larch

Formal speci�cations describe the behavior of systems using mathematical techniques. Several

approaches can be used to write formal speci�cations including abstract modeling [17, 28], algebraic

speci�cations [4, 10, 11], trace speci�cations [3, 21], and knowledge-based methods [7, 27]. Algebraic

speci�cations are examined in the initial investigation.

Using algebraic speci�cations, a system is speci�ed primarily as a collection of abstract data

types (ADT), each of which includes a speci�cation of the ADT operation syntax and semantics

with type signatures and algebraic axioms. Illegal or unde�ned sequences of operations can either

be speci�ed explicitly using \error" or exception values as results in the axioms, or implicitly by

omission of an axiom.

Figure 1 shows two example algebraic speci�cations of a stack ADT. The two examples demon-

strate two ways to specify errors. The speci�cation in Figure 1(A) uses the notation from Gut-

tag [11]. In this example, error conditions are explicitly noted in the axioms. The speci�cation in

Figure 1(B) is written in LSL, the Larch Shared Language. Error conditions in this version are

simply left unde�ned.

Larch, a \two-tiered" approach for software speci�cation, has been used extensively in the spec-

i�cation research community [13]. A Larch speci�cation has one component written in a Larch

Interface Language and a second written in the Larch Shared Language (LSL). Larch Interface

Languages specify communication between program units or between a program and its environ-

ment. They are tailored to �t the semantics of particular implementation languages. LSL is an

algebraic speci�cation language used to specify mathematical abstractions in a program. Because

of their algebraic nature, speci�cations written in LSL are appropriate for the constraint derivation

techniques described in this paper.

Each ADT is speci�ed as a trait in LSL. The syntax and semantics of LSL does not di�er greatly

from the simple algebraic speci�cation language used in Figure 1(A). One di�erence between the two

notations is that type names can be parameterized. See item and stack in Figure 1(B). Another

di�erence is that exceptions are not speci�ed explicitly in LSL traits. LSL error conditions are

implicit|operations that are used in an unspeci�ed manner may result in failures or exceptions.

For example, pop(new) can result in a failure since it is not speci�ed in Figure 1(B). The sequence

of operations pop(pop(s)) is interpreted by �rst examining the embedded \pop(s)". If pop(s)

returns stack s
0, and if s0 is non-empty, then the equation pop(push(s,i)) == s applied to stack

s
0 speci�es the result. If s0 is an empty stack, then there is no speci�cation for pop(s') and a

failure is implicitly speci�ed.

Using Larch, developers specify the functionality of program implementation units using an

interface speci�cation, which uses a form of pre and post-conditions (the requires and ensures

constructs). Because of the di�erences between implementation languages, interface speci�cations

are written in interface languages designed for particular languages. For example, LCL is the

interface language for C [12]. A di�erent interface language would be used to specify the behavior

of C++ programs [5].

In de�ning the functional behavior of implementation modules, a Larch interface speci�cation

references more abstract entities that are speci�ed in LSL. For example, an LCL interface speci�-

cation of an integer stack can reference the LSL stack trait with the uses clause:

uses set(int for item, intstack for stack);

Thus, items in the LSL trait are integers, and the axioms for the trait stack should hold for the

implementation type intstack. LSL speci�es the precise mathematical behavior of the entities

3

operation type signatures

new: stack

push: stack � item ! stack

pop: stack ! stack [ferrorg

top: stack ! item [ferrorg

isnew: stack ! boolean

semantic axioms

isnew(new) = true

pop(new) = error

top(new) = error

isnew(push(s,i)) = false

pop(push(s,i))= s

top(push(s,i))= i

(A) Speci�cation with explicit error conditions

stack(item, stack): trait

introduces

new: ! stack

push: stack, item ! stack

pop: stack ! stack

top: stack ! item

isnew: stack ! Bool

asserts 8 s: stack, i: item

isnew(new) == true

isnew(push(s,i)) == false

pop(push(s,i)) == s

top(push(s,i)) == i

(B) LSL speci�cation with parameters

and implicit error conditions

Figure 1: Algebraic speci�cations of a stack

4

eventlist ::= event

j eventlist `,' event

anchor ::= `[' eventlist `]'

quanti�er ::= `forall' j `exists'

aqre ::= [anchor] quanti�er regexp [anchor]

expr ::= [`not'] aqre

j expr `or' expr

j expr `and' expr

j `(' expr ')'

alphabet ::= `f' eventlist `g'

spec ::= alphabet expr

j spec `or' spec

j spec `and' spec

j `(' spec ')'

Figure 2: Syntax of Cecil

referenced by interface speci�cations. Thus, the interface speci�cation serves as the connection

between the implementation and the algebraic speci�cations

2.2 Sequencing Constraints

A sequencing constraint is an assertion that de�nes legal sequences of \events" that may occur

during any particular program execution. For example, a speci�cation that a variable must be

assigned a value before it is referenced requires that an assignment event must occur before any

referencing events on all possible event sequences representing all possible program executions.

Cecil is one language for expressing sequencing constraints in software [25]. It allows speci-

�cation of program sequencing constraints in a way that is amenable to static determination of

whether the constraint is satis�ed.

A Cecil expression is an anchored, quanti�ed, regular expression (AQRE). Each execution of

a program generates a set of sequences or traces of events. Cecil expressions can specify events

of interest and their valid traces. A Cecil constraint can be limited to particular subtraces of an

execution bounded by anchor events, events that mark the start or end of a sequence. An AQRE

can also quantify whether all or at least one of the subtraces between these anchors must satisfy

the constraint. The grammar for Cecil is given in Figure 2. The regexp term is a regular expression.

The expr non-terminal is provided for convenience. Olender and Osterweil provide a more detailed

description of Cecil in reference [25].

Figure 3 is a Cecil constraint that expresses sequencing constraints for a write-only �le, as

originally given in reference [23]. Events s and t respectively indicate the start of program exe-

cution and its termination, while open, write, and close indicate the execution of the respective

operations on some particular �le.

Constraints can be separated into two categories: safety constraints and liveness constraints.

Generally, any violation of a safety constraint results in program failure. Thus safety constraints

must be met on all executions.

Liveness is de�ned by Lamport as the ability of a program to perform some useful work [18]. A

5

fopen, close, writeg (

[s] forall (open; write�; close)� [t]

and [open] exists ?+ [close])

Figure 3: A Cecil constraint for a write-only �le

violation of a liveness constraint does not directly cause program failure, but are often symptomatic

of defects such as omitted code. It is usually satisfactory when there exists at least one path between

anchors that satisfy liveness constraints.

In Figure 3, the �rst AQRE term expresses safety properties of the sequencing of �le oper-

ations. On all executions, �les must �rst be opened, then may be written, and must �nally be

closed. Violations of this constraint will cause program failure. The AQRE term is read as \Every

possible subtrace (forall) from program start ([s]) to termination ([t]) must satisfy the regular

expression which speci�es the relative sequencing among the alphabet of interesting operations,

fopen, close, writeg on write-only �les."

The second AQRE term expresses a liveness constraint by specifying that it is possible for the

program to perform \useful work" (at least one other event) at least one execution. when a �le is

opened and subsequently closed. The �rst AQRE ensures that other event is a write operation. The

constraint does not require a write on every execution; many programs might produce no output

for certain values of the input data. The impossibility of a write operation, however, while not

directly causing program failure, should be examined further to determine if code was mistakenly

omitted.

Cecil is a powerful language for specifying constraints on the sequencing of events. Given

a Cecil constraint, the Cesar system automatically analyzes a program and indicates whether

the Cecil constraints are satis�ed. Olender and Osterweil describe the Cesar system in detail in

reference [24].

3 Using Algebraic Speci�cations To Find Sequencing Defects

One can generate sequencing constraints directly from algebraic speci�cations, and then check

whether the constraints are satis�ed or violated in a software implementation. As with all static

analysis methods, a detected constraint violation indicates only a potential defect, since invalid

sequences may never actually execute. However, if there are no constraint violations, one can be

sure that speci�c defects do not exist. Thus, a conservative approach is to eliminate all constraint

violations. A complete system for generating sequencing constraints and �nding sequencing defects

requires the use of algebraic speci�cations, and a connection between speci�cation and implemen-

tation objects.

The Larch development method seems well suited for applying this constraint checking ap-

proach, since, with Larch, a set of LSL traits are speci�ed in an algebraic fashion, and interface

speci�cations are used to map from implementation to speci�cation entities. A system for �nding

sequencing defects can be designed to work with Larch using the following components:

1. A set of sequencing constraints for each trait. Sequencing constraints are not part of the

Larch method. However, one can generate associated sequencing constraints (in Cecil) by

analyzing the type signatures and the axioms of an LSL trait. The method for generating

the constraints is the major topic of this paper.

6

6

?

6

6

-

-

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Implementation Code

on implementation entities

Cecil sequencing constraints

Larch Interface

Speci�cations

LSL Traits

Cecil sequencing

constraints on LSL

entities

Mapping of Implementation

entities to LSL Trait

entities

Larch System Components Sequencing Constraint System

Components

Figure 4: Overall process for generating and checking sequencing constraints.

2. The association between traits and implementation types. This association is de�ned in Larch

interface speci�cations via the uses clause. This association can be used to generate a set of

constraints that apply to relevant data types in the implementation.

3. Sequencing constraints for implementation entities. Well known data
ow analysis techniques

can be used to check code against constraints to indicate potential defects.

Figure 4 depicts the overall process for generating and checking the sequencing constraints. The

process starts by generating Cecil constraints directly from LSL traits, which is the focus of this

paper. These are constraints on LSL trait entities. Then mappings are derived from implemen-

tation entities to LSL entities using Larch interface speci�cations. Finally, Cecil constraints on

implementation entities can be generated from the LSL constraints and the mapping. Thus, in

concert with LSL and Larch interface speci�cations, one can generate sequencing constraints from

a speci�cation and check implementations for conformance with the constraints.

7

The process of generating and checking sequencing constraints can be automated. Prototype

tools support portions of this process|the Cesar system can check sequencing constraints against

Fortran programs [24]. Constraint checkers for other languages can be readily designed. A system

is now being built to implement the heuristics developed in this paper. Thus, one can envision

a system that can automatically generate sequencing constraints from a speci�cation, and then

analyze an implementation to ensure that there are no sequencing defects.

The �rst step in generating sequencing constraints is a detailed analysis of the nature of the

speci�ed operations.

4 Operation Categories

Assume that semantic equations in an algebraic speci�cation are interpreted as rewrite rules and

that the set of equations is su�ciently complete and convergent (thus disallowing an axiom of

commutativity, for example). A su�ciently complete set of equations includes enough equations

to to adequately specify the behavior of an abstract data type. A convergent set of equations is

one such that, after applying rewrite rules a �nite number of times no further rewrite rules can

be applied. For now, also assume that no equations are conditional, that is, all rewrite rules are

applicable when the form on the left hand side of the rule is present in an expression. Section 5

includes a discussion of the e�ects of allowing conditions that control the application of a rewrite

rule.

The operations in an algebraic speci�cation are partitioned into categories relevant to the anal-

ysis using operation type signatures and semantic equations. It is relatively easy to determine the

appropriate category for any given operation by de�ning a set of signature and axiom patterns, one

for each operation category.

This classi�cation scheme is similar to those used by others. Guttag [11] partitions opera-

tions into constructors, modi�ers, and selectors to demonstrate a heuristic for creating su�ciently

complete axiomatizations. The Larch Shared Language allows operations to be declared as either

generating or partitioning ADT values to aid analysis of Larch speci�cations [13]. The classi�ca-

tions are intended to assist the generation of sequencing constraints and so may not be identical to

other schemes.

Operation Signature and Semantic Patterns. The de�nitions of operation categories use the

following notation for patterns of operation signatures. Let T match the type being de�ned. Let V

match any other type, and let ? match any type at all. Pattern X � Y matches the cross-product

of types matching X and Y in either order. Thus, for pattern purposes, � can be commutative.

The unit or empty type matches the pattern (). Z� matches zero or more cross-products of types

matching Z. The nullary cross-product, a set with one element, is equivalent to the unit type.

Square braces represent an optional portion of a signature pattern. The pattern [?��]T means

either T or a Cartesian product of one or more types with T . Thus the pattern [?��]T ! V

matches the signature of any function that has at least one argument of the ADT being de�ned

(and possibly arguments of any other types, in any order) and returns a result of some other type.

Also assume that B is the Boolean type, and that T is never B. Boolean types are nearly always

directly provided by programming languages, and so need not be speci�ed as an ADT.

The de�nitions also use patterns on the semantic equations. An identi�er matches an operation

name. An ellipsis (. . .) matches zero or more arguments to an operation. Thus, the pattern,

d(: : : ; v; : : :) = x matches an equation de�ning the result of a single operation with at least one

argument.

8

ADT Subcomponents. The \parts" of an ADT object are its subcomponents. For example, a

stack ADT is built out of item objects, and a tree ADT is built out of subtrees and leaf items. ADT

Subcomponents may be of the same type as the ADT itself, e.g., subtrees are trees, or they may

be objects of a di�erent type, e.g., stack items. The concept of \subcomponent" helps to classify

ADT operations.

4.1 Creator operations.

A creator is an operation that initializes a value of the type being de�ned; it converts arguments of

other types into the type of interest. A creator operation has a signature that matches the pattern

V
� ! T . The new operation for stacks is a creator operation. C denotes the set of creator operators

for an ADT.

4.2 Modi�er operations.

Operations that transform an existing value of an ADT are termed modi�ers. They have signatures

that match the pattern [?��]T ! T , converting at least one value of type T into some new value of

T . In the stack example, push and pop are modi�ers since they convert an input stack into a new

stack value. M denotes the set of modi�ers for an ADT. The union of the creators and modi�ers

are constructors which is denoted by K = C [M .

4.3 Selector Operations.

The set of selectors, S, are the operations that return some subcomponent of a type that is not

of that same type itself. Thus, a selector has a signature matching the pattern [?��]T ! V . V

must be is a subcomponent of T to distinguish between a selector operation and other categories

subsequently to be de�ned. If a semantic equation exists of the form s(:::; k(:::; v; :::); :::) = v, so

that a non-ADT value, v, used to construct an ADT value (via constructor k) is directly recovered

by the operation s, the type of v is considered a subcomponent of the ADT and s to be a selector. A

cursory examination of the semantic equations is su�cient to determine this. In the stack example,

top is a selector.

4.4 Discriminator Operations.

Functions that take a single argument of T and return a value of some other type and are not selec-

tors are included in the discriminator set, D. Often, these operations are used to partition values

of the type into equivalence classes based on some intrinsic property of the value. Discriminators

match the signature pattern T ! V . The isnew operation is a discriminator in the stack example.

4.5 Interrogator Operations.

Predicates taking multiple arguments, including at least one of the ADT T in question, and at

least one of a subcomponent type (as de�ned above), are interrogators, denoted by I . These

operations are normally used to determine the existence or non-existence of some property of the

value. The stack example has no interrogator operations, but the membership predicate in the

algebraic speci�cation of a set is an interrogator. Interrogator operations match the signature

pattern [?��]V � T ! B, where there exist corresponding constructor and selector operations that

add and extract values of type V from T . Again, a cursory examination of the semantic equations

can show whether V is a subcomponent of T .

9

C = fnewg

M = fpush, popg

K = fnew, push, popg

S = ftopg

D = fisnewg

I = ;

Figure 5: Stack ADT operators

Interrogator operations are used to check the state of an ADT value against some parameters,

while discriminators cannot include operations that involve parameters other that the ADT value

itself. Distinguishing interrogators from discriminators provides greater
exibility in generating

constraints.

4.6 Stack ADT operation categories

The categorization of the operations in the stack ADT example are given in Figure 5. These

classi�cations are used to construct the sequencing constraints for the ADT.

5 Generating Constraints

The algebraic speci�cation for a stack in Figure 1(A) clearly states that popping a new stack

is an error. The equation returns an exception value rather than a stack. Thus, the sequence

new;pop directly results in an error. The discussion in this section codi�es some heuristics for

specifying sequences of operations that cannot result in such errors. These heuristics are expressed

as templates for Cecil constraints. An analyst can generate the constraints by manually following

the heuristics. A prototype tool to automatically generate the constraints directly from LSL traits

is now being developed.

5.1 Constraints to Require Initializations.

The value of a variable of any type must be de�ned before other operations can be performed on it,

so a creator operation must precede any other operation on every execution path. In some cases,

the creator operation may not be directly visible in the code, but it must be present. C++, for

example, allows the de�nition of \constructor" operations that implicitly initialize a value of a type

de�ned by a class at the declaration of a C++ variable or constant. Also, some objects may be

initialized by the run-time system. For example, the \cin" and\cout" (stdin and stdout) standard

I/O streams are not explicitly opened in a C++ program source. These implicit events still occur,

however, and the Cesar analysis system accounts for them.

In the following discussion, let C;M; S; I , and D be the set of creators, modi�ers, selectors,

interrogators, and discriminators, respectively for a particular ADT. Let O be the set of all ADT

operations. Lower case c;m; s; i; d, and o represent some speci�c operation in each respective

category.

10

A Cecil constraint that speci�es that a creator operation always precedes any other operation

expressions matches Heuristic Template 1:

Heuristic Template 1 fOg [s] forall (c1 j c2 j : : : j cn);?* [O nC]

In this template, O is substituted by a comma-separated list of all operations, O n C is the list

of all non-creator operations, c1 through cn are the creator operations (C = fc1; : : : ; cng), ?* is

substituted by zero or more operations of any type, and s represents the start of program execution.

This Cecil speci�cation requires the �rst operation on every path from the start of execution leading

to a non-creator operation to be a creator. A constraint for the stack example is

fnew,push,pop,top,isnewg

[s] forall new;?* [push,pop,top,isnew]

The Cesar system can examine the program code that uses the stack implementation to ensure

that this constraint is not violated.

5.2 Constraints to Prevent Exceptions.

The semantic equations for the stack indicate that the sequences new;pop and new;top result in

an exception. One can easily generate constraints that prohibit such sequences. However, many

other sequences can result in an exception. Applying either pop or top to an empty stack raises

an exception, regardless of how it became empty. The concepts of failure operations, guards,

and antiguards are used to develop a Cecil template that can be used to generate appropriate

constraints.

Failure Operations. Operations that can return exception values are the failure operations.

Using the stack example, the set of failure operations, F = fpop, topg. Failure occurs only when

executing pop and top with arguments equivalent to new. Note that push would be a failure

operation in a constrained stack.

Guards and Anti-Guards. Failure operations do return valid (non-exception) values when they

are immediately preceded by certain operations. For example, the sequence push;pop or push;top

will not produce an error even when one of these sequences is preceded by a new operation. The

set of operations that may always safely precede a given failure operation, f , are guards, denoted

G(f). In the stack example, push is in both G(pop) and G(top), but there may be other guards

as well.

Discriminator and interrogator operations may also be guards. The result of a discriminator

(or interrogator) operation, d, might be de�ned as an equation of the form

d(..., g(...), ...) = v

when applied to the result of a known guard, g. Assume that value v above is characteristic of

the guard call. An \event" d=v occurs when a discriminator produces value v. This event is

characteristic of the guard call, thus d=v is a guard for operation f (d=v 2 G(f)). In the stack

example, isnew(push(s,i)) = false de�nes the result of a discriminator applied to the known

guard push. Thus, isnew=false is a guard for top.

Consider a partition of d into two events: d=v and d6=v (isnew=false and isnew6=false for

the stack isnew operation). A static analysis must determine that event d=v (or isnew=false)

occurs in a given program. This problem is undecidable in general. However, intuition suggests that

11

many discriminator (or interrogator) calls appear in conditional expressions of control statements,

resulting in constructs such as:

if (d(x) = v) then ...else ...end if;

where x is a variable of the ADT type. The \then" clause is only executed when d is equal to v

and so the control path to the \then" is associated with event d=v. Events of this form can be

found using static analysis. For example, Cesar associates such discriminator events with program

control
ow edges.

Anti-guards are the complementary events to the guard discriminator (and interrogator) events.

Whenever event d=v is added to G(f), the complementary operation d6=v must be added to the set

of anti-guards A(f), since these operations may be characteristic of failures. In the stack example,

since event isnew=false is a guard for top and pop, isnew6=false is an anti-guard for these

operations.

Heuristics for Preventing Exceptions. A suitable safety constraint for a given failure op-

eration is constructed in the following manner. Identify all constructor operations K, all guard

operations for the given failure operation, G(f) = fg1; : : : ; gng, and all anti-guards for the failure,

A(f). Using these sets, an heuristic would require the failure operation to be preceded on all control

paths by a guard with a Cecil constraint that matches the template:

Heuristic Template 2 fK;G(f); A(f)g forall (g1 j : : : j gn) [f]

On all execution sequences that include constructors and other known guards and anti-guards,

the failure operation must be immediately preceded by a guard. In other words, no non-guard

constructor or anti-guard can occur in an execution sequence between the guard and the failure

operation f . Operations not in K, G(f), or A(f) are not relevant to the sequencing as they cannot

change the state of an ADT value or otherwise protect against failure.

Applying the Heuristic to the Stack Example. To write appropriate constraints, one must

determine the guard and anti-guard sets for each failure operation. Failure operations pop and

top and several guards and antiguards have already been identi�ed. Completion of the analysis

requires an examinination of all remaining constructor operations not yet in G(pop) and G(top).

Essentially, one must prove that for all values of the ADT as arguments to the constructor, a known

discriminator guard returns a value characteristic of its application to a known constructor guard.

This is simple in the stack example. The remaining unexamined constructor operation is pop. The

equations include the counterexample pop(push(new,x)) = new. Therefore, pop is not a guard.

The �nal constructor, guard, anti-guard, and failure sets for the stack ADT are:

K = fnew, push, popg

F = fpop, topg

A(pop) = A(top) = fisnew6=falseg

G(pop) = G(top) = fpush, isnew=falseg

Since two or more failure operations share the same guard sets, their separate constraints will be

isomorphic|a property-preserving mapping can convert the constraint for pop into the constraint

for top. Thus, one can de�ne a single AQRE with both failure operations listed in the end anchor.

The resulting Cecil constraint for the stack example is:

fnew,push,pop,isnew=false,isnew6=falseg

forall (push j isnew=false) [pop,top]

12

This means that push or isnew=false must immediately precede pop or top in any execution

sequence that contains a constructor or discriminator operation call. If the above constraint is

satis�ed, pop and top will not produce exception values.

This is a conservative estimate of the sequencing constraint for a stack. An implementation

satisfying the constraint cannot fail when pop or top executes. However, an implementation that

does not satisfy the constraint may never or rarely fail because the unsafe paths are never or rarely

followed. Typical defensive programming practices require guard operations that protect against

possible failure. The Cecil constraint above codi�es such a defensive programming practice and

the Cesar system allows for its automatic enforcement. Thus, this Cecil constraint is reasonable,

though more restrictive than might be required.

6 Liveness Constraints

Certain program anomalies make up a class of possible program defects. For example, redundant

operations or values that are computed but never used may not cause immediate program failures,

but often indicate defects such as omitted code. If there is no error, then the redundant or unused

values could be safely removed by an optimizing complier. Cecil \liveness constraints" guard

against such anomalous sequences. Liveness constraints can be generated directly from algebraic

speci�cations.

Generally, a \liveness" condition states that some necessary event takes place. The event,

however, need not occur during all executions; it is usually satisfactory when there exists at least

one possible execution during which the event occurs in the proper context. Using Cecil terms,

there must exist a path between anchors that contains the event of interest.

The following discussion examines two di�erent classes of program anomaly|unused and re-

dundant computations, describes the liveness constraints that guard against these anomalies, and

demonstrates how to generate such constraints from algebraic speci�cations.

6.1 Unused Computations

A constraint can require operations that create an ADT value to be followed by an operation that

uses the value. For example, operations that produce stack results are the constructors push, pop

and new. The operations that reference stacks are top, isnew, push, and pop. The following Cecil

constraint requires that there be at least one execution path with a stack reference between a stack

constructor and the end of the program:

ftop, isnew, push, popg [push,pop,new] exists ?+ [t]

Similar liveness constraints can be derived from other ADT speci�cations. The set of constructor

operations K have already been de�ned. Only creator operations C do not have an ADT parameter

as an input argument, so the operations that use a stack are in O n C. Thus, the following Cecil

expression template is a generalization of the unused computation constraint

Heuristic Template 3 fO n Cg [K] exists ?+ [t]

Unused computations are also created when a program modi�es data object V creating V
0 and

a subsequent change to V
0 recreates V with no possible intervening use of V 0. Such a program

might contain a defect. Assuming that the creating of V 0 has no additional side-e�ect, either the

code that constructs V 0 is unnecessary, or the code to use V 0 is missing. As before, if there is even

a single execution path between the two state change operations on which a use of V 0 occurs, a

defect is less likely.

13

The above situation occurs most frequently when an ADT speci�cation contains two operations

that are, in some sense, inverses of one another. In the stack example, push and pop undo one

another's e�ects. When pop removes a value from a stack, the stack is returned to its state just

before the most recent push operation. One of the push axioms directly states this relationship.

To ensure that the push operation was necessary, a stack created by a push must be referenced

on some path before it is popped. As before, all stack operations but new use a stack in some way.

A Cecil expression for this constraint is

ftop, isnew, push, popg [push] exists ?+ [pop]

To generalize the technique to arbitrary ADT speci�cations, one must �rst identify the potential

anomalous sequences from the algebraic speci�cation. In some constructor/modi�er the modi�er

undoes the work of the constructor. As shown in Section 4, an operation is a selector if there existed

an equation matching the pattern s(:::; k(:::; v; :::); :::) = v. Operation s in that case returned a non-

ADT subcomponent of the ADT. When s is instead a modi�er that returns an ADT subcomponent

of the ADT, the situation is analogous, and there is exactly the relationship between k and s need

seek for a liveness constraint. In the stack example, the equation

top(push(s,i)) = s

indicated that top was a selector. Similarly, the equation

pop(push(s,i)) = i

indicates that pop is a modi�er that undoes the e�ect of a push.

Thus, to identify such constructor/modi�ers pairs one would examine the speci�cation axioms

looking for equations of the form

m(: : : ; k(: : : ; t; : : :); : : :) = t

If a program applies k and then m in exactly this pattern, with no other operation intervening, no

useful work is performed. The result of the constructor is immediately undone by the modi�er and

never used.

For each such pair (k;m), a constraint can require at least one other operation that uses the

ADT value on some execution path between the constructor and modi�er. Such a constraint would

match the Cecil expression template

Heuristic Template 4 fO n Cg [k] exists ?+ [m]

6.2 Redundant Computations

A computation that is repeated even though the earlier value is still available may be a redundant

computation. Such an occurrence may indicate an error. Either the redundant computation is

unnecessary or the code to change the earlier value is missing. For example, it is reasonable to

expect that on at least one path between two top operations that some operation may change

the state of the stack. Otherwise, the value computed by the �rst top operation can be used and

the second top operation is unnecessary. (Of course, for a stack, it may require fewer resources

to repeatedly use the top operation rather than to store the value, but in many situations, such

redundant computation is at least suspicious.) A Cecil constraint can specify that a state change

must be possible between any two top operations:

14

fpush, pop, newg [top] exists ?+ [top]

One of the earlier safety constraints would ensure that the last constructor before the second top

is not isnew. Here the focus is on preventing (or identifying) redundant operations.

A similar constraint can be speci�ed to prevent redundant isnew operations:

fpush, pop, newg [isnew] exists ?+ [isnew]

Olender and Osterweil showed that such constraints can sometimes be ine�cient to analyze

as a separate invocation of Cesar for each individual location of an event in the start anchor is

required [25]. Equivalent expressions that avoid this di�culty are

fpush, pop, new, topg

[s] exists ?�; (push j pop j new) [top]

fpush, pop, new, isnewg

[s] exists ?�; (push j pop j new) [isnew]

Non-constructors other than top are ignored by removing them from the alphabet and requiring

that the top operation be immediately preceded only by a constructor.

Selector, discriminator and constructor operations can be used to generate similar constraints

from other speci�cations. Let K = fk1; : : : ; kng be the constructors and let o be either a discrim-

inator or a selector with only the ADT as an argument. Then for each such o a Cecil constraint

matches the template

Heuristic Template 5 fK, og exists (k1 j : : : j kn) [o]

7 Parameterized Events

In this section, methods described in Section 5 and Section 6 are used to derive sequencing con-

straints from an example speci�cation. The example speci�cation is written in the Larch Shared

Language (LSL), which is described in Section 2.1. The method is demonstrated, and parameterized

events that enhance the ability to specify and check safety and liveness constraints are introduced.

7.1 A Table Speci�cation in Larch

The example table ADT trait speci�cation from the LSL documentation [13] helps demonstrate

the approach for dealing with parameterized events. Figure 6 shows the LSL trait for ADT table,

with the in�x 2 operator replaced by the pre�x operator in for convenience in writing a Cecil

speci�cation. There is no semantic di�erence.

A table object (of type Tab) is initialized using the new operation, which creates an empty table.

Table entries, (Ind, Val) pairs, are added via the add operation. The lookup operation returns

the Val component of an entry associated with a particular Ind. The isEmpty determines whether

the table has any entries, and the size operation returns the number of entries in the table. The

in operator determines whether a particular Ind is an index for some table entry. The table trait

in the LSL documentation [13] does not include a \remove" operation. The inclusion of such an

operation would increase the complexity of the example.

15

Table: trait

introduces

new: ! Tab

add: Tab, Ind, Val ! Tab

in: Ind, Tab ! Bool

lookup: Tab, Ind ! Val

isEmpty: Tab ! Bool

size: Tab ! Card

asserts 8i; i0 :Ind, val:Val, t:Tab

lookup(add(t; i; val), i
0) ==

if i = i
0 then val else lookup(t; i0)

: in(i,new)

in(i,add(t; i0; val)) == i = i
0 _ in(i; t)

size(new) == 0

size(add(t; i; val)) ==

if in(i; t) then size(t) else size(t)+1

isEmpty(t) == size(t) = 0

Figure 6: An LSL speci�cation of a table

7.2 Table Operation Categories

The procedure described in Section 4 generate the safety constraints of Section 5.

Figure 7 classi�es the table operators into creators (C), modi�ers (M), selectors (S), discrimi-

nators (D), and interrogators (I) as de�ned in Section 4. From this classi�cation, the constraints

are derived.

7.3 Requiring Table Initializations

Using the procedure in Section 5.1, one can generate a constraint to force a creator to precede other

table operations. Since new is the sole creator, the following Cecil expression is derived

fnew,add,lookup,isEmpty,size,ing

[s] forall new;?� [add,lookup,isEmpty,size,in]

C = fnewg

M = faddg

K = fnew, addg

S = flookupg

D = fisEmpty, sizeg

I = fing

Figure 7: Table ADT operators

16

To satisfy this constraint a new operation must precede any other operation.

7.4 Preventing Table Exceptions

The process for preventing exceptions is to identify the failure operations, the failure guards, and

then derive a Cecil constraint.

One di�erence between LSL and the speci�cation language of Figure 1 is that exceptions are

usually not explicitly de�ned via axioms in LSL, so the axiomatization may not be su�ciently

complete. Exceptions or failures result when operations are applied in unde�ned ways.

Failure operations are identi�ed by determining whether the behavior of any operation is de-

�ned via asserts equations for all inputs that �t the type signatures in the introduces component

of the speci�cation. This process is not di�cult; Guttag and others describe heuristics to create a

set of su�ciently complete semantic equations [11]. The assumption is that any equation missing

(according to Guttag's heuristics) from the Larch speci�cation raises an exception when the asso-

ciated sequence of operations is executed. From examining the asserts, the only operation that

may fail is lookup. Thus, for the table ADT, F = flookupg.

Finding the guards for lookup, G(lookup) requires examining each semantic equation that

includes lookup to identify those that may produce a valid result. The process is complicated

because Larch allows conditional results of an assert:

lookup(add(t; i; val), i
0) ==

if i = i
0 then val else lookup(t; i0)

This equation is guaranteed to give a valid result when the operation executed before lookup was

add, and the same Ind value was an argument to both operations. The condition in the equation

result gives an additional condition that a guard must satisfy to ensure safety. Since Cecil makes

an implicit assumption that each instance of an ADT variable must independently satisfy the

constraint, this event is characterized as add(i) and is included as a guard for event lookup(i).

That is, add is an e�ective guard only when lookup and add use the same index value as an

argument.

Other possible guards are found by examining the discriminator and interrogator operations

to determine whether any of these return a value characteristic of the guard add(i). Any such

operations must have an Ind argument to allow for the comparison of index values, since the only

known guards are contingent on an Ind argument.

None of the discriminators give a characteristic value since they do not have Ind arguments.

The interrogator in does give a characteristic value, however; it returns true when its Ind argument

is an argument to a prior add operation. Thus, in is potentially characteristic of the guard add.

More precisely, for Tab t and Ind i, event in(i)=true is characteristic of guard add(i). There

are no other suitable characteristic interrogators, so the �nal event sets are

K = fnew, addg

F = flookup(i)g

G(lookup(i)) = fadd(i), in(i)=trueg

A(lookup(i)) = fin(i)6=trueg

The Cecil constraint becomes

fnew,add(i),in(i)=true,in(i)6=trueg

forall (add(i)jin(i)=true) [lookup(i)]

The constraint states that on all possible execution sequences, the lookup of a given index must

be preceded with either an add or an in with the same index as argument. The parameter i for

the index value has a scope that includes the entire expression.

17

7.5 Parameterized Liveness Constraints

Constraints with parameters can also identify potential program anomalies. Redundant operations

may involve interrogator operations and selector operations with arguments in addition to an

ADT argument. The example table ADT LSL speci�cation can be used to demonstrate liveness

constraints which use parameters.

Cecil expressions that require a path with a state change between two in operations or two

lookup operations that use the same index are

fnew, add(i), in(i)g

[s] exists ?�;(new j add(i)) [in(i)]

fnew, add(i), lookup(i)g

[s] exists ?�;(new j add(i)) [lookup(i)]

The enforcement mechanism will consider two arguments to in or lookup to be the same only if

there is a path between the operations in which the argument must be the same, and is not modi�ed

by any other operation.

7.6 Conditional Semantic Equations

The previous example includes conditional equations in algebraic speci�cations. The conditions

simply form additional constraints on the sequencing. Typical conditions are equality or inequality

of arguments as above, or are the results of discriminator or interrogator calls. In the �rst case, the

condition is re
ected in the �nal sequencing constraint by parameterized events. Otherwise, the

appropriate discriminator or interrogator guard is inserted into the required sequence in the Cecil

constraint.

7.7 Extensions to Cesar

The Cecil constraint for the table ADT clearly restricts the occurrence of failures or anomalous se-

quences resulting from the execution of operations with particular indices. Expressing and checking

these constraints requires extending the earlier de�nition of Cecil [25]. The current implementation

of Cesar needs to be upgraded to check these parameterized Cecil events [24].

Adding parameters to the events is a natural extension to Cecil, but impose di�culties as the

events may not always be statically recognizable. In general, one cannot statically know that

the arguments to two di�erent operations have the same value. One can, however, gather that

information in some cases, using a safe approximation that, as with Cecil constraints in general,

can be used to guide defensive programming practices. It is clear, for example, that the values are

the same when the arguments are the same variable and there is a de�nition-free path from the guard

to the failure operation. Static analysis might sometimes report an error that does not exist, but as

mentioned before, defensive programming standards often require that all failure operations, such

as lookup, be appropriately guarded. Under many circumstances, these guards will use the same

variable name. Cesar can provide a mechanism to enforce such defensive programming practices.

In the table example, one can speculate that the most common occurrence of a lookup call would

be in a construct such as

18

if (in(i,t))

then ...; v = lookup(i,t); ...

else ...

end if;

Static analysis similar to constant propagation, which tracks values through sequences of assign-

ments, allows some relaxation of the need for consistent variable names in the guard and operation.

8 Conclusions

A set of heuristics can be used to generate Cecil sequencing constraints from algebraic speci�ca-

tions. These heuristics can identify operations that may result in software failures, and specify

the sequences of events that guarantee that the failure will not occur. A program can be stati-

cally analyzed to determine whether the sequences of operations in the implementation satisfy the

constraints. Thus, certain classes of program errors can be ruled out without running the program.

The analysis of sample algebraic speci�cations resulted in some sequencing constraints that are

not currently supported by the Cecil/Cesar system. These constraints involve additional parameters

for operator arguments. A proposed extension to Cecil will include these parameter values in the

constraint expressions, and extensions to Cesar can check the new constraints.

The process of extracting the inherent sequencing constraints in algebraic speci�cations is an

e�ective research approach. Results include the identi�cation of new features to add to a sequencing

constraint language to produce more useful tools for software analysis.

The development of a prototype tool to automatically generate sequencing constraints from

LSL traits is underway. Mechanical extraction of the sequencing constraints from the algebraic

speci�cation of an ADT follows the developed heuristics. Most steps involve only an examination

of the physical text of the signatures or semantic equations. In some cases, a theorem proof is

necessary to determine constraints. These theorems should be, in general, simple to prove, since

ADT interfaces typically provide a set of guard discriminators for operations that may fail. Such

guards are needed to program defensively when using the ADT and its operations. Unfortunately,

some guard operations may not be identi�able by a theorem prover. When this happens, it makes

sense to err on the conservative side and assume the operation is not a guard. In some cases,

classi�cation of operations is simpli�ed by explicit denotation of the classes in the speci�cation. The

Larch Shared Language, for example, allows the explicit classi�cation of operations as \generating"

or \partitioning" some ADT. These LSL classi�cations correspond only in part to the classes de�ned

in this paper, however. Algebraic speci�cation languages could be enhanced to include more speci�c

annotations that aid the analysis more directly.

The Table speci�cation example in Section 7 demonstrates that some sequencing errors depend

on sequences of operations that use matching values. To protect against such sequencing errors,

Cecil and Cesar must be enhanced to allow for parameterized events. Some of the constructs in

the Prosper speci�cation language may be appropriate [19].

In expanding this investigation, other speci�cation techniques will be examined. It should be

possible to derive sequencing constraints from abstract model speci�cations written in languages

like Z or VDM-SL [17, 28]. The connections between abstract model speci�cations and dynamic

testing have been explored [6, 14, 15]. The objective is to investigate the generation of statically

checkable constraints from these speci�cations.

19

References

[1] A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger, R. M. Cohen, C. G. Hoch, and R. E.

Wells. Gypsy: a language for speci�cation and implementation of veri�able systems. SIGPLAN

Notices, 12, March 1977.

[2] G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Automated analysis

of concurrent systems with the constrained expression toolset. IEEE Trans. on Software

Engineering, 1991. to appear.

[3] W. Bartussek and D. L. Parnas. Using traces to write abstract speci�cations for software

modules. Technical Report 77-12, Dept. of Computer Science, Univ. of North Carolina, Chapel

Hill, 1977.

[4] J. A. Bergstra, J. Heering, and P. Kling, editors. Algebraic Speci�cation. ACM Press, New

York, 1989.

[5] Y. Cheong and G. Leavens. A quick overview of Larch/C++. Technical Report TR #93-18,

Computer Science Dept., Iowa State University, June 1993.

[6] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-

based speci�cations. Proc. Int. Symp. Formal Methods Europe (FME'93): Industrial Strength

Formal Methods, pages 268{284, 1993.

[7] M. S. Feather. Language support for the speci�cation and development of composite systems.

ACM Trans. on Programming Languages and Systems, 9(2):198{234, April 1987.

[8] S. J. Garland and J. V. Guttag. A guide to LP, the Larch prover. Technical Report SRC

Research Report 82, DECSRC, December 1991.

[9] D. I. Good, B. L. Divito, and M. K. Smith. Using the Gypsy methodology. Technical Report

CLI-2, Computational Logic, Inc., January 1988.

[10] J. V. Guttag, E. Horning, and D. R. Musser. Abstract data types and software validation.

Communications of the ACM, 21:1048{1064, January 1979.

[11] J. V. Guttag and J. J. Horning. The algebraic speci�cation of abstract data types. Acta

Informatica, 10:27{52, 1978.

[12] J. V. Guttag and J. J. Horning. Introduction to LCL, a Larch/C interface Language. Technical

Report 74, Digital Systems Research Center, July 1991.

[13] J. V. Guttag, J. J. Horning, and Andr�es Modet. Report on the Larch Shared Language:

Version 2.3. Technical Report 58, Digital Systems Research Center, April 1990.

[14] J. Hagar and J.M. Bieman. Adding formal speci�cations to a proven V&V process for system-

critical
ight software. Proc. Workshop on Industrial-Strength Formal Speci�cation Techniques

(WIFT'95), April 1995. (to appear).

[15] P A V Hall. Relationship between speci�cations and testing. Information and Software Tech-

nology, 33(1):47{52, January 1991.

[16] W. E. Howden and B. Wieand. QDA|A method for systematic informal program analysis.

IEEE Trans. on Software Engineering, 20(6):445{462, June 1994.

20

[17] C. B. Jones. Systematic Software Development Using VDM. Computer Science Series. Prentice-

Hall, Englewood Cli�s, NJ, second edition, 1990.

[18] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on

Software Engineering, SE-3:125{143, March 1977.

[19] J. Leszczy lowski and J. Bieman. PROSPER: a language for speci�cation by prototyping.

Computer Languages, 14(3):165{180, 1989.

[20] N. G. Leveson. Software safety in embedded computer systems. Communications of the ACM,

34(2):34{46, February 1991.

[21] J. McLean. A formal method for the abstract speci�cation of software. Journal of the ACM,

31:600{627, July 1984.

[22] K. Olender and L. Osterweil. Interprocedural static analysis of sequencing constraints. ACM

Trans. on Software Engineering and Methodology, 1(1):21{52, January 1992.

[23] K. M. Olender and L. J. Osterweil. Speci�cation and static evaluation of sequencing constraints

in software. In Proc. of the Workshop on Software Testing, pages 2{9, July 1986.

[24] K. M. Olender and L. J. Osterweil. Cesar: A static sequencing constraint analyzer. In Proc.

of the 3rd Symp. on Software Testing, Analysis, and Veri�cation, December 1989.

[25] K. M. Olender and L. J. Osterweil. Cecil: a sequencing constraint language for automatic

static analysis generation. IEEE Trans. on Software Engineering, 16(3):66{74, March 1990.

[26] K.M. Olender and J.M. Bieman. Using algebraic speci�cations to �nd sequencing defects.

Proc. Int. Symp. on Software Reliability Engineering, pages 226{232, November 1993.

[27] D. R. Smith, G. B. Kotik, and S. J. Westfold. Research on knowledge-based software envi-

ronments at Kestrel Institute. IEEE Trans. on Software Engineering, SE-11(11):1278{1295,

November 1985.

[28] J. M. Spivey. The Z Notation: A Reference Manual. Computer Science Series. Prentice-Hall,

Englewood Cli�s, NJ, 1989.

21

