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Abstract 
W e  use program slices to  model module cohesion. 

For our purposes, a slice is a projection of program 
text that includes only the data tokens relevant t o  one 
output. W e  define six cohesion metrics in terms of 
these slices, and evaluate the effects of classes of mod- 
ule changes on these metrics.  W e  find that the ef- 
fects on cohesion metrics are notably more predictable 
when the changes result from adding code rather than 
from moving code. In general, the effects that soft- 
ware changes have on the cohesion metrics match our 
intuition. 

1 Introduction 
Changes made during software maintenance can 

have negative effects on the internal structure of a 
software system. As changes are made over time, the 
software can become more difficult to understand and 
maintain. Maintainers will surely benefit from tools to 
help evaluate the effects of a change on the structural 
integrity of a software system. 

Module cohesion is one software attribute that can 
be affected by changes. A cohesive module has one 
basic function. Changes can introduce auxiliary func- 
tionality to existing program units resulting in less co- 
hesive modules. Vie use a variation on program slices, 
introduced by Weiser [24], to  model and measure co- 
hesion [18]. 

The effects of a change on cohesion are not always 
obvious. A slice profile is one heuristic tool that can 
help a maintainer visualize the cohesion in a mod- 
ule [17]. By seeing the effect of a change on module 
cohesion, a maintainer can get intuitive feedback on 
the impact of the change. In this paper, we analyze 
the effects of changes on a set of cohesion metrics. 
These metrics provide a numeric view of the effect 
of a change, and can allow a maintainer to evaluate 
the relative effect of alternative changes. Quantitative 
metrics allow comparisons between alternative main- 
tenance (and design) decisions, and allow a maintainer 
to monitor the effect of his or her actions on the soft- 
ware structure. 

We focus on the direction of the changes to cohesion 
metrics resulting from relatively simple code modifi- 
cations. The direction of metric changes provides a 
ranking of relative levels of cohesion before and after 
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a code change. Such a ranking helps provide a basic 
understanding of cohesion attributes [16], and demon- 
strates the scale properties and the arithmetic opera- 
tions that can be applied to the metric values [28]. 

For metrics to provide meaningful measurements 
they must be rigorously defined, accurately reflect well 
understood software attributes, and be based on mod- 
els that capture these attributes [l]. The measures 
should be specified independently from the measure- 
ment tools, and, in fact, such tools should be based 
on the models. Example tools include QUALMS [27], 
which is based on the flowgraph model, and the set of 
test coverage measurement tools developed by Bieman 
and Schultz [3,4] based on the standard representation 
model [2]. We use a slice model of a program to de- 
velop measures of module cohesion, and then evaluate 
the effect of code changes to the measures. 

The paper has the following organization. In Sec- 
tion 2,  we define program slicing and a program model 
based on slices, and use this model to define several co- 
hesion metrics. In Section 3, we evaluate the effects of 
code changes on the slice based program models. Sec- 
tion 4 reports on the effects of code addition changes 
on the cohesion metrics, and Section 5 reports on the 
more unpredictable metric effects from moving code. 
Our conclusions are given in Section 6. 

2 Program Slicing 
Slicing is a method of program reduction intro- 

duced by Weiser [24, 25, 261. A slice of a module 
at statement s with respect to  variable v is the set 
of all statements and predicates that might affect the 
value of v at s. Slices were proposed as potential de- 
bugging tools and program understanding aids. They 
have since been used in a broader class of applica- 
tions (e.g., debugging parallel programs 51, mainte- 
nance [6, 8, 171, and testing [lo, 11, 15, 2 0 .  5 

Weiser’s algorithm for computing slices is based on 
data flow analysis. It is suggested in [21] that a pro- 
gram dependence graph representation could be used 
to compute slices more efficiently and precisely. An 
algorithm for computing slices using a program depen- 
dence graph representation is presented by Horwitz, 
Reps, and Binkley [9, 221. A slice is obtained by walk- 
ing backwards over the program dependence graph to 
obtain all nodes which have an effect on the value of 

345 
0-8186-2980-0/92 $03.00 0 1992 IEEE 



the variable of interest. Similarly, a forward slice [9] 
can be obtained by walking forward over the program 
dependence graph to obtain all nodes which are af- 
fected by the value of a variable. The algorithm based 
on the program dependence graph is more restricted 
than Weiser’s in the sense that it will only compute a 
slice for variable U at statement s if U is defined or used 
in statement s. Both intmprocedural slices and in- 
terprocedural slices can be computed. Intraprocedural 
slices are restricted to within a single procedure while 
interprocedural slices cross the boundaries of proce- 
dural calls. 

2.1 Metric Data Slices 
In [26], Weiser defined several slice based metrics. 

Longworth [14] first studied their use as indicators of 
cohesion. In [19, 231, certain inconsistencies noted by 
Longworth are eliminated through the use of metric 
slices. A metric slice takes into account both the uses 
and used by data  relationships [7]; that is, they are the 
union of Horwitz et.al.’s backward and forward slices. 

In order to  analyze the effects of changes on slice 
metrics, we modify this concept oi metric slices to use 
data tokens (i.e., variable and constant definitions and 
references) rather than statements as the basic unit. 
We call these slices metric data slices. 

Using data tokens as the basis of the slices ensures 
that all changes of interest will cause a change in a t  
least one slice of a module. We consider a change of 
interest to be any change which could have an effect on 
the cohesiveness of a module. An example of a change 
that is not of interest is changing some operator to  
a different operator. Examples of changes of inter- 
est include adding code, deleting code, or changing a 
variable name. Each of these changes would result in 
a change to at least one metric data  slice. (This is 
in contrast to a metric slice, where if a statement is 
modified, the number of statements in the slice might 

not Informal y, we view a metric data slice for a data  
token, v, as the set of all data tokens in the statements 
that comprise the “backward” and “forward” slices of 
v. We use intruprocedural slicing since we are inter- 
ested in examining the cohesiveness of each procedure 
as a separate entity. 

We view a software system as a set of slice modules 
where each slice module is a set of metric data slices. 
A metric data  slice is computed for each output of the 
module. Since we are interested in the cohesion of the 
whole module, we use a concept similar to  that of end- 
slices [12, 131. The “backward” slices are computed 
from the end of the module and the “forward” slices 
are computed from the “top”s of the backward slices. 
M will be used to represent the set of slice mod- 

ules for module m. Figure 1 contains an example of a 
metric data  slice. 

2.2 Data Slice Profiles 

ule 118,231. A slice profile for procedure SumAndProd- 
uct is given in Figure 2. Each column with a variable 
name heading in the slice profile corresponds to a slice 
of that variable. All rows in the profile marked with a 
vertical bar “I” are statements included in a slice for 
a particular variable, otherwise the row is blank. The 
“Statement” column contains the source statement. 
For example, the column with heading SumN in Fig- 
ure 2 corresponds to the slice for SumN. This slice 
consists of all statements containing a vertical bar in 
the column for SumN. 

Although they do not completely capture metric 
data slices, we can modify slice profiles to give a sense 
of the relationships among metric data slices. To do 
this, we indicate in the column for a slice variable, the 
number of data tokens in that  line that  are included 
in the slice. Figure 3 shows an example of a metric 
data slice profile. 

2.3 Data Slice Metrics 
In his original work on slicing, Weiser proposes sev- 

eral metrics. Longworth [14 and T h u s  [23] show that 
Weiser’s metrics are relate d to  cohesion. Here we re- 
define the metrics in terms appropriate for metric data 
slices. 

For notational convenience, let V, be the set of 
variables used by module m and let VO be a subset 
of V, containing only the output variables of module 
m. Output variables include parameters and globals 
that are modified, variables that are written by the 
module, and the return value of a function. A slice 
module M for module m is defined by 

where the symbol SLi is the metric data  slice obtained 
for vi. Let SLi,t(M) be the intersection of all the SLi. 

IMI 

i=l 

The size of a module, m,  denoted size(m), is the total 
number of data tokens in m. Since slices have been 
defined here as sets, lSLil is the number of data tokens 
in the slice SLi. 

Coverage is a comparison of the size of the slices to 
the size of the module. Low Coverage values gener- 
ally result from modules with numerous short slices, 
and may be an indication of several distinct process- 
ing elements and, therefore, low cohesion. Coverage is 
defined as the mean slice size divided by the module 
size. 

Slice profiles were developed to aid in visualizing 
the relationships among the slices generated for a mod- 

‘That is from the Finalllac nodes as described in [9] 

Overlap measures the average ratio of data tokens 
common to all the slices. A high Overlap might indi- 
cate high code interdependence since most slices span 

346 



procedure SumAndProduct( : integer; var w], ProdN : integer ); 

SumN 

I 
I 
I 
I 
I 

I 
I 

I 
I 

var 

: integer; 
begin 

P I : =  [lii3; 
ProdN := 1; 
for := to  do begin 

lsu“l:= -1 + m; 
ProdN := ProdN * I 

end 
end; 

ProdN 

I 
I 
I 
I 

I 
I 

I 
I 
I 

Figure 1: Metric data slice for S u m N .  Items included in the slice are contained within boxes. 

Statement 
procedure SumAndProduct( N : integer; var SumN, ProdN : integer ); 
var 

begin 
I : integer; 

SumN := 0; 
ProdN := 1; 
for I := 1 to N do begin 

SumN := SumN + I; 
ProdN := ProdN * I 

end 
end; 

Figure 2: Slice profile for SumAndProduct. Statements included in the slice for SumN are indicated with a “1” in 
column SumN of the profile. Similarly, the slice for ProdN is indicated in column ProdN. 
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SumN 
2 

1 

2 

3 
3 

ProdN 
2 

1 

2 
3 

3 

Statement 
procedure SumAndProduct( N : integer; var SumN, ProdN : integer ); 
var 

begin 
I : integer; 

SumN := 0; 
ProdN := 1; 
for I := 1 to N do begin 

SumN := SumN + I; 
ProdN := ProdN * I 

end 
end; 

Figure 3: Metric Data Slice profile for SumAndProduct. The number of data tokens included in the metric data 
slice for SumN are indicated with a number in column SumN of the profile. The metric data slice for ProdN is 
indicated in column ProdN. 

the entire module, and implies a high degree of inter- 
relationship and high cohesion. Overlap was originally 
defined by Weiser as the average of the ratio of non- 
unique to  unique statements in each slice. Because 
Overlap is undefined if there are no unique statements 
in a slice, Longworth [14] redefined Overlap in terms 
of the total number of statements in each slice. Simi- 
larly, we define Overlap as the ratio of the number of 
data tokens in the intersection of all of the slices to 
the size of each slice. 

Tightness is based on the number of data tokens 
included in every slice. High Tightness values tend to 
indicate a high degree of data relationships within the 
module, possibly indicating a highly functional mod- 
ule. Tightness is expressed as a ratio of the number 
of data tokens in the intersection of all the slices over 
the module size. 

I SLint ( M )  I T i g h t n e s s ( M )  = 
s i z e ( m )  ( 5 )  

Parallelism indicates the number of slices with little 
in common, and may reflect the number of “unrelated” 
processing elements within a module. Parallelism is 
expressed as the number of slices having a pairwise 
overlap with all of the other slices less than or equal 
to a threshold, r. 

P a r a l l e l i s m ( M )  = I{SLi such that 

MinCoverage is the size of the shortest slice as a 
ratio to the module size. High MinCoverage values 
indicate that the shortest slice requires most of the 
data tokens in the module, and therefore, that all of 
the slices interact. 

M i n C o v e r a g e ( M )  = - minlSLiI (7) 
sire(m) t 

MaxCoverage is the size of the longest slice as a 
ratio to the module size. High MaxCoverage values 
indicate that at least one slice requires most of the 
data tokens in the module. 

1 
M a x C o v e r a g e ( M )  = - m?lSLiI (8) s i z e ( m )  8 

Values of Coverage, Overlap, Tightness, MinCover- 
age and MaxCoverage will range from 0 to 1, with the 
assumption that higher values indicate more cohesive 
modules. Values of Parallelism will range up from 0; 
the higher values indicate that the module contains 
multiple unrelated or only slightly related tasks. 

3 Effects of changes on slices 
We use an abstract model of a software system to 

examine how changes affect metric data slices. Using 
this model, a software system is a set of slice modules, 
where each slice module is a set of metric data slices, 
and a metric data slice is a set of data  tokens. A slice 
module, M, is a set of metric data slices, since all met- 
ric data slices based on particular outputs are unique. 
Minimally, the data token used to  output a value (this 
value may be a record, array or other aggregate struc- 
ture) belongs to only one metric data slice. Since each 
metric data slice is based on one output, each slice in 
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slice module M has some data tokens that are not part 
of any other metric data  slice in M. 

Modifications to  a module affect the metric data  
slices in the slice module representation of the mod- 
ule. We classify these effects from common changes to 
the slice module M representation of module m. Our 
analysis includes only changes involving the addition, 
movement, deletion, or changes to data  definitions or 
references. The analysis does not evaluate the effects 
of changes to non-data tokens, i.e., changing a “>” to 
a “<” in a decision. We assume that the changes are 
semantically meaningful and non-trivial, and, thus, we 
do not address changes that  cannot affect the output 
of a program, such as adding or changing comments 
or adding “dead code”, that is, code that cannot be 
reached during any execution. Our analysis is based 
on incremental changes to a module. We view major 
changes as sequences of incremental changes. Incre- 
mental changes to module m will make the following 
incremental changes to the slices in the slice module 
representation M: 

Adding code to m: Adding code to m results in ei- 
ther adding a metric data slice to M or extend- 
ing an existing metric data slice. Adding an addi- 
tional output will add a metric data slice. Adding 
an output will not affect other metric data slices 
(we assume that adding an output with side ef- 
fects is a sequence of two incremental changes). 
Adding code that does not include adding an out- 
put must add data  tokens to one or more existing 
metric data  slices, thus extending these metric 
data slices. 

Moving code: Moving code cannot add any new met- 
ric data slices, since a new slice requires adding a 
new output which requires the addition of some 
code. However, moving code can extend one or 
more metric data  slices by moving an output so 
that additional data tokens are in the slice defined 
by the output. An output can also be moved so 
that some data  tokens are no longer in the metric 
data slice defined by the output, resulting in a 
smaller metric data  slice. A token can be moved 
so that it becomes part of a metric data slice de- 
fined by a particular output thus extending that 
metric data  slice. Code can also be moved out 
of a metric data slice, resulting in a smaller met- 
ric data slice. One incremental code movement 
change can result in a combination of these ef- 
fects on slices. A change that consists of moving 
a data token from one location to another in a 
module can result in extending one or more met- 
ric data  slices yJ shortening one or moie metric 
data  slices. 

Deleting code: Deleting an output results in remov- 
ing the metric data  slice defined by the output 
from m. Deleting non-output data tokens short- 
ens all of the metric data  slices that contain the 
deleted data  token. 

Change code: We treat changed code as a sequence 
of incremental changes - delete, then add data 

tokens. 

Thus, any incremental change to module m results in 
one or more of the following changes to the metric 
data slice structure of its slice module representation 
M: 

0 Add a metric data  slice to M 

0 Extend one or more metric data  slices in M 
0 Shorten a metric data slice in M 
0 Remove a metric data slice from M 

We now evaluate the effects on the slice-based cohesion 
metrics from software changes. 

4 Effects on slice metrics from adding 
code 

Adding code to a module m results in adding or 
extending one or more metric data slices to the slice 
module representation M of module m. We examine 
how adding or extendin a metric data  slice affects the 
slice metrics introducef in Section 2. In the discus- 
sion, the changed representation is described as M‘. 
Removing code has the inverse effect of adding code. 

4.1 

which includes one new output data token to  m. 

Adding one metric data slice to M 
A metric dat,a slice is added to M by adding code 

Coverage. Adding a metric data  slice SL to  M can 
either increase or decrease the Coverage depending on 
the relationship between the size of the new slice and 
a function of the sizes of the new and old modules to 
the Coverage of the original module. Through rela- 
tively simple algebraic transformations, we find that 
the Coverage(h1‘) > Coverage(M) if and only if 

> Coverage(M) IS4  
I M’I . size(”) - I M I . size(m) 

Overlap. Overlap may go up or down, depending on 
whether the added slice has more overlap than Over- 
lap(M). If the added slice SL includes all of the data 
tokens in the intersection of the metric data slices in 
M, SLint( M), then Overlap(M’) > Overlap(M) if and 
only if 

I S L i n t ( M ) I  > Overlap(M) 

If the added slice SL does not include all of the data 
tokens in the intersection of M, S L i f l i ( M ) ,  then we 
find that Overlap(M‘) > Overlap(M) if and only if 

lSLl 
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Tightness. Adding a slice to  M lowers the Tight- 
ness in the changed module. Tightness(M') < Tight- 
ness M )  because there are more slices in M' and the 

crease when a new slice is added. (The numerator can- 
not increase, while the denominator must increase.) 

num b er of data tokens common to all slices cannot in- 

Parallelism. Here, we assume a T of 0, thus, par- 
allel slices can have no common data tokens. Paral- 
lelism can increase or decrease depending on whether 
the new code intersects with old code. Parallelism 
increases only if the added slice is completely inde- 
pendent from all of the slices in M .  Parallelism will 
decrease if the added slice includes data tokens that 
are on any of the slices in M that do not share any 
data tokens with other slices in M. 

MinCoverage. MinCoverage(M') < MinCover- 
age(M). If ISI,( > size of the shortest slice in M ,  Min- 
Coverage decreases since the size(m > size(m). If 
ISLI < the shortest slice in M ,  then z incoverage de- 
creases even more. 

MaxCoverage. If ISLl < size of the longest slice in 
M ,  MaxCoverage(M') < MaxCouerage(M) since the 
size(m') > size(m). If lSLl > size of the longest slice 
then it depends on the number of new data tokens 
added to M .  

4.2 Extending one or more metric data 
slice(s) in M 

Adding one additional data token to m can result 
in extending one or more metric data slices. 

Coverage. If the change extends one metric data 
slice SI, in M ,  Coverage will normally decrease, that is, 
Coverage(M') < Coverage(M). Coverage(M') = Cov- 
erage(M) if all of the metric data slices in M are in- 
dependent, that is, they have maximum Parallelism. 
The only situation in which it is possible for Coverage 
to increase when adding one metric data slice, is when 
there are data tokens in m which are not in any metric 
data slice, that is, when there is dead code in module 
m. 

If more than one metric data slice is extended, then 
Coverage is more likely to increase. Assuming that we 
extend t metric data slices, each by one data token, 
then Coverage(M') > Covemge(M) if and only if 

1 

Coverage(M) < 
IMI 

Overlap. Assume that IMI > 1 and that at  least 
one slice SI, E M is not changed. In this case, 
Overlap(M') < Overlap(M) because the size of all of 
the changed slices has increased, while the data tokens 
common to all slices is unchanged. 

If the added code results in adding a data token 
to each metric data slice in M ,  then Overlap(M') > 

Overlap(M) since both the number of data tokens com- 
mon to all metric data slices and the size of all metric 
data slices is increased by one. 

Tightness. Assume that IMI > 1 and that a t  least 
one slice SI, E M is not changed. In this case, 
Tightness(M') < Tightness M) because the size m') 

is unchanged. 
If the added code results in adding a data token to  

each metric data slice in M ,  then Tightness M')  > 

nator of the Tighiness calculation is increased by one. 

> size(m) while the data to L ens common to all s r. ices 

Tightness(M), since both the numerator and 1 enomi- 

Parallelism. Again, we assume a r of 0, thus, par- 
allel metric data slices can have no common data to- 
kens. Parallelism will either remain unchanged or be 
reduced, Parallelism(M') 5 Parallelism(M). 
Parallelism(M') = Parallelism(M) if the change ex- 
tends only one metric data slice. If an added data 
token extends two or more slices that shared no to- 
kens in M ,  then Parallelism(M') < Parallelism(M). 

MinCoverage. If the added code extends the short- 
est metric data slice in M then, MinCoverage(M') 
> MinCoverage(M). Otherwise, MinCoverage(M') 
< MinCoverage(M) since size(m') > size(m) and the 
size of the shortest metric data slice is unchanged. 

MaxCoverage. If the added code extends the 
longest metric data slice in M then, MaxCoverage(M') 
> MaxCoverage(M). Otherwise, MaxCoverage(M') 
< MaxCoverage(M) since size(m') > si te  m) and the 
size of the longest metric data slice is unc I anged. 

5 Effects on slice metrics from moving 
code 

The movement of one data token within a module 
can result in no significant change in all of the met- 
ric data slices. However, such a change may extend 
and/or shorten one or more metric data slices (see 
Section 3). Thus, it is very difficult to  identify a priori 
the effects on the metrics of code movement changes. 
We examine the effect of moving one data token on 
the data slice metrics. 

Coverage. Moving a code segment containing one 
data token can raise the Coverage if the net effect is to 
increase the size of more data slices than are reduced. 
Coverage is reduced if the net effect is to  shorten the 
metric data slices. 

Overlap and Tightness. The change will increase 
Overlap and Tightness if a data token that is not in 
the intersection of the metric data slices is moved so 
that all of the metric data slices are extended. Overlap 
and Tightaess are reduced if the change results in a 
smaller intersection. 
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Parallelism. Parallelism will either remain un- 
changed, be increased or reduced. The effect on Paral- 
lelism depends on whether code is moved in a manner 
that affects the number of data tokens that metric 
data slices share with other slices. 

MinCoverage and MaxCoverage. The effect of 
the change on MinCoverage and MazCoverage de- 
pends on whether the shortest or longest metric data 
slice respectively is increased or decreased. 

6 Conclusions 
In this paper, we develop a slice model of programs 

and redefine slice met r ia  based on our model. Previ- 
ous work demonstrates the relationship between slice 
metrics and module cohesion. Using our new model 
we can analyze how changes to a program module are 
reflected in the slice based metrics, and we get some 
additional understanding of the relationship between 
these metrics and cohesion. 

Table 1 summarizes the effects of adding code on 
each of the slice metrics. We find that each of the met- 
rics exhibits unique behavior, yet the metrics’ response 
to adding code matches the intuitive meaning of sepa- 
rate attributes of module cohesion. For example, when 
adding a slice, Coverage will increase or decrease de- 
pending on how cohesive (in terms of Coverage) the 
new slice is when compared to the cohesiveness (also 
in terms of Coverage) of the original code. The effects 
on Overlap that result from adding a slice are similar 
to the effects on Coverage, which is expected due to 
the similarities of their definitions. The magnitude of 
the effects on Tightness of adding a slice also depends 
on the relationship of the new slice to the existing 
code. However, Tightness always decreases when a 
new slice is added. Tightness is a metric that is e s  
pecially sensitive to the number of outputs computed 
by a module (each slice represents one output). The 
number of outputs, and their interdependence, is an 
attribute of cohesion that is indicated by the Tightness 
metric. Coverage, Overlap, and Tightness all tend to 
decrease when one or more slices are extended. Unless 
all slices are extended by one code addition, a slice ex- 
tension change will tend to  add functionality that is 
not connected to the other slices, thus decreasing at- 
tributes of cohesion. The Parallelism metric is essen- 
tially an LLanti-cohesion” metric. Parallelism is high 
when slices are independent. Thus, adding a slice is 
likely to reduce Parallelism if the new slice shares any 
data tokens with existing slices. After a code exten- 
sion change is made, if more than one slice is affected, 
then the sharing of data tokens reduces Parallelism. 
The effects on MinCoverage or MazCoverage depend, 
as expected, on whether the longest or shortest slice 
is modified. 

We find that determining general effects on the co- 
hesion metrics resulting from moving code is a difficult 
problem. Moving code can affect an arbitrary number 
of slices. Our analysis of this problem provides sup- 
port for maintenance programmers who would rather 
add new code than move a line of an existing system. 

The metrics should be especially helpful when a code 
movement change is contemplated, since our analysis 
shows that the effects on cohesion from moving code 
is very unpredictable. 

The effects on the cohesion metrics from module 
changes do seem to match our intuition concerning 
the expected effects on particular cohesion attributes. 
Thus, effects on cohesion attributes can be monitored 
during maintenance using these metrics. Such cohe- 
sion monitoring should aid in managing the effects of 
maintenance activities. 

We plan to continue to analytically evaluate the re- 
lationship between cohesion attributes and the cohe- 
sion metrics. This analysis is necessary to demonstrate 
that the met r ia  impose an ordering on modules and 
systems that matches our intuitive understanding of 
cohesion. We also need to more fully understand the 
properties of the metrics to  insure that we perform 
valid statistical analyses on metric data. 

We also plan empirical studies to  confirm that the 
cohesion metrics can be useful maintenance tools. We 
have prototype cohesion measurement tools that can 
analyze cohesion in Pascal programs. Analyzers for 
C, C++ and Ada programs are planned. With these 
tools, data from industry, and input from software 
maintenance professionals, we hope to demonstrate 
the effectiveness of the slice based cohesion approach. 
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