
Effects of Software Changes
on Module Cohesion

Linda M. Ott
Dept. of Computer Science

Michigan Technological University
Houghton, MI 49931

Abstract
W e use program slices to model module cohesion.

For our purposes, a slice is a projection of program
text that includes only the data tokens relevant t o one
output. W e define six cohesion metrics in terms of
these slices, and evaluate the effects of classes of mod-
ule changes on these metrics. W e find that the ef-
fects on cohesion metrics are notably more predictable
when the changes result from adding code rather than
from moving code. In general, the effects that soft-
ware changes have on the cohesion metrics match our
intuition.

1 Introduction
Changes made during software maintenance can

have negative effects on the internal structure of a
software system. As changes are made over time, the
software can become more difficult to understand and
maintain. Maintainers will surely benefit from tools to
help evaluate the effects of a change on the structural
integrity of a software system.

Module cohesion is one software attribute that can
be affected by changes. A cohesive module has one
basic function. Changes can introduce auxiliary func-
tionality to existing program units resulting in less co-
hesive modules. Vie use a variation on program slices,
introduced by Weiser [24], to model and measure co-
hesion [18].

The effects of a change on cohesion are not always
obvious. A slice profile is one heuristic tool that can
help a maintainer visualize the cohesion in a mod-
ule [17]. By seeing the effect of a change on module
cohesion, a maintainer can get intuitive feedback on
the impact of the change. In this paper, we analyze
the effects of changes on a set of cohesion metrics.
These metrics provide a numeric view of the effect
of a change, and can allow a maintainer to evaluate
the relative effect of alternative changes. Quantitative
metrics allow comparisons between alternative main-
tenance (and design) decisions, and allow a maintainer
to monitor the effect of his or her actions on the soft-
ware structure.

We focus on the direction of the changes to cohesion
metrics resulting from relatively simple code modifi-
cations. The direction of metric changes provides a
ranking of relative levels of cohesion before and after

James M. Bieman
Dept. of Computer Science
Colorado State University
Fort Collins, CO 80523

a code change. Such a ranking helps provide a basic
understanding of cohesion attributes [16], and demon-
strates the scale properties and the arithmetic opera-
tions that can be applied to the metric values [28].

For metrics to provide meaningful measurements
they must be rigorously defined, accurately reflect well
understood software attributes, and be based on mod-
els that capture these attributes [l]. The measures
should be specified independently from the measure-
ment tools, and, in fact, such tools should be based
on the models. Example tools include QUALMS [27],
which is based on the flowgraph model, and the set of
test coverage measurement tools developed by Bieman
and Schultz [3,4] based on the standard representation
model [2]. We use a slice model of a program to de-
velop measures of module cohesion, and then evaluate
the effect of code changes to the measures.

The paper has the following organization. In Sec-
tion 2, we define program slicing and a program model
based on slices, and use this model to define several co-
hesion metrics. In Section 3, we evaluate the effects of
code changes on the slice based program models. Sec-
tion 4 reports on the effects of code addition changes
on the cohesion metrics, and Section 5 reports on the
more unpredictable metric effects from moving code.
Our conclusions are given in Section 6.

2 Program Slicing
Slicing is a method of program reduction intro-

duced by Weiser [24, 25, 261. A slice of a module
at statement s with respect to variable v is the set
of all statements and predicates that might affect the
value of v at s. Slices were proposed as potential de-
bugging tools and program understanding aids. They
have since been used in a broader class of applica-
tions (e.g., debugging parallel programs 51, mainte-
nance [6, 8, 171, and testing [lo, 11, 15, 2 0 . 5

Weiser’s algorithm for computing slices is based on
data flow analysis. It is suggested in [21] that a pro-
gram dependence graph representation could be used
to compute slices more efficiently and precisely. An
algorithm for computing slices using a program depen-
dence graph representation is presented by Horwitz,
Reps, and Binkley [9, 221. A slice is obtained by walk-
ing backwards over the program dependence graph to
obtain all nodes which have an effect on the value of

345
0-8186-2980-0/92 $03.00 0 1992 IEEE

the variable of interest. Similarly, a forward slice [9]
can be obtained by walking forward over the program
dependence graph to obtain all nodes which are af-
fected by the value of a variable. The algorithm based
on the program dependence graph is more restricted
than Weiser’s in the sense that it will only compute a
slice for variable U at statement s if U is defined or used
in statement s. Both intmprocedural slices and in-
terprocedural slices can be computed. Intraprocedural
slices are restricted to within a single procedure while
interprocedural slices cross the boundaries of proce-
dural calls.

2.1 Metric Data Slices
In [26], Weiser defined several slice based metrics.

Longworth [14] first studied their use as indicators of
cohesion. In [19, 231, certain inconsistencies noted by
Longworth are eliminated through the use of metric
slices. A metric slice takes into account both the uses
and used by data relationships [7]; that is, they are the
union of Horwitz et.al.’s backward and forward slices.

In order to analyze the effects of changes on slice
metrics, we modify this concept oi metric slices to use
data tokens (i.e., variable and constant definitions and
references) rather than statements as the basic unit.
We call these slices metric data slices.

Using data tokens as the basis of the slices ensures
that all changes of interest will cause a change in a t
least one slice of a module. We consider a change of
interest to be any change which could have an effect on
the cohesiveness of a module. An example of a change
that is not of interest is changing some operator to
a different operator. Examples of changes of inter-
est include adding code, deleting code, or changing a
variable name. Each of these changes would result in
a change to at least one metric data slice. (This is
in contrast to a metric slice, where if a statement is
modified, the number of statements in the slice might

not Informal y, we view a metric data slice for a data
token, v, as the set of all data tokens in the statements
that comprise the “backward” and “forward” slices of
v. We use intruprocedural slicing since we are inter-
ested in examining the cohesiveness of each procedure
as a separate entity.

We view a software system as a set of slice modules
where each slice module is a set of metric data slices.
A metric data slice is computed for each output of the
module. Since we are interested in the cohesion of the
whole module, we use a concept similar to that of end-
slices [12, 131. The “backward” slices are computed
from the end of the module and the “forward” slices
are computed from the “top”s of the backward slices.
M will be used to represent the set of slice mod-

ules for module m. Figure 1 contains an example of a
metric data slice.

2.2 Data Slice Profiles

ule 118,231. A slice profile for procedure SumAndProd-
uct is given in Figure 2. Each column with a variable
name heading in the slice profile corresponds to a slice
of that variable. All rows in the profile marked with a
vertical bar “I” are statements included in a slice for
a particular variable, otherwise the row is blank. The
“Statement” column contains the source statement.
For example, the column with heading SumN in Fig-
ure 2 corresponds to the slice for SumN. This slice
consists of all statements containing a vertical bar in
the column for SumN.

Although they do not completely capture metric
data slices, we can modify slice profiles to give a sense
of the relationships among metric data slices. To do
this, we indicate in the column for a slice variable, the
number of data tokens in that line that are included
in the slice. Figure 3 shows an example of a metric
data slice profile.

2.3 Data Slice Metrics
In his original work on slicing, Weiser proposes sev-

eral metrics. Longworth [14 and T h u s [23] show that
Weiser’s metrics are relate d to cohesion. Here we re-
define the metrics in terms appropriate for metric data
slices.

For notational convenience, let V, be the set of
variables used by module m and let VO be a subset
of V, containing only the output variables of module
m. Output variables include parameters and globals
that are modified, variables that are written by the
module, and the return value of a function. A slice
module M for module m is defined by

where the symbol SLi is the metric data slice obtained
for vi. Let SLi,t(M) be the intersection of all the SLi.

IMI

i=l

The size of a module, m, denoted size(m), is the total
number of data tokens in m. Since slices have been
defined here as sets, lSLil is the number of data tokens
in the slice SLi.

Coverage is a comparison of the size of the slices to
the size of the module. Low Coverage values gener-
ally result from modules with numerous short slices,
and may be an indication of several distinct process-
ing elements and, therefore, low cohesion. Coverage is
defined as the mean slice size divided by the module
size.

Slice profiles were developed to aid in visualizing
the relationships among the slices generated for a mod-

‘That is from the Finalllac nodes as described in [9]

Overlap measures the average ratio of data tokens
common to all the slices. A high Overlap might indi-
cate high code interdependence since most slices span

346

procedure SumAndProduct(: integer; var w], ProdN : integer);

SumN

I
I
I
I
I

I
I

I
I

var

: integer;
begin

P I : = [lii3;
ProdN := 1;
for := to do begin

lsu“l:= -1 + m;
ProdN := ProdN * I

end
end;

ProdN

I
I
I
I

I
I

I
I
I

Figure 1: Metric data slice for S u m N . Items included in the slice are contained within boxes.

Statement
procedure SumAndProduct(N : integer; var SumN, ProdN : integer);
var

begin
I : integer;

SumN := 0;
ProdN := 1;
for I := 1 to N do begin

SumN := SumN + I;
ProdN := ProdN * I

end
end;

Figure 2: Slice profile for SumAndProduct. Statements included in the slice for SumN are indicated with a “1” in
column SumN of the profile. Similarly, the slice for ProdN is indicated in column ProdN.

347

SumN
2

1

2

3
3

ProdN
2

1

2
3

3

Statement
procedure SumAndProduct(N : integer; var SumN, ProdN : integer);
var

begin
I : integer;

SumN := 0;
ProdN := 1;
for I := 1 to N do begin

SumN := SumN + I;
ProdN := ProdN * I

end
end;

Figure 3: Metric Data Slice profile for SumAndProduct. The number of data tokens included in the metric data
slice for SumN are indicated with a number in column SumN of the profile. The metric data slice for ProdN is
indicated in column ProdN.

the entire module, and implies a high degree of inter-
relationship and high cohesion. Overlap was originally
defined by Weiser as the average of the ratio of non-
unique to unique statements in each slice. Because
Overlap is undefined if there are no unique statements
in a slice, Longworth [14] redefined Overlap in terms
of the total number of statements in each slice. Simi-
larly, we define Overlap as the ratio of the number of
data tokens in the intersection of all of the slices to
the size of each slice.

Tightness is based on the number of data tokens
included in every slice. High Tightness values tend to
indicate a high degree of data relationships within the
module, possibly indicating a highly functional mod-
ule. Tightness is expressed as a ratio of the number
of data tokens in the intersection of all the slices over
the module size.

I SLint (M) I T i g h t n e s s (M) =
s i z e (m) (5)

Parallelism indicates the number of slices with little
in common, and may reflect the number of “unrelated”
processing elements within a module. Parallelism is
expressed as the number of slices having a pairwise
overlap with all of the other slices less than or equal
to a threshold, r.

P a r a l l e l i s m (M) = I{SLi such that

MinCoverage is the size of the shortest slice as a
ratio to the module size. High MinCoverage values
indicate that the shortest slice requires most of the
data tokens in the module, and therefore, that all of
the slices interact.

M i n C o v e r a g e (M) = - minlSLiI (7)
sire(m) t

MaxCoverage is the size of the longest slice as a
ratio to the module size. High MaxCoverage values
indicate that at least one slice requires most of the
data tokens in the module.

1
M a x C o v e r a g e (M) = - m?lSLiI (8) s i z e (m) 8

Values of Coverage, Overlap, Tightness, MinCover-
age and MaxCoverage will range from 0 to 1, with the
assumption that higher values indicate more cohesive
modules. Values of Parallelism will range up from 0;
the higher values indicate that the module contains
multiple unrelated or only slightly related tasks.

3 Effects of changes on slices
We use an abstract model of a software system to

examine how changes affect metric data slices. Using
this model, a software system is a set of slice modules,
where each slice module is a set of metric data slices,
and a metric data slice is a set of data tokens. A slice
module, M, is a set of metric data slices, since all met-
ric data slices based on particular outputs are unique.
Minimally, the data token used to output a value (this
value may be a record, array or other aggregate struc-
ture) belongs to only one metric data slice. Since each
metric data slice is based on one output, each slice in

348

slice module M has some data tokens that are not part
of any other metric data slice in M.

Modifications to a module affect the metric data
slices in the slice module representation of the mod-
ule. We classify these effects from common changes to
the slice module M representation of module m. Our
analysis includes only changes involving the addition,
movement, deletion, or changes to data definitions or
references. The analysis does not evaluate the effects
of changes to non-data tokens, i.e., changing a “>” to
a “<” in a decision. We assume that the changes are
semantically meaningful and non-trivial, and, thus, we
do not address changes that cannot affect the output
of a program, such as adding or changing comments
or adding “dead code”, that is, code that cannot be
reached during any execution. Our analysis is based
on incremental changes to a module. We view major
changes as sequences of incremental changes. Incre-
mental changes to module m will make the following
incremental changes to the slices in the slice module
representation M:

Adding code to m: Adding code to m results in ei-
ther adding a metric data slice to M or extend-
ing an existing metric data slice. Adding an addi-
tional output will add a metric data slice. Adding
an output will not affect other metric data slices
(we assume that adding an output with side ef-
fects is a sequence of two incremental changes).
Adding code that does not include adding an out-
put must add data tokens to one or more existing
metric data slices, thus extending these metric
data slices.

Moving code: Moving code cannot add any new met-
ric data slices, since a new slice requires adding a
new output which requires the addition of some
code. However, moving code can extend one or
more metric data slices by moving an output so
that additional data tokens are in the slice defined
by the output. An output can also be moved so
that some data tokens are no longer in the metric
data slice defined by the output, resulting in a
smaller metric data slice. A token can be moved
so that it becomes part of a metric data slice de-
fined by a particular output thus extending that
metric data slice. Code can also be moved out
of a metric data slice, resulting in a smaller met-
ric data slice. One incremental code movement
change can result in a combination of these ef-
fects on slices. A change that consists of moving
a data token from one location to another in a
module can result in extending one or more met-
ric data slices yJ shortening one or moie metric
data slices.

Deleting code: Deleting an output results in remov-
ing the metric data slice defined by the output
from m. Deleting non-output data tokens short-
ens all of the metric data slices that contain the
deleted data token.

Change code: We treat changed code as a sequence
of incremental changes - delete, then add data

tokens.

Thus, any incremental change to module m results in
one or more of the following changes to the metric
data slice structure of its slice module representation
M:

0 Add a metric data slice to M

0 Extend one or more metric data slices in M
0 Shorten a metric data slice in M
0 Remove a metric data slice from M

We now evaluate the effects on the slice-based cohesion
metrics from software changes.

4 Effects on slice metrics from adding
code

Adding code to a module m results in adding or
extending one or more metric data slices to the slice
module representation M of module m. We examine
how adding or extendin a metric data slice affects the
slice metrics introducef in Section 2. In the discus-
sion, the changed representation is described as M‘.
Removing code has the inverse effect of adding code.

4.1

which includes one new output data token to m.

Adding one metric data slice to M
A metric dat,a slice is added to M by adding code

Coverage. Adding a metric data slice SL to M can
either increase or decrease the Coverage depending on
the relationship between the size of the new slice and
a function of the sizes of the new and old modules to
the Coverage of the original module. Through rela-
tively simple algebraic transformations, we find that
the Coverage(h1‘) > Coverage(M) if and only if

> Coverage(M) IS4
I M’I . size(”) - I M I . size(m)

Overlap. Overlap may go up or down, depending on
whether the added slice has more overlap than Over-
lap(M). If the added slice SL includes all of the data
tokens in the intersection of the metric data slices in
M, SLint(M), then Overlap(M’) > Overlap(M) if and
only if

I S L i n t (M) I > Overlap(M)

If the added slice SL does not include all of the data
tokens in the intersection of M, S L i f l i (M) , then we
find that Overlap(M‘) > Overlap(M) if and only if

lSLl

349

Tightness. Adding a slice to M lowers the Tight-
ness in the changed module. Tightness(M') < Tight-
ness M) because there are more slices in M' and the

crease when a new slice is added. (The numerator can-
not increase, while the denominator must increase.)

num b er of data tokens common to all slices cannot in-

Parallelism. Here, we assume a T of 0, thus, par-
allel slices can have no common data tokens. Paral-
lelism can increase or decrease depending on whether
the new code intersects with old code. Parallelism
increases only if the added slice is completely inde-
pendent from all of the slices in M . Parallelism will
decrease if the added slice includes data tokens that
are on any of the slices in M that do not share any
data tokens with other slices in M.

MinCoverage. MinCoverage(M') < MinCover-
age(M). If ISI,(> size of the shortest slice in M , Min-
Coverage decreases since the size(m > size(m). If
ISLI < the shortest slice in M , then z incoverage de-
creases even more.

MaxCoverage. If ISLl < size of the longest slice in
M , MaxCoverage(M') < MaxCouerage(M) since the
size(m') > size(m). If lSLl > size of the longest slice
then it depends on the number of new data tokens
added to M .

4.2 Extending one or more metric data
slice(s) in M

Adding one additional data token to m can result
in extending one or more metric data slices.

Coverage. If the change extends one metric data
slice SI, in M , Coverage will normally decrease, that is,
Coverage(M') < Coverage(M). Coverage(M') = Cov-
erage(M) if all of the metric data slices in M are in-
dependent, that is, they have maximum Parallelism.
The only situation in which it is possible for Coverage
to increase when adding one metric data slice, is when
there are data tokens in m which are not in any metric
data slice, that is, when there is dead code in module
m.

If more than one metric data slice is extended, then
Coverage is more likely to increase. Assuming that we
extend t metric data slices, each by one data token,
then Coverage(M') > Covemge(M) if and only if

1

Coverage(M) <
IMI

Overlap. Assume that IMI > 1 and that at least
one slice SI, E M is not changed. In this case,
Overlap(M') < Overlap(M) because the size of all of
the changed slices has increased, while the data tokens
common to all slices is unchanged.

If the added code results in adding a data token
to each metric data slice in M , then Overlap(M') >

Overlap(M) since both the number of data tokens com-
mon to all metric data slices and the size of all metric
data slices is increased by one.

Tightness. Assume that IMI > 1 and that a t least
one slice SI, E M is not changed. In this case,
Tightness(M') < Tightness M) because the size m')

is unchanged.
If the added code results in adding a data token to

each metric data slice in M , then Tightness M') >

nator of the Tighiness calculation is increased by one.

> size(m) while the data to L ens common to all s r. ices

Tightness(M), since both the numerator and 1 enomi-

Parallelism. Again, we assume a r of 0, thus, par-
allel metric data slices can have no common data to-
kens. Parallelism will either remain unchanged or be
reduced, Parallelism(M') 5 Parallelism(M).
Parallelism(M') = Parallelism(M) if the change ex-
tends only one metric data slice. If an added data
token extends two or more slices that shared no to-
kens in M , then Parallelism(M') < Parallelism(M).

MinCoverage. If the added code extends the short-
est metric data slice in M then, MinCoverage(M')
> MinCoverage(M). Otherwise, MinCoverage(M')
< MinCoverage(M) since size(m') > size(m) and the
size of the shortest metric data slice is unchanged.

MaxCoverage. If the added code extends the
longest metric data slice in M then, MaxCoverage(M')
> MaxCoverage(M). Otherwise, MaxCoverage(M')
< MaxCoverage(M) since size(m') > si te m) and the
size of the longest metric data slice is unc I anged.

5 Effects on slice metrics from moving
code

The movement of one data token within a module
can result in no significant change in all of the met-
ric data slices. However, such a change may extend
and/or shorten one or more metric data slices (see
Section 3). Thus, it is very difficult to identify a priori
the effects on the metrics of code movement changes.
We examine the effect of moving one data token on
the data slice metrics.

Coverage. Moving a code segment containing one
data token can raise the Coverage if the net effect is to
increase the size of more data slices than are reduced.
Coverage is reduced if the net effect is to shorten the
metric data slices.

Overlap and Tightness. The change will increase
Overlap and Tightness if a data token that is not in
the intersection of the metric data slices is moved so
that all of the metric data slices are extended. Overlap
and Tightaess are reduced if the change results in a
smaller intersection.

350

..
I

Parallelism. Parallelism will either remain un-
changed, be increased or reduced. The effect on Paral-
lelism depends on whether code is moved in a manner
that affects the number of data tokens that metric
data slices share with other slices.

MinCoverage and MaxCoverage. The effect of
the change on MinCoverage and MazCoverage de-
pends on whether the shortest or longest metric data
slice respectively is increased or decreased.

6 Conclusions
In this paper, we develop a slice model of programs

and redefine slice met r ia based on our model. Previ-
ous work demonstrates the relationship between slice
metrics and module cohesion. Using our new model
we can analyze how changes to a program module are
reflected in the slice based metrics, and we get some
additional understanding of the relationship between
these metrics and cohesion.

Table 1 summarizes the effects of adding code on
each of the slice metrics. We find that each of the met-
rics exhibits unique behavior, yet the metrics’ response
to adding code matches the intuitive meaning of sepa-
rate attributes of module cohesion. For example, when
adding a slice, Coverage will increase or decrease de-
pending on how cohesive (in terms of Coverage) the
new slice is when compared to the cohesiveness (also
in terms of Coverage) of the original code. The effects
on Overlap that result from adding a slice are similar
to the effects on Coverage, which is expected due to
the similarities of their definitions. The magnitude of
the effects on Tightness of adding a slice also depends
on the relationship of the new slice to the existing
code. However, Tightness always decreases when a
new slice is added. Tightness is a metric that is e s
pecially sensitive to the number of outputs computed
by a module (each slice represents one output). The
number of outputs, and their interdependence, is an
attribute of cohesion that is indicated by the Tightness
metric. Coverage, Overlap, and Tightness all tend to
decrease when one or more slices are extended. Unless
all slices are extended by one code addition, a slice ex-
tension change will tend to add functionality that is
not connected to the other slices, thus decreasing at-
tributes of cohesion. The Parallelism metric is essen-
tially an LLanti-cohesion” metric. Parallelism is high
when slices are independent. Thus, adding a slice is
likely to reduce Parallelism if the new slice shares any
data tokens with existing slices. After a code exten-
sion change is made, if more than one slice is affected,
then the sharing of data tokens reduces Parallelism.
The effects on MinCoverage or MazCoverage depend,
as expected, on whether the longest or shortest slice
is modified.

We find that determining general effects on the co-
hesion metrics resulting from moving code is a difficult
problem. Moving code can affect an arbitrary number
of slices. Our analysis of this problem provides sup-
port for maintenance programmers who would rather
add new code than move a line of an existing system.

The metrics should be especially helpful when a code
movement change is contemplated, since our analysis
shows that the effects on cohesion from moving code
is very unpredictable.

The effects on the cohesion metrics from module
changes do seem to match our intuition concerning
the expected effects on particular cohesion attributes.
Thus, effects on cohesion attributes can be monitored
during maintenance using these metrics. Such cohe-
sion monitoring should aid in managing the effects of
maintenance activities.

We plan to continue to analytically evaluate the re-
lationship between cohesion attributes and the cohe-
sion metrics. This analysis is necessary to demonstrate
that the met r ia impose an ordering on modules and
systems that matches our intuitive understanding of
cohesion. We also need to more fully understand the
properties of the metrics to insure that we perform
valid statistical analyses on metric data.

We also plan empirical studies to confirm that the
cohesion metrics can be useful maintenance tools. We
have prototype cohesion measurement tools that can
analyze cohesion in Pascal programs. Analyzers for
C, C++ and Ada programs are planned. With these
tools, data from industry, and input from software
maintenance professionals, we hope to demonstrate
the effectiveness of the slice based cohesion approach.

Acknowledgements
The authors thank the Department of Computer

Science at Colorado State University for providing Dr.
Ott with the facilities and environment that resulted
in a productive sabbatical year including the comple-
tion of this paper. The authors also thank the anony-
mous referee who provided valuable criticisms of an
earlier version of this paper.

References
[l] A.L. Baker, J.M. Bieman, N. E. Fenton, A. C.

Melton, and R.W. Whitty. A philosophy for soft-
ware measurement. Journal of Systems and Soft-
ware, 12(3):277-281, July 1990.

[2] J . Bieman, A. Baker, P. Clites, D. Gustafson, and
A. Melton. A standard representation of imper-
at,ive language programs for data collection and
software measures specification. The Journal of
Systems an,d Software, 8(1):13-37, January 1988.

[3] J . Bieman and J . Schultz. Estimating the num-
ber of test cases required to satisfy the all-du-
paths testing criterion. Proc. Software Testing,
Analysis and Verification Symposium (TAVJ-
SIGSOFT89), pages 179-186, December 1989.

[4] J . Bieman and J . Schultz. An empirical evalua-
tion (and specification) of the all-du-paths testing
criterion. Software Engineering Journal, 7(1):43-
51, January 1992.

35 1

Table 1: Summary of Effects of Adding Code on Slice Metrics

Metric Adding a New Slice Extending One or More Slices

Coverage

Overlap

I I Tightness Decreases Decreases unless all slices are I extended

Depends on Coverage
of new slice circumstances
Depends on Overlap
of new slice extended

Decreases under normal

Decreases unless all slices are

Parallelism Decreases unless new
slice is independent Otherwise, decreases

One slice extended, then no change

[5] J.-D. Choi, B. Miller, and P. Netzer. Techniaues 1141 H. D. Loneworth. Slice based Droeram metrics.

MinCoverage

MazCoverage

for debugging parallel programs. Technical ke-
port 786, Univ. Wisconsin-Madison, 1988.

Keith Brian Gallagher and James R. Lyle. U 5
ing program slicing in software maintenance.
IEEE Trans. Software Engineering, 17(8):751-
761, 1991.

Matthew S. Hecht. Flow Analysis of Computer
Programs. North;Holland, 1977.

S. Horwitz, J . Prins, and T. Reps. Integrat-
ing non-interfering versions of programs. A CM
Trans. Programming Languages and Systems,

S. Horwitz, T . Reps, and D. Binkley. In-
terprocedural slicing using dependence graphs.
A C M Trans. Programming Languages and Sys-
tems, 12(1):35-46, 1990.

11(3):345-386, 1989.

Depends on size of
new slice
Depends on size of
new slice

Depends on slice extended

Depends on slice extended

B. Korel and J . W. Laski. Dynamic program slic-
ing. Information Processing Letters, 29(3):155-
163, 1988.

B. Korel and J . W. Laski. Stad - a systerm for
testing and debugging: User perspective. In Proc.
2nd Workshop on Software Testing, Verification
and Analysis, 1988.

Arun Lakhotia. Insights into relationships be-
tween end-slices. Technical Report CACS TR-
91-5-3, University of Southwestern Louisiana,
September 1991.

Arun Lakhotia and Jagadeesh Nandigam. Com-
puting module cohesion. Technical Report CACS
TR-91-54, University of Southwestern Louisiana,
November 1991.

L .

Master’s thvesis, Michigan Technolzgical Univer-
sity, 1985.

[15] H. D. Longworth, L. M. Ottenstein [Ott], and
M. R. Smith. The relationship between program
complexity and slice complexity during debug-
ging tasks. In Proc. IEEE COMPSAC, pages

[16] A.C. Melton, D.A. Gustafson, J.M. Bieman, and
A.L. Baker. A mathematical perspective for soft-
ware measures research. Software Engineering
Journal, 5(5):246-254, 1990.

[17] Linda M. Ott. Using slice profiles and metrics
durine software maintenance. In Proc. 10th An-

383-389, 1986.

nual Software Reliability Symposium, pages i6-
23, 1992.

[18] Linda M. Ott and Jeffrey J . Thuss. The rela-
tionship between slices and module cohesion. In
Proc. 11th International Conference on Software
Engineering, pages 198-204, 1989.

[19] Linda M. Ott and Jeffrey J . Thuss. Slice based
metrics for estimating cohesion. Technical Re-
port (3-91-4, Dept. Computer Science, Michigan
Technological Univ., November 1991. Also pub-
lished as Technical Report CS-91-124 Dept. Com-
puter Science, Colorado State Univ.

[20] Linda M. Ott and Jeffrey J . Thuss. Using slice
profiles and metrics as tools in the production
of reliable software. Technical Report CS-92-8,
Dept. Computer Science, Michigan Technological
Univ., April 1992. Also published as Technical
Report CS-92-115 Dept. Computer Science, Col-
orado State Univ.

352

[21] K . J . Ottenstein and L. M. Ottenstein [Ott].
The program dependence graph in a software
development environment. In Proc. ACM SIG-
SOFT/SIGPLAN Software Eng. Symp. on Prac-
tical Software Development Environments, 1984.
See also SIGPLAN Noticea, 19,5, 177-184.

[22] T . Reps and W. Yang. The semantics of pro-
gram slicing and program integration. In Proc. of
the Colloquim on Current Issues an Programming
Languages, pages 360-374, 1989. Lecture Notes
in Computer Science, Vol. 352, Springer-Verlag,
New York, NY.

[23] Jeffrey J . Thuss. An investigation into slice based
cohesion metrics. Master’s thesis, Michigan Tech-
nological University, 1988.

[24] M. D. Weiser. Program slicing. In Proceedings
of the 5th International Conference on Software
Engineering, pages 439-449, 1981.

Programmers use slices when
debugging. Communications of the A C M ,

[26] M. D. Weiser. Program slicing. IEEE Trans.
Software Engineering, 10(4):352-357, 1984.

[27] L. Wilson and L. Leelasena. The QUALMS pro-
gram documentation. Technical Report Alvey
Project SE/69, SBP/lO2, South Bank Polytech-
nic, London, 1988.

[28] H . Zuse. Software Complexity Measures and
Methods. W. de Gruyter, Berlin, 1991.

[25] M. D. Weiser.

25(7) :446-452, 1982.

353

