Computer Science Technical

Report,

2006.

Design Pattern Coupling, Change Proneness, and Change Coupling: A Pilot
Study

James M. Bieman and Huixia Wang
Software Assurance Laboratory
Computer Science Department
Colorado State University
Fort Collins, CO 80523.
Email: bieman @cs.colostate.edu, wanghu@cs.colostate.edu

Abstract

A design pattern realization consists of a cluster of
classes that work together to solve a particular problem us-
ing a well known, named solution. Developers may build
systems out of several pattern realizations, and these pat-
tern realizations may be interconnected, or, in other words,
coupled. Coupled pattern realizations may represent a rea-
sonable solution to software design problems, however the
coupling can introduce dependencies that increase fault-
proneness and lower adaptability. We identify mechanisms
that can couple pattern realizations, and evaluate the rel-
ative tightness of the connections. An examination of pat-
tern coupling in five systems provides initial evidence that
pattern coupling is common. In addition, we find initial
evidence that classes in pattern realizations that are cou-
pled via associations are (1) more change prone and (2)
exhibit higher change coupling — classes that are modified
together in response to one required change — than those in
pattern realizations that are coupled by other mechanisms

Keywords: Patterns, coupling, change proneness,
object-oriented design methods, quality analysis and eval-
uation, measurement, maintainability, enhancement, exten-
sibility, maintenance measurement.

1 Introduction

A principle objective of software design is to determine
a “good” arrangement of program entities, whether those
entities are procedures, functions, or classes. A long stand-
ing design goal is to maximize program entity strength or
cohesion while minimizing program entity coupling [31].

The notion of coupling refers to the relationships be-
tween program entities. Designers aim for low coupling
to minimize dependencies between entities. With low cou-

pling between program units, a change in one unit is less
likely to affect another unit. Also, low coupling should
ease debugging, since, with low coupling, a fault in one
entity is less likely to propagate to other entities. In sev-
eral case studies, Briand et al. found a significant rela-
tionship between coupling and fault proneness of program
classes [7,10].

Myers’ definition of seven ordered categories of cou-
pling tightness between modules — from (1) no direct cou-
pling (best case) to (7) content coupling (worst case) — is
the basis for most coupling measures for procedural soft-
ware [31]. These tightness categories represent an ordinal
scale that indicates the relative interdependence of the cou-
pled modules.

Coupling measures for object-oriented software use
classes as the program unit or entity. Briand, Daly, and
Waust survey and evaluate a comprehensive suite of coupling
measures for object-oriented systems [8]: coupling between
objects (CBO) and response set for a class (RFC) [13],
message passing coupling (MPC) and data abstraction cou-
pling (DAC) [25], efferent copuling (Ce) and afferent cou-
pling (Ca) [27], coupling factor (COF) [1], information flow
(ICP) [24], 11 counts of various interactions [9]. Other cou-
pling measures include counts of the number of associa-
tions between classes and their peers (NAS) [18] and cou-
plings between modules (CBM) where a module is a Java
package [26]. All of these coupling measures indicate the
strength of coupling between classes. Rather than treat an
individual class as a design elements, our work views a clus-
ter of classes as one design element.

Design patterns that represent known solutions to com-
mon software design problems are now commonly em-
ployed in commercial and open source development [5].
Software design activities are moving towards a model-
driven development process [6] where developers will build
systems by composing pattern realizations together, rather

bieman
Typewritten Text
Computer Science Technical Report, 2006.

than by connecting individual classes. Thus, systems be-
come collections of interacting pattern realizations and in-
dividual classes that are not part of a pattern.

With design patterns becoming a primary design entity,
the assessment of design quality should take into account
the attributes of pattern realizations. In this paper, we ex-
amine the notion of pattern coupling [28], which is one pos-
sible pattern attribute.

Figure 1 shows a UML class model, from a real system,
of two coupled pattern realizations from Gamma et al [16].
A realization of a Factory Method pattern is coupled to a
realization of a Strategy Pattern. In this example, interface
Product and class ProductA play roles in both pattern real-
izations.

Factory method —— Strategy —
interface
Product
A
Concrete Creator| [Products | | interface
Strategy
|
ConcreteStrategy

Figure 1. Intersection Coupling between a
Factory Method pattern realization and Strat-
egy pattern realization in proprietary System
B.

Pattern coupling can potentially affect the adaptability of
a system. A system of pattern realizations with more strong
connections between individual pattern realizations may be
more difficult to understand and thus more difficult to main-
tain than a system of weakly connected pattern realizations.

Adaptability can be measured in terms of the actual labor
required to modify a system as it evolves, perhaps in terms
of person-hours. Unfortunately, such information can be
very difficult to obtain. Thus, we use change proneness as
a surrogate for adaptablity. Change proneness can be mea-
sured by counting the number of changes to particular sys-
tem elements as they evolve. An element that requires rel-
atively more changes is, in general, more difficult to adapt.
Of particular concern is that due to coupling, changes to one
element may in turn force changes to another coupled ele-
ment. Such change coupling of elements [3] indicates lower
adaptability.

The coupling of pattern realizations may, in fact, have
positive benefits. That is, coupled pattern realizations may
help to make a coherent design. In the case of the cou-
pled Factory Method and Strategy pattern realizations in
Figure 1, we can argue that it is natural to use a factory
to create concrete products. The connection between the

ConcreteCreator and ProductA is transient and there is min-
imal likelihood of interference between the Factory Method
pattern realization and the Strategy pattern realization, and
little or no chance of the Strategy pattern realization inter-
fearing with the Factory Method.

As in the coupling of procedures and functions, some
couplings are good and necessary — data coupling in the
Myers hierarchy — and others lead to trouble — common
coupling and content coupling [31]. Even with the preferred
forms of coupling, too many couplings can make a system
unmanageable. Thus, we are concerned with both the mech-
anism for coupling and the number of couplings.

Our goal in this work is to understand the mechanisms
that can couple design pattern realizations, and evaluate
the relative impact of the different mechanisms on change
proneness and change coupling. Strong coupling indi-
cates greater interdependencies between pattern realiza-
tions, while weak coupling indicates greater independence.
We select changeproneness and change copuling as evalua-
tion criteria, since ease of modification is a primary reason
for using design patterns [16].

First we identify and classify methods of coupling de-
sign pattern realizations, and propose an ordering of pattern
coupling mechanisms in terms of coupling strength. We ex-
amine coupled pattern realizations in available commercial
and open-source software to further understand the reasons
for pattern couplings. The specific coupling mechanisms in
these systems provide insights into the effect of the coupling
on hypothetical changes. To further understand the rela-
tive strength of pattern coupling mechanisms we observe
the change proneness of classes that play roles in coupled
pattern realizations in four case studies of evolving systems.
Change proneness is an indicator of the strength of a con-
nection — tightly coupled elements are more likely to re-
quire modifications due to ripple effects.

2 Pattern Coupling Mechanisms and Cou-
pling Strength

Since a design pattern realization consists of a cluster of
one or more classes, pattern realizations can be linked in
the same manner as individual classes — via associations,
inheritance, use dependencies, and interactions with global
data. Pattern realizations can also be linked through classes
that play roles in several pattern realizations.

A classification of the coupling mechanisms can be
based on a set of criteria including the following:

e The number of connections.

e The abstraction levels of the connections. Pattern real-
izations may be coupled via links that appear in class
diagrams of detailed designs or conceptual models.

The links may represent interactions that occur in code,
interaction diagrams, or in role models that serve as
pattern specifications [15].

o The persistence of a connection between pattern real-
izations. A link may last for the lifetime of the pattern
realizations involved or exists during a single method
activation.

e Direction of the coupling.

We might expect coupling strength to increase with the
number of links between pattern realizations, persistent
links are likely to be stronger than transient links, and two-
way coupling is likely to be stronger than one-way. The
specific mechanisms used to link two patterns is a key fac-
tor in determining the strength of coupling.

Coupling has historically been evaluated using an ordinal
scale, from weakest coupling to the strongest coupling [31].
We propose a similar ordinal scale for design pattern cou-
pling, with the following preliminary coupling classifica-
tions:

0. No coupling. Two pattern realizations are not linked.
1. Transient (use dependency) coupling.
2. Persistent coupling via associations.

3. Persistent coupling via sharing of common objects via
one of two categories:

(a) Embedded. A parent pattern realization contains
some realizations of the embedded pattern(s).

(b) Intersection. Each pattern realization contains
both the common objects that play roles in two
or more pattern realizations, and some indepen-
dent objects that play roles in only one pattern
realization.

4. Sharing common superclasses.

5. Common coupling (also persistent). Two pattern real-
izations are common coupled when they communicate
by sharing the same global data entity.

The proposed ordering of pattern coupling mechanisms rep-
resents a hypothesis, and needs validation. The rankings
represent a suggested ordering, and should be treated as a
classification or nominal measure until the ordering is vali-
dated.

3 Potential Impact of Pattern Coupling

Pattern coupling can potentially have a negative impact
on on external quality factors. Both errors and changes in

classes in one pattern realization can propagate to classes in
the other pattern realization. We examine the impact of pat-
tern coupling via the notion of interference, where behavior
in one pattern realization interferes with that of another pat-
tern realization. The analysis is based on examples of cou-
plings found in the five systems studied. We look at each
category of coupling mechanism in order.

3.1 Transient (Use Dependency) Coupling

Objects of classes that play roles in two design pattern
realizations can be coupled via use dependencies. The re-
lationship between the coupled pattern realizations is tem-
porary. The pattern with import coupling has a use depen-
dency on the pattern with export coupling. To reuse pat-
tern realizations with import coupling, developer must im-
port the pattern realizations or parts of the pattern realiza-
tions to which it is coupled. Changes to classes in pattern
realizations with export coupling are likely to affect cou-
pled pattern realizations with import coupling. In contrast,
modifications to pattern realizations with import coupling
should be less likely to affect the pattern realizations with
export coupling. Because the use dependency connections
are transient and are in effect only while a method is ac-
tive, they represent looser coupling than connections im-
plemented via associations, which persist between method
invocations.

Fig. 2 shows an example of transient (use dependency)
coupling between realizations of the Singleton pattern and
the Strategy pattern in System A. In this example, class
SingletonA has a method with an output parameter that is
an object of type Context. Class SingletonA, which im-
plements the Singleton pattern, imports class Context and
ContextA, which play roles in a realization of the Strategy
pattern. A change to class ContextA that either modifies
the signature of the constructors that SingletonA invokes or
adds code that conflicts with the implementation of class
SingletonA, requires that class SingletonA be changed. In
addition, reuse of SingletonA (Singleton pattern) requires
that one import class Context and ContextA (Strategy pat-
tern).

3.2 Persistent Coupling Via Associations

Associations that connect classes in different pattern re-
alizations can be easily identified as associations in a UML
class diagram of the software system. The relationship be-
tween the coupled pattern realizations is persistent — the
connection continues between method activations. The cou-
pling is explicit, and it is fairly easy to separate such coupled
pattern realizations.

Strategy
interface
Context
Singleton ¢
SingletonA

ContextA 7
_ - interface |
| Shrategy

|
ConcreteStrategy

Figure 2. Transient (use dependency) cou-
pling between a Singleton pattern realization
and Strategy pattern realization in System A.

A class in the pattern realization with import coupling
has a reference to a class in the pattern realization with ex-
port coupling. So to reuse pattern realizations with import
coupling, one must import the pattern realizations or some
classes in the pattern realization(s) to which it is coupled.
Modifications in the pattern realizations which have export
coupling are likely to affect the pattern realizations with im-
port coupling. However, modifications in the pattern real-
izations with import coupling are unlikely to affect the pat-
tern realizations with export coupling.

Figure 3 shows an example of association coupling be-
tween realizations of the Factory Method and Strategy pat-
terns from System B. In this example, class ProductA has
an attribute whose type is Context. When ProductA object
initializes an object of type Context, the constructor of Con-
textA will be invoked. In this case, ProductA (in the Fac-
tory Method pattern) imports class Context (in the Strategy
pattern). So if the class Context or ContextA changes some-
thing on which the class ProductA relies, or adds something
that raises a conflict with something in class ProductA,
then class ProductA will need to be changed. Changes in
ProductA will probably make it necessary to modify other
classes in the factory method pattern realization. To reuse
this realization of the Factory Method pattern, we must also
import the strategy pattern realization to which it is coupled.

3.3 Persistent Coupling Via Sharing Common
Objects

A class may play a role in more than one pattern realiza-
tion. When all classes in one pattern realization also play
roles in a second pattern realization, the two pattern real-
izations exhibit embedded coupling. Intersection coupling
occurs when one or more classes in two pattern realizations,
but not all classes in either pattern realization play a role in
the other pattern realization.

Factory method Strategy

[A

.
FroductA ContextA interface
Strategy

|
ConcreteStrategy

interface

CreatorA

Figure 3. Associations between realizations
of the Factory Method and Strategy patterns
in System B.

3.3.1 Embedded Coupling

When there is embedded coupling, one pattern realization,
the parent realization, contains all of the classes in the em-
bedded pattern realization. Modifications in embedded pat-
tern realizations can cause a series of changes in the parent
pattern realization. Changes to classes in one pattern re-
alization are more likely to propagate to the other pattern
realization with embedded coupling than with association
coupling. Implementations in embedded pattern realiza-
tions are shared with the parent pattern realization, while, in
coupling implemented via associations, the only connection
between the pattern realizations is through public interfaces
— implementations are not shared.

Embedded coupling defines a hierarchy; the parent pat-
tern realization contains the embedded pattern realizations.
Thus, the whole structure can be referenced through the par-
ent, it can be treated as a unit and easily reused later. Thus,
we expect that the portion of a design that makes use of em-
bedded coupling will be more reusable than the portion of a
design that uses intersection coupling.

Fig. 4 shows a Factory Method pattern realization with
an embedded Singleton pattern realization from System B.
In this example, the whole structure is realization of a fac-
tory method pattern. Class ConcreteCreator plays a role in
the Factory Method pattern realization and is also an real-
ization of a Singleton pattern — there can only be one in-
stance of ConcreteCreator. Modifications to methods that
create objects of class ProductA in class ConcreteCreator
will likely require, in turn, that new constructors be added
to class ProductA. Changes, except for changes to ProductA
constructor interfaces, are less likely to force modifications
in the class ConcreteCreator.

3.3.2 Intersection Coupling

With intersection coupling, each coupled pattern realization
consists of common classes and independent classes. In-
teractions between the coupled pattern realizations may be

Factory method

interface
Prodiuct

Singleton f
ProductA

ConcreteCreator

Figure 4. Embedded coupling — a Singleton
pattern realization inside a Factory method
pattern realization in System B.

complicated, and the effects of modifications to one pat-
tern realization can ripple through the other pattern realiza-
tion. Fig. 5 and Fig. 6 show two examples of intersection
coupling between design pattern realizations in System B.
There are two design pattern realizations in Fig. 5: realiza-
tions of the Factory Method and Strategy patterns. These
two design realizations share two common classes: Prod-
uct and ProductA. The Factory Method pattern realization
consists of the two common classes and class ConcreteCre-
ator. The strategy pattern realization consists of the two
common classes and two independent classes: Strategy and
ConcreteStrategy. In this example, class ConcreteCreator
has a method which returns a parameter whose type is Pro-
ductA. ProductA also has an attribute whose type is Con-
creteStrategy. To modify the constructor of ProductA, one
may have to change ConcreteCreator, Strategy and Con-
creteStrategy. Modifications in the ConcreteCreator class,
for example, a change in the method that creates an ob-
ject of ProductA, will require changes to the constructors of
class ProductA and ConcreteStrategy. These changes will,
in turn, require changes to ProductA and ConcreteCreator
to keep them consistent.

Factory method

g — Strategy —
interface
Product
Concrete Creator| . Products | | interface
Strategy
|
ConcreteStrategy

Figure 5. Intersection coupling between Fac-
tory Method and Strategy pattern realizations
in System B.

Fig. 6 displays three coupled adapter pattern realizations:
al, a2 and a3. Pattern realization al and a2 share a common
interface — AdapteeC(TargetB); a2 and a3 share a common

interface — TargetA. In this example, adding new methods
to the common interfaces will require adding new imple-
mentations to the adapter classes of both coupled pattern re-
alizations. However, modifications to either of the adapter
classes will be less likely to affect the other pattern real-
ization. The reason is that both adapter classes implement
the common interfaces separately and the modifications to
either of the adapter classes will not affect the interface if
there are only modifications in the body of the methods
rather than the method name and signature.

—a az a3 —
interface interface
AdapteeC{Target) Targetd
£ £ A
f | [f
1 1 1 1
AdapterA AdapterB AdapterC
AdapteeA AdapteeB

Figure 6. Intersection coupling between 3 re-
alizations of the Adaptor pattern in System
B.

3.4 Sharing Common Superclasses

The relationship between pattern realizations coupled by
sharing common superclasses can be complex. Subclasses
in the coupled pattern realizations may implement abstract
methods, inherit the public/protected variables/methods, or
override some of the public/protected methods in the super-
class. The subclasses remain dependent on the implemen-
tation of the superclass, and a change in the superclass can
affect the subclasses. A host of fragile base class problems
can occur when method implementations in a base class are
changed, even without affecting the interface of the super-
class [30].

Clearly, modifications in the superclass will affect both
of the coupled pattern realizations. However, changes in
either of the coupled pattern realizations are unlikely to af-
fect the other realization. Sharing common superclasses be-
tween design pattern realizations seems to represent simple
and weak coupling. There is no direct connections between
the coupled realizations and it will be easy to break apart the
coupled pattern realizations. Changes in one pattern realiza-
tion will not affect the other realization. However, coupling
via global variables reference in the superclasses may effec-

tively hide common coupling from the sublasses, resulting
in implicit common coupling.

Fig 7 shows an example of two realizations of the Fac-
tory Method pattern that are coupled by sharing a com-
mon superclass in System B. In this example, the Cre-
ator classes (CreatorA and CreatorB) and ConcreteProduct
classes (ProductA and ProductB) in both pattern realiza-
tions have the same superclass (ClassA) and none of the
subclasses have methods which override the methods in the
superclass. There are public static methods in ClassA that
access a single object. Class ProductA and ProductB inherit
these static methods and invoke them in the implementa-
tions of some other methods. The single object referenced
by the static methods acts as a global variable.

ClassA

R A~

[[
ProductA ProductB

CreatorA CreatorB

AProduct BProduct

‘ interface | ‘ interface |

Factory method 1 Factory methed 2

Figure 7. Two Factory Method pattern realiza-
tions share a common superclass in System
B.

The real danger of coupling via a common superclass is
that the dependencies between the pattern realizations can-
not be identified by examining the pattern classes in isola-
tion.

3.5 Common Coupling

Common coupling occurs when entities communicate
through shared global structures. Myers describes common
coupling as one of the tightest or worst forms of coupling,
because it is implicit [31]. Entities may be coupled through
common access to shared data, even though there is no di-
rect connection between the coupled entities.

It is difficult to identify common couplings between de-
sign pattern realizations, because the coupling is implicit.
The coupled pattern realizations have ‘write’ or ‘read’ ac-
cess to the same variable. Any operations that write to the
shared data must have the access controlled via synchro-
nization. In addition, any defects or changes in the global
variable will affect all of the pattern realizations that access
the variable. Any changes in the patterns which access the
global variable can affect the global variable, which, in turn,
affects the other pattern realizations. Thus, maintaining a
system with common coupling can be difficult. Fig. 8 shows

an example from System B of common coupling between
realizations of the Factory Method and Singleton (Single-
tonA) patterns through a common class (SingletonB) that
acts as a global data entity. In this example, there is only
one realization of class SingletonB. Both ProductA and Sin-
gletonA use SingletonB to log error messages and warn-
ing messages. Such coupling is hidden and can only be
found by checking pattern realizations. In this example of
common coupling, if class SingletonB changes something
in methods or fields that ProductA and SingletonA use to
log messages, then class SingletonA and ProductA must be
changed. In this example, both realizations have ‘write’
access to the global object and the calling order does not
need to be controlled. Thus, there is only weak coupling
between these two pattern realizations. Coupling is strong
when two design pattern realizations communicate through
a global variable and both realizations ‘read’ and ‘write’ to
the global variable. A change to a global variable or one of
the coupled classes can ripple through to all of the pattern
realizations or classes that access the variable, increasing
the maintenance effort.

Factory method ————
interface
Product
i) — Singleton 2
| — Singleton1
Creator Producta SingletonB <‘l> Singleton&

Figure 8. Common coupling between a real-
ization of the Factory Method pattern and a
Singleton pattern in System B.

4 Pilot Study: Observing Pattern Coupling
and Changes

McNatt and Bieman found numerous examples of cou-
pled pattern realizations in a set of 16 papers from the re-
search literature [28]. Examples described in the papers in-
clude 99 realizations of patterns from Gamma et al [16]; 64
of the pattern realizations are coupled to other pattern real-
izations forming 25 connected pattern realization groups.

This prior work does not indicate the relative likelyhood
of pattern coupling, since McNatt and Bieman included
only examples that exhibit pattern coupling. Also, the sys-
tems studied are only partial systems. Thus, they did not
determine the full extent of pattern coupling, the reasons
for coupling, and consequences of pattern coupling.

Observations of multiple versions of full systems are re-
quired to identify overall occurrences of pattern coupling

and to examine the relationship of various pattern coupling
mechanisms to change-proneness.

We examine five systems to identify and classify cou-
pled patterns, determine the reasons for the coupling, and
evaluate the potential of both positive and negative conse-
quences. Table 1 provides high-level information about the
systems that we studied. For each system, we examined the
design structure in detail of a base system — an early ver-
sion of the system. We extracted the object models of an
early versions of each system using the Together tool from
TogetherSoft. We identified design pattern realizations and
coupled pattern realizations by analyzing the object models.
Then we examined changes as the system evolved through
several later versions. The systems are implemented in Java
and are briefly described as follows:

e System A. System A is a proprietary system that is an
early development in Java by a commercial organiza-
tion. We examined 17 versions of System A.

e System B. System B is a more mature Java develop-
ment project from the organization that developed Sys-
tem A. We examined 17 versions of System B.

o JRefactory. JRefactory is an open source system de-
signed to refactor or restructure Java programs. It was
developed and maintained by the Open Source com-
munity and is available through SourceForge.net. Ver-
sion 2.6.38 of the system contains 699 classes and
more than 47,000 lines of program code. We used
JRefactory release 2.6.24 as the base version and stud-
ied the changes through version 2.6.27,2.6.30, 2.6.31,
2.6.32, 2.6.34, 2.6.35, and 2.6.38, which were all the
publicly released versions available at the time of the
study.

e DrJava. DrJava is an open source software devel-
opment environment for Java designed to foster
test-driven software development. It was developed
and maintained by the Open Source community and
is available through SourceForge.net. Stable version
20030822 contains 564 classes with more than 49,000
lines of program code. We used DrJava version drjava-
stable-20020703 as the base version and studied the
changes through releases drjava-stable-20020814,
drjava-stable-20021127, drjava-stable-20030113,
drjava-stable-20030203, drjava-stable-20030313,
drjava-stable-20030724, and drjava-stable-20030822.

We identified the pattern realizations, and pattern cou-
pling, in base versions of all of the systems, and we con-
ducted a detailed study of program changes in all of the
systems. we have only one version of the Java implemen-
tation. Note that we changed the system names and class
names for the proprietary systems (System A and System
B) in this paper.

Table 1. System Level Measurements.

System Version Num. of Classes | Lines of Code
Commercial Java 2 384 ~23,000
System A 18 404 ~23,000
Commercial Java 2 101 ~7,500
System B 18 201 ~17,000
JRefactory 2.6.24 546 ~43,000
2.6.38 699 ~47,000
DrJavax 20020703 311 ~25,000
20030822 564 ~49,000
OpenEJB 0.8 95231 861
0.9.2 61489 841

*Only stable versions of DrJava are included.

Although it is possible to use automated methods to find
some design pattern realizations [2, 20, 22], a manual ap-
proach can also effectively find pattern realizations [33]. In
this research, we are looking for intentional patterns, pat-
tern realizations that developers use in a deliberate, pur-
poseful manner. These pattern realizations should be doc-
umented, and they should have a effect on the number of
changes, since adaptability is the primary reason for us-
ing patterns — the indirection inherent in design patterns
should reduce the number of changes to existing classes.
Changes should be limited to adding new subclasses or
other new classes that were not part of the original pattern
realization. Because we seek to find only intentional pat-
terns, we apply the following manual approach for pattern
recognition with the following steps [4, 5]:

1. Search for pattern names in the documentation of the
system. Developers are likely to document the pattern
functionality/role of the class or method so that a pat-
tern realization can be treated as a pattern realization
during later development or maintenance.

2. Identify the context of the classes identified in step
1 by analyzing the object models. Once we find the
classes whose documentation specifies something re-
lating to a pattern name/role, we can look at the object
models to identify all the classes required to constitute
a pattern. We look for the links between classes that
implement the pattern.

3. Verify that the candidate pattern realization is really a
pattern realization. We examine the pattern realization
to look for lower level details, for example, required
delegation constructs.

4. Verify the purpose of the pattern realization. We ex-
amine each group of classes that represent a pattern
candidate to confirm that the classes and relations have
the same purpose as described by an authoritative pat-
tern reference. We use the Gamma et al. [16] and

Table 2. Patterns Identified in the Base Ver-
sion of each System. The patterns are from
Gamma et al. [16] and Grand [17].

Pattern Number of Realizations
A | B | JRefactory | DrJava | OpenEJB
Adaptor 1 16 3
Builder 1 2 1
Factory 1|4 15
Method
Filter 2 4
Iterator 1
Singleton 1 {3 1 1
State 2 3 1
Strategy 1|1 1 1
Visitor 2 3
Model
View 2
Controller
Master Slave 1
Interpreter
Command 1

Grand [17] books as the authoritative references for
this study.

Table 2 lists the patterns identified in each system and
number of realizations of each pattern; In System A, 49
classes out of a total of 384 classes played roles in six pat-
tern realizations of five design patterns — Adapter, Factory
Method, Singleton, State, and Strategy patterns. In Sys-
tem B, 38 of the 102 classes played roles in nine pattern
realizations of four pattern — Builder, Factory Method,
Singleton, and Strategy patterns. We found 176 pattern
classes in JRefactory out of a total of 699 classes that played
roles in 26 pattern realizations of six patterns — Adapter,
Builder, Filter, Singleton, State, and Visitor patterns. Dr-
Java contains at least 19 pattern realizations of ten patterns
— Adapter, Builder, Filter, Iterator, State, Strategy, Visitor,
Model View Controller, Master Slave, and Interpreter.

Coupled pattern realizations are common in these sys-
tems. Table 3 shows the number of coupling occurrences
in each category; each coupling involves two pattern real-
izations. We found four coupled pattern realizations among
the six pattern realizations in System A. The pattern real-
izations in System B are extensively coupled — we found
52 couplings among only ten pattern realizations. Most of
these couplings are due to shared common superclasses.
The largest system, JRefactory has 26 pattern realizations
and 82 pattern realization couplings.

Our empirical study focuses on the relationship between
adaptability and pattern coupling. The notion of adapt-
ability is difficult to define unambiguously and objectively.

Table 3. Pattern coupling occurrences in sys-
tems.

Coupling Mechanism A | B | JRefactory | DrJava
Use Dependencies 316 12 4
Associations 2 16 2
Sharing common | Embedded | 1 | S 1
classes Intersection 2 53 5
Sharing common superclasses 35 7
Common coupling 12

Rather than measure adaptability directly, we use class
change-proneness as a surrogate measure. To measure
change-proneness, we examine the number of changes to
program entities, primarily classes, over multiple versions
of an evolving system.

4.1 Hypotheses.

We define our empirical hypotheses as follows:
H1¢ (Null Hypothesis 1): Pattern coupling is rare.

H14 (Alternate Hypothesis 1): Pattern coupling is com-
mon.

H2((Null Hypothesis 2): There is no difference between
the change-proneness of classes in design pattern real-
izations that are coupled to other patterns and pattern
realizations that are not coupled.

H2, (Alternate Hypothesis 2): Classes in design pattern
realizations that are coupled to other pattern realiza-
tions will be more change-prone than those in pattern
realizations that are not coupled.

H3((Null Hypothesis 3): There is no difference between
the change-proneness of classes in design pattern re-
alizations that are coupled via the following mecha-
nisms: use dependency coupling, association, embed-
ded, intersection, sharing common super classes, and
common coupling between design pattern realizations.

H3,4 (Alternate Hypothesis 3): The relative change-
proneness of coupled pattern realizations can be or-
dered in terms of coupling mechanism using the
following ordering from least change-prone to most
change-prone: use dependency coupling, associa-
tion, embedded, intersection, sharing common super
classes, and common coupling between design pattern
realizations.

We evaluate the hypotheses by examining pattern coupling
and change-proneness in four systems — the systems in Ta-
ble 1 using the following process:

1. Find the pattern realizations in a base version of each
system.

2. Find the coupled pattern realizations and identify the
coupling mechanisms in each base version.

3. Identify all changes to each pattern realization, from
the base version of each system through the last ver-
sion in our data.

4.2 Evaluating H1 and H2.

Virtually all of the design pattern realizations are cou-
pled to other pattern realizations. The only exceptions are
in System A and DrJava. In System A, only two of the six
pattern realizations are not coupled. In DrJava, 16 of the 19
pattern realizations are coupled. Clearly, pattern coupling
is common in these systems, providing support for reject-
ing H1p and accepting H14.

Due to the limited number of non-coupled patterns, it is
difficult to evaluate H2. However, in System A, the two un-
coupled pattern realizations had no changes, while the six
coupled pattern realizations were changed as shown in Fig-
ure 9 (a). A Kolmogrov-Smirnov two-sample test shows
that the difference in change-proneness of coupled versus
non-coupled pattern realizations is significant at the 0.0000
level. These results hold if we normalize the indicator of
change-proneness by class size by using changes per oper-
ation rather than the total changes per class. Figure 9 (a)
shows that coupled pattern realizations are more change-
prone than non-coupled pattern realizations in DrJava. A
Mann-Whitney test shows that the difference in change-
proneness of coupled versus non-coupled pattern realiza-
tions is significant at the 0.0367 level. This difference is
less significant (0.0775) if we normalize the indicator of
change-proneness by class size by using changes per op-
eration rather than the total changes per class.

Nonparametric statistical tests are appropriate, because
the data is not normally distributed. Usually, to compare
two samples concerning average value for some variable of
interest, the following tests are appropriate for nonparamet-
ric data: the Wald-Wolfowitz runs test, the Mann-Whitney
U test, and the Kolmogorov-Smirnov two-sample test. To
be consistent with the analyses used in our prior stud-
ies [4,5], we apply the Mann-Whitney when possible. How-
ever, the Mann-Whitney does not work to analyze the differ-
ence in change proneness between pattern and non-pattern
classes in System A, because all changes for non-coupled
pattern classes are identical — the number of changes for
all non-coupled pattern classes is zero. The Kolmogorov-
Smirnov two-sample works for this data.

N
300 —
@ 200 —
()
D
c
©
S N
= 100 —| *
0 s
T T
1 2
Pattern classes (1: coupled pattern classes;
2: non-coupled pattern classes)
(a) System A
400 —
300 —
N
n
[0}
2 200
< _
X o
o
'_ *
100 —| H
o — o

T T
1 2

PatternCoupling (1: coupled pattern classes;
2: non-coupled pattern classes)

(b) DrJava

Figure 9. The number of changes in cou-
pled non-coupled pattern realization classes
in System A and DrJava.

4.3 Evaluating H3

Only System B, JRefactory, and DrJava contain enough
cases of coupled patterns in multiple categories to evaluate
H3. JRefactory includes patterns coupled via associations,
use dependencies and shared classes. Since JRefactory has
only one only case of embedded coupling, we included it
with the 53 cases of intersection coupling in the more gen-
eral category of coupling via shared common classes.

Figure 10 shows the distribution of changes for each cat-
egory of coupled patterns in System B, JRefactory, and Dr-
Java. In all three systems, classes that are coupled via asso-
ciations appear to be more change-prone than those coupled
by other mechanisms. However, a Man-Whitney test shows
that this difference is significant at the 0.05 level only in

JRefactory — a Man-Whitney test gives a significance of
.0000 that we can reject the null hypothesis (H3¢) that the
association coupled pattern classes are not more change-
prone than those coupled via either use dependencies or
shared classes. The distributions for all of the other mech-
anisms in JRefactory appear to be quite similar. In DrJava,
the difference between the number of changes in of associ-
ation coupled pattern classes and (1) use dependency cou-
pled pattern classes is significant at the 0.1093 level, and (2)
coupling via shared common classes are significant at the
0.1738 level. This level of significance (for DrJava) indi-
cates a relationship that is not quite strong enough to reject
H3p. Again, we get similar results when we use changes
per operation as the indicator of change-proneness.

We get somewhat different results by comparing the
number of changes in patterns that are coupled via asso-
ciations against changes in patterns coupled by other mech-
anisms, when the other mechanisms are treated as a sin-
gle category. Figure 11 shows that classes in patterns cou-
pled via associations are more change-prone in System B,
JRefactory, and DrJava. This difference is significant in
JRefactory and DrJava at the 0.000 and 0.0046 level respec-
tively via a Mann-Whitney Test. However, the relationship
is not significant in System B. The results are similar using
changes per operation as the indicator of change-proneness.

Our data, though limited, does not support H3g, but we
cannot convincingly reject this null hypothesis. It does ap-
pear that patterns coupled through associations are more
change-prone than those coupled through other mecha-
nisms. However, the results are not significant in all cases.
Additional data is needed.

4.4 The Ripple Effect and Change-coupling

One indication of the strength of the coupling mecha-
nisms is the ripple effect [36,35] — how changes in one pat-
tern realization cause changes in other pattern realizations.
These entities are change-coupled [3]; they are modified as
elements of one required change. We evaluated changes and
identified the classes that were changed in response to the
each required change in JRefactory and DrJava. Two key
criteria allowed us to group class changes as elements of
one change: matching comments documenting the changes,
and matching check-in time stamps — check-ins witin one
minute of each other. We did not rely on change-logs,
which can be incomplete [12]. Similar data was not avail-
able for System B. Table 4 and Table 5 shows the number
of coupled pattern realization pairs in JRefactory and Dr-
Java respectively that are changed together in response to
one or more change request. Patterns coupled via associa-
tions had the greatest tendency to be changed together —
- 62.5% of these coupled pattern pairs in JRefactory and
both of these pairs in DrJava are change coupled. Patterns

10

coupled through shared classes had the second greatest ten-
dency to be changed together — 46.3% of these coupled
pattern pairs in JRefactory and 42.9% in DrJava are change
coupled. Only DrJava contains pattern realizations coupled
through sharing common superclasses; 42.9% of these cou-
pled patterns are change coupled. None of the pairs that
were coupled via use dependencies were changed together,
and there were no cases of common coupling.

In JRefactory the difference in change-coupling of pat-
tern realizations coupled via associations versus those cou-
pled via sharing common classes is significant via a Mann-
Whitney test at the 0.0204 level. That is, pattern realizations
coupled via associations are more likely to be change cou-
pled than those coupled via common classes.

We do not have enough data on change-coupled pattern
realizations in DrJava to apply statistical tests. However,
the preliminary results suggests that pattern realization pairs
with association couplings are more likely to be change-
coupled than pairs with use dependency couplings. Further
data is needed to confirm this relationship.

4.5 Threats to Validity.

This empirical work is preliminary, and the results are
not conclusive. We assess four types of threats to the valid-
ity of the empirical study: construct validity, content valid-
ity, internal validity and external validity. Construct validity
refers to the meaningfulness of measurements [21,32] — do
the measures actually quantify what we want them to? To
validate the meaningfulness of measurements, we need to
show that the measurements are consistent with an empiri-
cal relation system, which is an intuitive ordering of entities
in terms of the attribute of interest [14,23,29]. A primary
objective is to determine whether or not there is support
for the proposed empirical relation system representing the
strength of pattern coupling types, the independent variable.
The dependent variable in this study, a count of changes,
and change coupling, is an intuitive measure of an aspect
of maintenance effort. However, not all changes are equal,
but a large number of changes over a many versions should
minimize the impact of change effort variability. Further
study can determine the distribution of effort per changes;
actual change effort data was not available for this study.

Content validity refers to the “representativeness or sam-
pling adequacy of the content ... of a measuring instru-
ment” [21]. The content validity of this research depends
on whether the set of mechanisms of pattern coupling and
maintainability adequately cover the notion of design qual-
ity and maintainability respectively. As the notion of pat-
tern coupling is relatively new, we risk missing important
coupling mechanisms. The count of changes and change
coupling quantifies only two aspects of maintenance effort
in our empirical study.

Table 4. Coupling mechanisms and the number of pairs of coupled pattern realizations that are
changed together in JRefactory.

Coupling Mechanism Number of coupled Number of coupled Ratio
pattern realization pairs | pattern realization pairs that
are changed together
Use Dependencies 12 0 0
Associations 16 10 .625
Sharing common | Embedded 1
classes Intersection 53 25 463
Sharing common superclasses 0
Common coupling 0

Table 5. Coupling mechanisms and the number of pairs of coupled patterns that are changed together
in DrJava.

Coupling Mechanism Number of coupled Number of coupled Ratio
pattern realization pairs | pattern realization pairs that
are changed together

Use Dependencies 4 2 5
Associations 2 2 1.0
Sharing common | Embedded 0
classes Intersection 5 4 .8
Sharing common superclasses 7 3 429
Common coupling 0

11

Internal validity focuses on cause and effect relation-
ships. The notion of one thing leading to another is ap-
plicable here and causality is critical to internal validity.
The statistical results are not consistent. Classes that are
association-coupled are more change-prone than those cou-
pled by other means in all cases. However, this result is
significant (at the .05 level) in only three of the six cases.
Even if the results were significant, they do not demonstrate
causality, on their own. To show causality, we need to show
temporal precedence — evidence that cause precedes effect,
and demonstrate a theory that defines a mechanism for the
relationships [11, 34]. In our study, pattern coupling data
were collected from software versions created before the
change activity, and we provide causal explanations for the
effect of pattern coupling on changes, which were expressed
as hypothesis. The results were strong enough to allow us to
reject the null hypothesis for H1 and H2. Results supported
hypothesis H3, but they were not strong enough to reject the
null hypothesis for H3.

External validity refers to how well the study results can
be generalized beyond the study data. The data used to eval-
uate H1 is based on five systems, the data used to evaluate
H2 is based on one system, and H3 is evaluated using data
from three systems. These systems are all implemented in
Java and include two proprietary systems, one student im-
plementation, and two open source systems. They repre-
sent a variety of systems. However, we do not have a good
enough characterization of the universe of object-oriented
systems to make a claim concerning external validity. Prior
work by Bieman et al. demonstrates that that the design
characteristics and change-proneness can vary greatly be-
tween systems [5].

5 Conclusions

The use of design patterns as design constructs leads
to concerns about coupling between design pattern real-
izations and the strength of such couplings. Our study of
six systems indicates that realizations of design patterns are
commonly coupled with other design pattern realizations.
Most of the pattern realizations in these systems are cou-
pled with other pattern realizations. We have identified a set
of coupling mechanisms and proposed an ordering of these
mechanisms in terms of the tightness or coupling strength
implied by the mechanism. An examination of the evolu-
tion of five of the systems indicates that classes in pattern
realizations that are coupled through associations, usually
created via references in instance variables, are among the
most change-prone classes in the systems. Further, evidence
from two open source systems suggests that classes that
play roles in pattern realizations that are coupled via asso-
ciations tend to be change-coupled — these coupled classes
are changed simultaneously. Further research is needed to

12

confirm these results.

Acknowledgements

This material is based on work supported by the U.S. Na-
tional Science Foundation under grant CCR-0098202. Stor-
age Technology Corporation provided software, tools, and
computer resources for this study. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

[1] E Abreu, M. Goul ao, and R. Esteves. Toward the
design quality evaluation of object-oriented software
systems. Proc. Fifth Int. Conf. Software Quality, Oc-
tober 1995.

[2] G. Antoniol, R. Fiutem, and L. Cristoforetti. Using
metrics to identify design patterns in object-oriented
software. Proc. IEEE-CS Software Metrics Symp.

(Metrics’98), 1998.

J. Bieman, A. Andrews, and H. Yang. Understanding
change-proneness in OO software through visualiza-
tion. Proc. Int. Workshop on Program Comprehension
(IWPC 2003), pages 44-53, May 2003.

[4] J. Bieman, D. Jain, and H. Yang. Design patterns,
design structure, and program changes: an industrial
case study. Proc. Int. Conf. on Software Maintenance

(ICSM 2001), pages 580-589, 2001.

[5] J. Bieman, G. Straw, H. Wang, P.W. Munger, and
R. Alexander. Design patterns and change proneness:
An examination of five evolving systems. Proc. Ninth
Int. Software Metrics Symposium (Metrics 2003),

pages 40-49, 2003.

G. Booch. Growing the UML. Software and Systems
Modeling, 1(2):157-160, December 2002.

L. Briand, J. Daly, V. Porter, and J. Wiist. A compre-
hensive empirical validation of design measures for
object-oriented systems. Proc. Int. Software Metrics
Symp. (Metrics’98), pages 246-257, 1998.

L. Briand, J. Daly, and J. Wiist. A unified framework
for coupling measurement in object-oriented systems.
IEEE Trans. Software Engineering, 25(1):91-121,
1999.

[9] L. Briand, P. Devanbu, and W. Melo. An investiga-

tion into coupling measures for C++. Proc. 19th Int.

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Conf. Software Engineering (ICSE’97), pages 412—
421, 1997.

L. Briand, J. Wiist, S. Ikonomovski, and H. Lounis. In-
vestigating quality factors in object-oriented designs:
an industrial case study. Proc. Int. Conf. Software En-
gineering (ICSE’99), pages 345-354, 1999.

D. Campbell and J. Stanley. Experimental and Quasi-
Experimental Designs for Research. Houghton Mifflin
Co., Boston, 1966.

K. Chen, S. Schach, L. Yu, J. Offutt, and G. Heller.
Open-source change logs. Empirical Software Engi-
neering, 9:197-210, 2004.

S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Software En-
gineering, 20(6):476-493, June 1994.

N. Fenton and S.L. Pfleeger. Software Metrics - A Rig-
orous and Practical Approach Second Edition. Int.
Thompson Computer Press, London, 1997.

Robert France, Dae-Kyoo Kim, Sudipto Ghosh, and
Eunjee Song. A UML-based pattern specification
technique. IEEE Transactions on Software Engineer-
ing, 30(3):193-206, March 2004.

E. Gamma, R Helm, Johnson R., and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading MA, 1995.

M. Grand. Patterns in Java: A Catalog of Reusable
Design Patterns Illustrated with UML, 2nd Edition,
Volume 1. John Wiley and Sons, New York, 2002.

R. Harrison, S. Counsell, and R. Nithi. Coupling
metrics for object-oriented design. Proc. Proc. Int.
Symp. Software Metrics (Metrics 1998), pages 150—
157, 1998.

M. Hitz and B. Montazeri. Measuring coupling and
cohesion in object oriented systems. Proc. Int. Symp.
Applied Corporate Computing, 1995.

R. Keller, R. Schauer, S. Robitaille, and P. Pagé.
Pattern-based reverse-engineering of design concepts.
Proc. Int. Conf. on Software Engineering (ICSE’99),
pages 226-235, 1999.

F. Kerlinger. Foundations of Behavioral Research,
Third Edition. Harcourt Brace Jovaonvich College
Publishers, Orlando, Florida, 1986.

C Krédmer and L. Prechelt. Design recovery by auto-
mated search for structural design patterns in object-
oriented software. Proc. Working Conf. on Reverse
Engineering, pages 208-215, 1996.

13

[23]

[24]

[27]

[29]

[30]

[31]

[32]

[33]

D. Krantz, R. Luce, P. Suppes, and A. Tversky. Foun-
dations of Measurement, volume I Additive and Poly-
nomial Representations. Academic Press, New York,
1971.

Y.S. Lee, B.S. Liang, S.F. Wu, and FJ. Wang. Mea-
suring the coupling and cohesion of an object-oriented
program based on information flow. Proc. Int. Conf.
Software Quality, 1995.

W Li and S. Henry. Object-oriented metrics that pre-
dict maintainability. Journal of Systems and Software,
23(2):111-122, 1993.

M. Lindvall, R. Tesoriero Tvedt, and P. Costa. An
empirically-based process for software architecture

evaluation. Empirical Software Engineering, 8:83—
108, 2003.

R. Martin. Oo design quality metrics — an analysis
of dependencies. Proc. Workshop Pragmatic and The-
oretical Directions in Object-Oriented Software Met-
rics, OOPSLA’94, October 1994.

W. McNatt and J. Bieman. Coupling of design pat-
terns: Common practices and their benefits. Proc.
COMPSAC 2001, pages 574-579, 2001.

J. Michell. An Introduction to the Logic of Psycho-
logical Measurement. Lawrence Erlbaum Associates,
Inc., Hillsdale, New Jersey, 1990.

Leonid Mikhajlovl and Emil Sekerinski. A study of
the fragile base class problem. Proc. European Conf.
Object-Oriented Programming (ECOOP’98), 1998.

G.J. Myers. Composite/Structural Design. Van Nos-
trand Reinhold, New York, 1978.

J. Nunnally. Psychometric Theory, Second Edition.
McGraw-Hill, New York, 1978.

F. Shull, W. Melo, and V. Basili. An inductive method
for discovering design patterns from object-oriented
software systems. Technical Report UMCP-CSD CS-
TR-3597 or UMIACS-TR-96-10, University of Mary-
land, Computer Science Dept., 1996.

L. Votta and A. Porter. Experimental software engi-
neering: A report on the state of the art. Proc. 17th
Int. Conf. Software Engineering (ICSE’95), 1995.

S.S. Yau and J.S. Collofello. Some stability measures
for software maintenance. IEEE Trans. Software En-
gineering, SE-6(6):545-552, November 1980.

S.S. Yau, J.S. Collofello, and T. MacGregor. Ripple
effect analysis of software maintenance. Proc. COMP-
SAC 78, pages 60—65, 1978.

500

400

300

200

Tchanges

100

1

L04dbd

PatternCoupling (1: use dependency; 2: association; 3: embedded coupling;
4: intersection; 5: sharing common super classes; 6: common coupling)

Tchanges

400

300

200

Tchanges

100

=
o
(=] o
= - }»%wﬁ ¥ o * ¥
wH»$wm o * *

(a) System B

PatternCoupling (1: use dependency; 2: association;
3: sharing common classes)

(b) JRefactory

*

k4

o O -
1
12

T T
3 4

PatternCoupling (1: use dependency; 2: association; 3:
sharing common classes; 4: sharing common super classes)

(c) DrJava

Figure 10. Number of changes for coupling
mechanisms in System B, JRefactory, and Dr-

Java.

14

*
500 —
400 —
300 —
8
2 200 :
£
@]
-
100 —
0 as]
T T
1 2
Pattern couplings (1: coupled pattern clases, no association
coupling; 2: coupled pattern classes, association coupling)
(a) System B
*
100 — "
*
8
2 50 | b
8 *
2 H
¥
' |
0 $
T T
1 2
Pattern coupling (1: coupled pattern classes, no association
coupling; 2: coupled pattern classes, association coupling)
(b) JRefactory
400 —
300 —|
@ *
)
2
& 200 —
i
O
'_ *
100 — *
! E
0 e
T T
1 2

PatternCoupling (1: non-association coupling;
2: association coupling)

(c) DrlJava

Figure 11. Number of changes in pattern re-
alizations coupled via associations and other
coupling mechanisms in System B, JRefac-
tory, and DrJava.

