
3-D Visualization of Software Structure

Mathew L. Staples

Millivision, L.L.C.

29 Industrial Drive East

Northampton, MA 01060 USA

James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523 USA

August 1998

Abstract

A common and frustrating problem in software engineering is the introduction of new

faults as a side-e�ect of software maintenance. An understanding of all of the relationships

that exist between modi�ed software and the rest of a system can limit the introduction of

new faults. For large systems, these relationships can be numerous and subtle. The rela-

tionships can be especially complex in object-oriented systems that include inheritance and

dynamic binding. Software visualization can potentially ease both impact analysis and gen-

eral program understanding. Software visualization can facilitate program understanding by

graphically displaying important software features. However, despite recent success in devel-

oping useful and intuitive graphical representations for certain aspects of software, current

software visualization systems are limited by their lack of scalability | the ability to visualize

both small and large-scale software entities. This paper demonstrates that three-dimensional

(3-D) graphics and a hierarchy of overlapping views can increase the scalability of software

visualization. The hierarchy provides detailed information without sacri�cing the \big pic-

ture". Overlapping is used to provide context between high and low-level views. A prototype

system, Change Impact Viewer (CIV), tests these visualization mechanisms. CIV highlights

areas of a system that can potentially be a�ected by a change to a selected function. The

mechanisms, as implemented in CIV, show improvements in scalability over those provided by

other systems, without decreasing usefulness or intuitiveness.

To Appear in Advances in Computers, Volume 49, Edited by M. Zelkowitz,

Academic Press, London, 1999.

1

Contents

1 Introduction 3

2 Software Visualization 4

2.1 Software Understanding . 4
2.2 Software Visualization Criteria . 5
2.3 Existing Visualization Tools . 6
2.4 The Need for Scalability . 11

3 Impact Analysis 11

3.1 Tool Support for Impact Analysis . 12
3.2 Program Slicing . 13
3.3 Dependence Analysis . 13
3.4 Approximation in Impact Analysis . 14
3.5 The \Ripple" E�ect . 15

4 Scalability of Software Visualization 16

4.1 Information Overload . 16
4.2 User Interface Issues . 16
4.3 Multi-resolution Visualization . 17
4.4 3-D Viewing . 18

5 Change Impact Viewer (CIV) 20

5.1 Static Analysis . 20
5.2 Visualization Features . 20
5.3 Impact Analysis Features . 24

6 Evaluation of Results 30

6.1 Overall Evaluation . 30
6.2 Comparison with Other Systems . 33
6.3 Impact Analysis in CIV . 34

7 Conclusions and Future Work 39

2

1 Introduction

Throughout a software product's life cycle, many di�erent people are responsible for understanding
the design details of the software code. New engineers face the di�cult task of \coming up to
speed" on the code before they can do any useful work. Learning the structure of new code is
especially costly during the software maintenance phase, since maintenance programmers are often
not involved in the original design and implementation. Design documents can help maintenance
programmers understand the code, but after several maintenance cycles documents are often out
of date and incomplete.

Software visualization (SV) is one tool to aid program understanding. In the broadest sense,
SV is simply the creation of a graphical model of a software system (or some aspect of a software
system). While SV can be done manually by drawing diagrams such as
ow-charts, the term
\software visualization" usually implies automatic analysis of software followed by automatic
creation of a graphical model. With any type of SV, however, the common goal is to facilitate
understanding of some aspect of the software.

Several SV systems have been implemented that provide useful and intuitive visualizations of
certain aspects of software. A major problem that is common to these systems is a lack of support
for scalability. Scalability, with respect to SV, is the ability to visualize both large and small-scale
software systems. The usefulness of most current SV systems tends to decrease as the size of the
visualized software increases. This paper presents a method for increasing the scalability of SV
through the use of 3-D graphics and a hierarchy of overlapping views.

One of our hypotheses is that scalability of software visualization systems can be increased
by applying the techniques that are used in cartography to display detailed information about
large geographical areas. By using a hierarchy of views, a world atlas can contain views ranging
in scale from the whole world down to individual cities and towns. Furthermore, each level of the
hierarchy provides a di�erent level of detail; the amount of detail shown in each view is inversely
proportional to the scope of the view. Similarly, a software visualization tool that contains a
hierarchy of views with multiple levels of resolution should be more scalable than a system that
uses only one level of resolution. Also, as in cartography, overlap between views can be used to
provide context between di�erent views of the system.

Another hypothesis is that the use of three-dimensional (3-D) graphics to display these hier-
archical views will further increase scalability. By displaying views in 3-D, a simulated volume
is created that provides more virtual space than is available in a 2-D display. Therefore, a 3-D
view should appear less cluttered than a 2-D view that contains the same amount of information.
Likewise, a 3-D view should be able to show more information than a 2-D view without increasing
the amount of clutter.

In order to test these hypotheses, we developed a prototype software visualization system
that can graphically display useful software maintenance information. In particular, the system
is designed to aid in visualizing change impact. Impact analysis (IA) (also referred to as change
impact analysis) is the process of determining the potential e�ects of a software code change [17].
The prototype system, the Change Impact Viewer (CIV), can graphically display a range of
impact analysis results using overlapping hierarchies of 3-D views.

Section 2 provides some background on software visualization. Criteria are given for evaluation
of SV systems and several existing systems are discussed with respect to these criteria. One of
these criteria, scalability, is shown to be a common problem in existing systems. Section 3
describes principles of software impact analysis which are used to design the prototype CIV tool.
Section 4 discusses in detail the problem of scalability in SV systems and describes the solution
we used to design CIV. Section 5 describes the features of CIV and explains how they solve the

3

problems described in Section 4. Section 6 comparing CIV with other existing systems. Finally,
Section 7 provides some conclusions and gives direction for further research.

2 Software Visualization

Software visualization (SV) is de�ned by Price, et al., [16] as \the use of the crafts of typogra-
phy, graphics design, animation, and cinematography with modern human-computer interaction
technology to facilitate both the human understanding and e�ective use of computer software".
This de�nition includes both algorithm visualization and program visualization. In an algorithm

visualization, a process is shown graphically, usually as an animation. This type of SV requires
dynamic information such as can be attained from a run-time debugging program. For the pur-
poses of this paper, SV is taken to mean program visualization, or static software visualization,
unless otherwise stated. This type of SV requires only static information, such as can be attained
with the front end of a compiler, and generally results in static views of the software system.

Additionally, we de�ne the following terms with respect to SV: \software system" refers to
the software to be visualized; \programmer" refers to the writer(s) of the software that is to be
visualized; \SV system" refers to the software that performs the visualization; \user" refers to the
person creating the visualization through the SV system1; and \information overload" describes
the situation in which a visualization shows more information in one view than a user can easily
understand.

2.1 Software Understanding

SV should not be confused with the study of program understanding, although they are closely
related. In SV, visualization is used as a tool to aid in program understanding. The study of pro-
gram understanding, therefore, provides important background for designing useful visualization
tools.

Program understanding or comprehension involves the process by which a programmer learns
about a software system at the code level. For large systems, this can be a di�cult task that
requires a large amount of time. Jerding and Stasko argue that the original developers have
a mental picture or conceptual model of the software that they will transform into software
code [10]. When other programmers read this code, they formulate their own conceptual model.
However, some subtleties and semantic information will generally be overlooked. The lack of
detailed understanding of the software can make it di�cult to make changes to the software
without changing the underlying design. Often, after many cycles of maintenance, the original
design of a software system becomes badly obscured. Making changes that do not �t naturally
into the original design can make further changes more di�cult and will eventually make the
software unmaintainable [22].

Jerding and Stasko also point out that the problem of program understanding is particularly
di�cult in object-oriented software. The object-oriented paradigm, they say, aids in programming
and design, but also has the side e�ect of making the resulting systems di�cult to understand.
Consider, for example, the task of tracing a function call. Tracing a call in a C program requires
searching for the called function. Programs written in C++, however, may apply dynamic binding.
The speci�c method that gets executed is determined at run time, and could be any of a hierarchy

1In [16] this person is called the visualizer, and the user is de�ned as the person using the resulting visualization

to understand a software system. However, in a fully automated system, such as CIV, the visualizer and the user

are one in the same.

4

of virtual functions. Dynamic binding may have been useful in the design, since it allows objects
of di�erent types to be treated in the same way, but it makes the code reader's job more di�cult.
The reader must try to determine the speci�c abstraction that the virtual function represents in
a variety of situations.

A major goal of program understanding research is to determine the learning process that
programmers use, so that appropriate support tools can be developed. Several models of how
a programmer actually goes about this learning process are discussed by von Mayrhauser and
Vans [23]. Some believe that the program understanding process is best described by a top-down

model [19]. Programmers �rst gain a high level understanding, and then gradually learn the
details. This can be done by making hypotheses about the program, and then testing those
hypotheses by further inspection of the code. Others believe that program understanding is best
described with a bottom-up model [15]. Programmers build a program model by studying the
control
ow. \Beacons" are used to group low-level parts into higher-level parts. Beacons are
\cues that index knowledge" [23], for example, a reference such as \list->next()" is a beacon
for a linked-list. Programmers also build a situation model which maps parts of the code to the
real-world problem domain. Code fragments can be summarized with natural language to help
understand the code at a higher level. For example, the code \tmp = *a; *a = *b; *b = tmp;"
can be described as \swap a and b".

Von Mayrhauser and Vans [23] developed a hybrid model for program comprehension. They
determined experimentally that programmers tend to use multiple models, and switch between
them frequently. Programmers may start out with a top-down, high-level model, formulate hy-
potheses about that model, and then switch to a bottom-up approach to test that hypothesis
about a particular part of the system.

The use of multiple models of program understanding implies that a useful visualization tool
for program understanding would present both high-level abstractions, and low-level detail of the
software system. Additionally, the SV system should support quick context switches between high
and low-level views of parts of the system. Optional static analysis queries would also be helpful
for testing hypotheses about the software.

2.2 Software Visualization Criteria

Computer visualization has been applied in a wide range of �elds. Scientists use computer visu-
alization to help understand everything from the structure of a DNA molecule to the terrain of
Mars. Only recently, however, has computer visualization been used to visualize software systems.
What are some of the reasons for this delay?

A large part of the di�culty in providing intuitive visualizations is the lack of physical structure
in software. The question immediately arises, \What does software look like?" According to
Brooks [11], software has no visualizable structure: \Despite progress in restricting and simplifying
software structures, they remain inherently unvisualizable, and thus do not permit the mind to
use some of its most powerful conceptual tools". Clearly, active researchers in SV take a less
pessimistic view, but creating visualizations that are both useful and intuitive is nevertheless a
di�cult problem.

Another problem common to many SV systems is information overload. A view may seem use-
ful and intuitive for small, simple examples, but may quickly become too cluttered to understand
for larger examples.

We identify key criteria for evaluating SV systems based on the problems causing slow adoption
of existing systems:

5

Usefulness: Does the visualization actually make the programmer's job easier? A useful visual-
ization should provide information that is not readily available by direct inspection of the
source code.

Intuitiveness: Is the visualization easy to understand? The visualization should match the
programmer's intuition about what the software \looks" like.

Scalability: Does the visualization work well for large, real-world systems? The visualization
should not become less useful or intuitive as the size of the visualized system increases.

We also look at the scope of SV systems to identify which aspects of the software an SV attempts
to visualize. Often, an SV system will consist of several views which each show speci�c aspects
of the software. Another concern is whether or not empirical studies support the SV system's
usefulness, intuitiveness, and scalability.

2.3 Existing Visualization Tools

Despite the pessimistic outlook of Brooks, there has been some reported success in visualizing
various aspects of software systems. This section describes some of the more well known systems,
and evaluates them based on the criteria given in Section 2.2.

HP SoftBench Static Analyzer

Hewlett Packard's HP SoftBench [7] is a multi-user system designed to facilitate program devel-
opment by incorporating the major software development tasks (program editing, con�guration
management, etc.) into a single environment. HP SoftBench Static Analyzer [8], which pro-
vides static 2-D views of various software relationships, is an integrated part of HP SoftBench.
Some of the visualization features of the static analyzer include automatic creation of call-graphs,
class-inheritance graphs and �le-inclusion graphs. An example of a small call-graph is shown in
Figure 1.

The SV features of SoftBench are very intuitive. Graphs such as the call-graph are familiar
to most software engineers. The class-inheritance graph is useful since it provides high-level
information that is not immediately obvious from direct inspection of the code. The call-graph is
also useful in that it enables the user to trace function calls more easily than by searching through
the code by hand. This is especially true when the function calls span multiple �les.

The most powerful feature of SoftBench is its query engine, rather than its visualization
abilities. It is primarily a query engine. Queries can be performed on speci�c identi�ers, for
example, \Show me all of the uses of variable y". Results of these queries can then be shown
in textual form and in a separate query graph. This type of analysis can speed up the process
of testing hypotheses about the software. SoftBench's SV features would be more useful if they
were better integrated into this query engine. For example, it would be useful if the user could
select objects in a graph, perform queries based on the selected objects, and then see the results
graphically.

SoftBench's SV capabilities are both useful and intuitive for small systems, but they fail
to work well for large systems. While the underlying query engine is scalable, the visualization
features become less useful as the size of the visualized system increases. This is especially true for
the call-graph. For example, Figure 1 shows only 46 functions. Several other functions are o� the
screen, but can be seen by scrolling the view. For large numbers of functions, the view only shows
a small portion of the entire graph at one time. In many cases, it is impossible to see a calling

6

Figure 1: A call-graph generated by HP SoftBench Static Analyzer

function and the corresponding called function simultaneously. The number of functions can be
reduced by selecting a sub-set of the total number of functions in the program, but the selection
process can be tedious. The other SoftBench graphs are less prone to information overload, since
they show only classes or �les, and there are fewer classes and �les than functions.

Imagix 4D

Imagix 4D, developed by the Imagix Corporation, contains a sophisticated 3-D code browser. This
system is built with Tcl/Tk [14], which is a useful tool for developing X-Windows applications. Tcl
is a script language that, together with the Tk toolkit, enables interesting graphical applications
to be developed at a higher level than with C or C++. This makes it a good tool for rapid
prototyping of SV systems.

Figure 2 shows an initial Imagix 4D view for a small application. This graph shows the
function, main, at the top of the window. Below main are the functions that main calls (laid out
in a grid). Also shown (in the same grid as the called functions) are the data items accessed by
the function. In this way, a call-graph and a def/use graph are incorporated into a single view.

Selecting a function shows the local call-def/use-graph of the function, and the parent (calling
function) of the called function. Selecting a data item shows the data item at the bottom, with
all of the functions that access it in a grid above it. A text viewer provides a hyper-text code
view with point-and-click navigation of the source code (similar to popular web-browser programs
such as Netscape). Objects that can be shown graphically are underlined. Selecting these objects
changes the main graphical view to focus on the new object, in addition to making a hyper-text
\jump" to the referenced location in the source code.

A user can select between �les, classes, or calls for a given view. For example, choosing classes

7

Figure 2: Imagix 4D view of function main.

switches the main view to an inter-class relational view. Like the HP SoftBench Static Analyzer,
Imagix 4D has some static analysis query features. After selecting a class, a set of queries about
that class can be made, such as, \show all super-classes of this class", or \show all sub-classes
of this class". The queryeatures are better integrated into the visualization system than those of
HP's Static Analyzer: objects for queries are selected through the display, rather than by typing
the name of an identi�er in a separate window.

Imagix 4D is a useful tool for code understanding, since it allows quick access between struc-
tures and their relations. However, it lacks a consistent view hierarchy. Many di�erent views of
a particular object are possible depending on how the object was accessed. For example, if two
di�erent functions, A and B, each make a call to a third function, C, and the graph of C is selected
through the graph of A, then the parent in the graph of C will be A. Accessed another way, the
parent of C will be B. Thus, a user can easily get \lost" while navigating through the system.
Imagix 4D is therefore most appropriate for a bottom-up approach to program understanding.

Imagix 4D attempts to solve the scalability problem by decomposing the visualized system
into small, easily visualizable parts. Each view consists of detailed information about a small part
of the system, such as an individual function. In this way, Imagix 4D is capable of visualizing
very large systems. Unfortunately, the \big picture" information is lost. Scalability has been
increased, but at the cost of usefulness. It is unclear that the visualization of a single function
provides more information than the accompanying text display of that function. The user may
choose to ignore the graphical display and use only the text-based code browser.

Nevertheless, Imagix 4D provides an intuitive graphical means of browsing source code. The
tight coupling between the graphical display and the hyper-text code browser increases the intu-
itiveness of the visualization.

8

POLKA and Goofy

Several prototype dynamic visualization systems have been developed using POLKA [21]. POLKA,
or Polka-3D, developed at Georgia Institute of Technology, is an object-oriented system which
allows programmers to develop 2 and 3-D animations without needing to be well-versed in 3-D
graphics techniques. It provides classes for, \1) an entire animation 2) individual views or win-
dows onto the animation 3) the entities which help de�ne a view such as graphical objects and
actions or motions." As such, it is a general-purpose tool that can be used to build many types
of visualizations.

Goofy, designed at the University of Exeter, is a customization of POLKA which provides an
environment for animating object-oriented and procedural features of C++ [6]. Goofy consists of
a language with which an animation designer can de�ne objects, de�ne their movements, change
their attributes, and choreograph events in multiple windows.

Goofy is capable of displaying many types of animations for the same algorithm. For example,
Ford conducted an experiment in which programming students used Goofy to create animations of
their designs [6]. The students developed a wide variety of representations for the same constructs
and algorithms. The results of this experiment were then used to formulate a model for the process
of learning object-oriented programming.

Although Goofy and POLKA are very
exible, they do not provide facilities for static or
dynamic analysis of source code. Thus they are not full-
edge SV systems, but rather tools that
can be used to build SV systems. The user must either create the animations by hand, or develop
an automated system on top of them. For example, another system, cppinfo [5], also developed
at the University of Exeter, uses Goofy to automatically create static and dynamic views of C or
C++ programs. Source code analysis was performed using newyacc.

Other Systems

Twelve software visualization systems are described in [16]. The following provides a brief de-
scription of six selected systems:

1. BALSA shows multiple simultaneous animations of each running program. This was the
�rst program to show multiple algorithms racing on a single display. A later Macintosh
version (BALSA-II) included rudimentary sounds associated with algorithm events.

2. Zeus is the latest version of BALSA. Its primary feature is that it can animate parallel-
programs. Also, the most recent extension uses 3-D views to encode additional information.

3. ANIM, from AT&T Bell Labs, has a simple application programming language for creating
animations. The user must insert statements into \interesting points" in the code.

4. The Incense prototype SV system, created by Myers at Xerox PARC in 1980, was the
�rst SV system to automatically produce graphical displays of program data structures.
In 1988 Myers developed a related production system called Amethyst at Carnegie-Mellon.
to display both static and dynamic representations of data structures for Pascal programs.
Amethyst was later integrated with MacGnome (a Pascal programming environment for
Macintosh computers), which is now known as Pascal Genie. Pascal Genie has been used
to teach data structures and algorithms.

5. The University of Washington Program Illustrator (UWPI) automatically provides visual-
izations for high-level abstract data structures (as opposed to concrete data structures which

9

appear in the implemented code). It contains an \inferencer", which suggests a number of
possible abstractions for each data type found in the code. Each possibility is assigned a
weight based on closeness of �t between the operations performed on that data type (in
the code) and the operations allowed on that abstract data type. The abstraction with the
highest �tness value is then chosen to be displayed. A separate\layout strategist" displays
each abstraction in a manner appropriate to that abstract data type. The rule-base used
by the inferencer is a good example of the potential use of arti�cial intelligence in software
visualization.

6. LogoMedia allows programmers to associate non-speech audio with program events while the
code is being developed. The system uses a Macintosh linked to a MIDI synthesizer. Sound
commands can turn on MIDI instruments, play back samples or adjust the sound's pitch and
volume. Empirical studies suggest that this audio feedback may actually be intuitive and
useful in debugging. Use of audio feedback is described as auralization; creating a mental
picture through audio rather than visual cues.

Many SV prototypes have been developed, but few have made their way to industrial use [16],
perhaps because of a lack of empirical studies demonstrating real bene�ts from these systems.

Dynamic visualizations such as Zeus and ANIM, can help users to understand algorithms,
however, dynamic visualizations tend to be less automated and less interactive than static visual-
izations. They can be e�ective in producing presentations or animated documentation of software,
but they require the creator of the animation to understand the software. This lack of automation
makes many of the current SV systems unsuitable as stand-alone program understanding tools.

Static visualizations lack run-time information. Thus, data structures such as linked-lists are
di�cult to recognize statically. Some reasoning about run-time behavior is necessary for the
programmer to get a full understanding of the software.

These visualization systems exhibit one or two common problems. The visualized information
may be obvious from looking directly at the code, so that programmers will not bother using
the tool. Otherwise, useful information is shown, but the presentation is not easy to interpret.
For example, function views in Imagix 4D show the called functions and the referenced data.
For a single function, the code view contains the same information in addition to control-
ow
information adding context to the calls and references. There is no evidence that the 3-D view
provides a better visualization than the hyper-text code browser. Conversely, HP SoftBench can
show a call-graph for the entire program, but the graph is so large that it is di�cult to interpret.
Because of scalability problems, most existing static SV systems work well for small, toy examples,
but fail to work well for larger scale examples [16, 10, 5].

All of the above systems have attempted to visualize software abstractly. The views created
by these systems look nothing like the source code that they represent. Ball and Eick [2] have
taken a di�erent approach: they have developed techniques for visualizing the code itself. Their
approach begins with a \pretty printed" version of the source code. Color and indentation are
used to highlight various source code features such as function de�nitions and loop constructs.
Then, by scaling this view, the text becomes smaller and smaller until the text itself is no longer
readable. Although the text cannot be read in this view, the highlighted properties can still be
seen. A separate browser window can then be passed over the compressed code view in order to
read the code (this works much like a micro-�che reader).

This type of visualization seems to be both intuitive and very scalable. They have been able
to visualize systems with over a million lines of code. It is also useful in that metrics, such as
the age (time since last modi�cation) of each line of code, can be easily visualized. However,
abstract relationships between high-level entities, such as classes, cannot be easily represented in

10

this way. Abstract graphical representations of software entities have better potential to represent
design-level information. Also there is no obvious reason why these two, fundamentally di�erent,
approaches to SV could not be used together to provide complementary views of large software
systems.

2.4 The Need for Scalability

Software visualization has the potential to reduce software engineering costs by easing program
understanding. In order to realize this potential, SV systems must be designed that are not only
useful and intuitive, but also scalable. The usefulness and intuitiveness of an SV system should
not decrease as the size of the visualized software system increases.

To date, many SV systems have been built, but most have not been widely used in industry.
A major reason for this is their lack of scalability. Techniques for visualizing the code itself,
such as those developed by Ball and Eick, have shown the ability to visualize large systems, but
they also lack the ability to visualize relationships between high-level software entities. Abstract,
relational views of software are desirable, but current systems either fail to work for large systems,
or decompose large systems into small pieces and thereby lose the \big picture" information.

3 Impact Analysis

Our prototype CIV system uses SV techniques to visualize the results of impact analysis.
Impact Analysis (IA) is de�ned by Arnold and Bohner [1] as \the activity of identifying what

to modify to accomplish a change, or of identifying the potential consequences of a change".
Thus, one component of IA is the determination of the syntactic changes necessary to e�ect
a semantic change. The second component of IA is the determination of the semantic e�ects
resulting from a syntactic change. Since semantic information is di�cult to express automatically,
neither component of IA appears to be easily automatable. However, the second component can
be approximated by determining the area of code in which the semantic e�ect could appear. That
is, if an automated system can identify the parts of the system which are de�nitely not a�ected,
then the programmer's job will have been signi�cantly reduced. For the purposes of this paper,
we assume that a desired syntactic change has been speci�ed before any analysis takes place.
A related, but separate issue is the problem of actually specifying the change in an interactive
system.

IA makes use of compiler theory. Many systems use techniques such as dependency analysis
and program slicing to obtain information about change impact. Therefore, before discussing any
speci�c IA techniques, the following common de�nitions from compiler theory, are presented.

De�nition 3.1 A digraph G
def
= hNG; EGi where NG is a nonempty set of nodes and EG is a

(possibly empty) set of directed edges such that EG � fNG � NGg. For all (u; v) 2 EG u is the

source and v is the target.

De�nition 3.2 A walk in a graph G is a �nite, non-null sequence of nodes W
def
= n1; n2; : : : ; nk

such that ni 2 NG for each i in 1 : : : k, and (ni; ni+1) 2 EG for each i in 1 : : : k � 1.

De�nition 3.3 A
owgraph G
def
= hNG; EG; n0i where hNG; EGi is a digraph and n0 2 NG such

that there exists a walk from n0 to all other nodes in NG. n0 is often called the initial node. If m
and n are two nodes in NG, then m dominates n if m is on every walk from n0 to n.

11

De�nition 3.4 A hammock graph G
def
= hNG; EG; n0; nei where both hNG; EG; n0i and hNG; E

�1

G ; nei

are both
owgraphs. E�1G

def
= f(a; b) j (a; b) 2 EGg. If m and n are two nodes in NG, then m

inverse dominates n if m is on every walk from n to ne.

De�nition 3.5 A control-
ow graph (CFG) for a procedure in a program is a hammock graph

in which n0 represents the procedure's entry point, ne represents the procedure's exit point, and

every node m 2 NG inverse dominates n0. Nodes in NG represent program statements. Some

procedures have multiple exit points, however, by creating an additional node, all such procedures

can be represented by a CFG with a single entry and a single exit node.

De�nition 3.6 A call-graph for a program is a hammock graph in which each node in NG rep-

resents a procedure, n0 is the entry procedure (main), and ne is the exit procedure (exit). Edges

in EG represent procedure calls.

De�nition 3.7 A def/use graph DUG
def
= hG;�;D; Ui, where G is a CFG, � is a �nite set of

identi�ers which name the variables referenced in the nodes of G, and D and U are functions

NG ! P(�) where D(n) returns the set of identi�ers modi�ed in node n and U(n) returns the

set of identi�ers used in node n. P represents the power set.

3.1 Tool Support for Impact Analysis

Given a change to a particular function, one possible method of IA is as follows. The programmer
begins by determining the local e�ects of the change. The programmer will then try to determine
if the change could a�ect other areas of the code. In general, the programmer will search through
the code for any indications of a possible undesired side e�ect of the change before committing
to the change. The programmer inspects functions that call the given function or use the same
global or class-member data for potential impact. The inspection also includes functions that
are called by the a�ected function and might execute a di�erent control-
ow path because of the
change. Any functions found to be a�ected by the change must, in turn, initiate another phase
of analysis. In the worst case, the e�ect can \ripple" throughout the entire software system.

Manual IA is a time-consuming process. Thus, tool support can be very helpful. The simplest
type of IA tool support is a keyword search using a text editor, or system utilities such as grep.
After �nding all initially a�ected objects, the programmer may need to expand the search one
key-word at a time. For example, in order to investigate a def/use chain from a modi�ed variable,
the programmer must search for the �rst de�ned variable in the chain, then look at at all uses of
that variable. This process must be repeated until the programmer is convinced that there are
no unwanted side-e�ects. Not only is this process time-consuming, but it can also be error-prone.
Errors can be introduced as side e�ects of a modi�cation. More sophisticated IA tools are needed
to narrow the programmer's search, and increase the accuracy of the resulting analysis.

Clearly, programmers will bene�t from tools that automatically determine the impact of a par-
ticular change on a software system. Unfortunately, such a tool requires program comprehension,
which is a semantic problem similar to natural language comprehension. Complete IA involves
answering fundamental semantic questions about a software system. It is di�cult to determine if
a change to a function changes its de�ned behavior in any way, but it is impossible to determine
if the de�ned behavior is the desired behavior without semantic information. For example, a
bug �x in a function will change the behavior of that function. If a calling function relied on
the previous bug, then it would be negatively impacted by correcting the bug. If, however, the
changed function's desired behavior has not been changed, then the calling function may not be

12

negatively a�ected. Without natural language interpreters that can read and understand design
documents, many important IA questions can only be answered by a human.

While no automated system will be able to fully solve the IA problem, there are subproblems
which can be automated to greatly ease the maintenance programmer's task. The results of
automated IA systems are therefore approximate. Generally, the result of analysis is simply a
subset of the system in which impact could potentially be felt. Conversely, the job of an automated
IA program is to \prune" the parts of the system which are de�nitely not a�ected by a given
change.

3.2 Program Slicing

A program slice is the portion of a program that might a�ect the value of a particular identi�er
at a speci�ed location in a program [24]. The location and identi�er of interest de�ne a slicing

criterion. Program slicing is the process of generating a reduced program that only includes the
source code that a�ects or is a�ected by the slicing criterion.

A tool that can determine the parts of a system that can potentially be a�ected by a change
will help to reduce the complexity of the impact analysis problem. Program Slicing can determine
a subset of a program's text that implements a speci�ed subset of the program's behavior. For
example, the subset of a program's behavior that sets a particular variable's value at a particular
point in the control-
ow graph will generate a program slice consisting of only the code necessary
to produce that behavior. Any parts of the program that the given variable does not depend on
can be deleted. The union of all slices of a program is the original program. Given a speci�c
change, a program slice can be constructed based on the changed lines of code. The manual part
of the impact analysis can then be restricted to this slice.

Program slicing is based on dependence analysis. Dependence analysis is also a primary tool
for impact analysis.

3.3 Dependence Analysis

Most techniques for impact analysis use at least some aspects of dependence analysis, such as
data-
ow, or control-
ow analysis. For example, a change to a given function is likely to a�ect
those functions which are dependent on the given function. What does it mean to say that
one function is dependent on another? Loyall and Mathisen [12] suggest that a procedure A is
dependent on another procedure B if and only if one or more statements in A are dependent on
one or more statements in B.

There are several types of statement-level dependencies, and hence there are several types of
procedure-level dependency. The three main types are data dependence, control dependence and
syntactic dependence. A statement A is data dependent on a statement B if the value of any
variable in A is a�ected by the value of any variable in B. More precisely, A is data dependent
on B if, given a def/use graph DUG = hG;�;D; Ui, there exists a walk from node B to node A
in G and at least one identi�er is in both D(B) and U(A).

A statement A is control dependent on another statement B if the execution of A is dependent
on B. There are two main types of control dependence. Strong control dependence occurs when
the execution of B can determine if A gets executed at all. For example, the statements in the else
branch of an if-then-else statement are strongly control dependent on the conditional if statement.
Weak control dependence occurs when A is strongly control dependent on B and/or the execution
of statement B could inde�nitely suspend the execution of A. For example, statements which
occur after the body of a while loop are weakly control dependent on the conditional of the loop.

13

A statement A is syntactically dependent on another statement B if there is a chain of control
and data dependence from B to A. For example, if statement A is control dependent on statement
B, and B is data dependent on statement C, then A is syntactically dependent on C.

The above de�nitions assume that the corresponding graphs contain both statements A and B.
In the standard de�nition of a CFG, however, a single procedure is assumed. An inter-procedural
CFG is needed to determine statement-level control dependency between two procedures. Sim-
ilarly, an inter-procedural def/use graph is needed to determine data dependence between two
statements in di�erent procedures. Loyall and Mathisen introduce the concepts of inter-procedural
control-
ow and inter-procedural def/use graphs [12].

An inter-procedural CFG is a set of procedural CFG's with added arcs for procedure calls and
returns. It is produced by combining procedural CFG's via the call-graph for the program. Each
procedure has two special nodes in the graph: proci and procf . The call is made to proci, and
the return arc is from procf . An important aspect of this is that the calling context is saved in
order to ensure that the calls return to where they were called from. For example, if two di�erent
procedures make a call to a third procedure, the call and return arcs are ordered such that the
�rst return arc followed corresponds to the last call-arc followed. This correspondence, which
mimics the call frames that would be placed on the stack at run-time, makes it possible to include
recursive procedures in the inter-procedural CFG.

An inter-procedural def/use graph is essentially the same as a procedural def/use graph, except
that the procedural CFG which it contains is replaced by an inter-procedural CFG. Unlike the
dependence analysis done in [24], variable names and variable instances are distinguished by
calling context. This distinction is necessary in order to avoid con
icts between variables that
have the same name, but di�erent scope.

3.4 Approximation in Impact Analysis

The impact of a change can be either automatic or potential [17]. An automatic impact is an
impact that will unconditionally be caused by a given change. Example changes with automatic
impact are changing a procedure's interface, modifying code which changes a procedure's return
value(s), etc. A potential impact is an impact that could possibly be caused by a given change.
For example, a decision point in the control
ow can make it impossible to determine statically if
a particular branch is actually a�ected by a given change.

Since impact analysis attempts to identify the potential, as well as the automatic consequences
of a change, conservative, but safe approximations are often made ([13], [24], [12], [1]). Depen-
dence analysis techniques based on compiler theory lead to the view that an IA system should
err on the side of completeness. That is, an IA system should not exclude any components of the
given software system that can potentially be a�ected by the given change.

Unfortunately, conservative assumptions can lead to an over-estimation of the a�ected area.
The usefulness of an IA system depends on its ability to prune the una�ected areas of the code.
One way to do this is to allow the user to manually prune the impact as the analysis proceeds.
Automated pruning of IA results remains a di�cult problem.

Jackson and Ladd [9] hypothesize that human users are more forgiving than compilers and
can make use of incomplete results. In their words, \. . . we have taken the radical step of trying to
maximize the accuracy of our tool's output by compromising its soundness." Their tool, Semantic

Di�, compares two versions of a program and produces an impact report. By trying to capture
the semantics of a change rather than making conservative assumptions about the syntax of the
change, the system is able to recognize meaning-preserving changes, for example, renaming a
local variable. However, in order to avoid inter-procedural analysis, which they claim is overly

14

time-consuming, the system does make worst-case assumption with respect to procedure calls.

3.5 The \Ripple" E�ect

A common di�culty in making software changes is the \ripple" e�ect [1, 17, 4]. This can occur in
several ways, but the basic idea is that a change in one procedure can require a change in another
procedure which in turn requires changes in other procedures. For example, adding a parameter
to a function will necessarily require a change to all calling functions. If those functions don't
have the information required to pass this extra parameter, they will need to add a parameter to
their interfaces. This type of change can cause a \ripple" of changes throughout the system.

By changing a function's interface, the ripple is initially caused by a syntactic change to the
function's interface. This only causes a required change to the immediate callers of the changed
procedure. Determining if those procedures now need to change their interface is a semantic
question. This means that dependency analysis alone will not be able to determine the extent
of the ripple e�ect. If conservative assumptions are made, then the result of impact analysis will
show the entire call-graph prior to the changed function.

Original Code: Modi�ed Code:

void swap(void *a, void *b)

{

void *tmp;

tmp = *a;

*a = *b;

*b = tmp;

}

ErrCode swap(void *a, void *b)

{

void *tmp;

if (a == NULL || b == NULL)

return InvalidParam;

tmp = *a;

*a = *b;

*b = tmp;

return NoError;

}

Figure 3: A modi�cation causing a potential ripple e�ect.

Consider the modi�cation shown in Figure 3. Error checking is added to the swap function
to make it more robust. This change could a�ect all calling processes, since swap now returns a
value that was not previously returned. Since it is now possible for swap to fail, it is also possible
for the callers of swap to fail. The callers of swap may now need to add return values to their
interfaces. However, this error condition may never occur since the calling functions always pass
in proper values, and it might be decided to ignore the returned value. This is a case in which
the potential impact of the change could ripple throughout the entire system, but might not have
any real a�ect that a programmer would be interested in.

Now we show how the impact of a change can be e�ectively visualized through scalability
improvements.

15

4 Scalability of Software Visualization

Scalability in software visualization can be improved by using multiple levels of resolution and
3-D graphics. Section 4.1 explains the problem of information overload and how it relates to
scalability. Section 4.2 discusses user interface problems that can limit scalability. Section 4.3
introduces the concept of a multi-resolution visualization. This concept forms the basis of the
hierarchical viewing scheme used by CIV. Finally, Section 4.4 discusses how 3-D viewing can be
used to reduce clutter and increase scalability.

4.1 Information Overload

Virtually all SV systems su�er from information overload. A view becoming too complicated or
cluttered to be easily understood is generally the result of poor scalability.

As programs get larger, more data needs to be displayed on computer screens that provide a
�xed and relatively small amount of space. Two classic solutions are (1) scaling the objects to
�t more of them on the screen, and (2) allowing the view to take up more virtual area than the
screen. Both are partial solutions. Scaling causes objects to become too small to be easily read.
Using the second solution, the user must scroll a small view port over a larger virtual view. As
the virtual view becomes large, the user cannot observe the larger picture. An extreme example
is a digitally scanned painting observed using a scrolling window that shows only one pixel at a
time (scaled large enough to see). A user could not recognize the painting simply by scrolling this
window around the image.

A call-graph is a more realistic example. A call-graph of the entire system can be shown
for a system with only a few functions. However, except for very small applications, the num-
ber of functions is prohibitively large to display a complete call-graph of an entire application.
Compressing a large graph into a single view results in a cluttered, di�cult to read diagram.
Alternatively, the graph can be spread out over a large virtual space, which can be viewed by
scrolling. Then call arcs may extend over large parts of the graph, making it di�cult for users
to determine where the arcs begin and end. Although such visualization schemes may work well
on a small scale, they cease to be useful on a large scale. On a small scale, the single view could
provide a \big picture" of an entire system. Unfortunately, as the number of functions increases,
the view shows less and less of the complete system.

Scaling and scrolling are not the only ways to deal with large amounts of information. Consider
scale in a road atlas. A traveler planning a cross-country trip begins with a map of the entire
country. A road map of the entire country does not show every road, but rather it shows only
the major highways. More detail is provided by individual maps of the states, and even more by
looking at county maps, city maps, etc. Similarly, a call-graph that shows all of the functions in a
large system is analogous to an online road map of the entire country showing every neighborhood
street. The information overload in such a view renders the view essentially useless. We propose
a solution analogous to that used in maps. A hierarchy of views is created to allow detail to be
shown without sacri�cing the global, \big picture" information.

4.2 User Interface Issues

To display a subset of a system as a graph, the user must determine the portion of the graph to
include. For a call-graph that displays each function as a node, there are two ways to determine
this set interactively: the user selects each function individually, or begins with all functions and
deletes any functions that are not desired in the graph. Both approaches are supported by HP

16

SoftBench. Either approach can be tedious. Consider again the example of the driver planning
a cross country trip. If the driver has only county maps, he/she must �rst list all of the county
maps needed for the journey. The alternative is for the driver to list all of the county maps that
would not be needed. Both solutions are tedious.

The process can be improved with an SV system that allows the user to select a single function
and then the system generates a call-graph containing all functions which call or are called by the
selected reference function (this is the approach used by Imagix 4D). Still, the user may want to
know more than one level of call information at a time. This method of visualizing one function
at a time provides an isolated view which does not explain how the reference function �ts into
the system as a whole.

Another major problem is that a user who is not familiar with the software may not know what
areas of the software are interesting with respect to the problem at hand. Just as a driver cannot
be expected to know every county on a route from New York to Los Angeles before determining a
higher level route (e.g. a list of states and inter-state highways), a programmer cannot be expected
to list all of the functions of interest before understanding the system at a high level.

4.3 Multi-resolution Visualization

A hierarchical viewing scheme should help solve the information overload problem. The detail
in views can be limited by packaging the system into logical pieces. A hierarchy of views of the
system should minimize the user's e�ort in creating the view and increase the user's understanding
of the system as a whole.

How can a call-graph be broken into logical pieces? Since software is generally designed at a
higher level than that of individual functions, perhaps it should be visualized at a higher level also.
Consider software written in C++. The object-oriented nature of the code provides a natural
hierarchy which should be re
ected in the visualization. Figure 4 shows such a simple hierarchical
viewing scheme for a call-graph. Part (a) shows a call-graph containing all functions in a small
system. Part (b) then shows the same call-graph containing only class-level calling information.

Class1::func1 Class2::func1

Class1::func2

Class2::func3

Class1::func4

Class1::func3

Class3::func3

Class3::func4

Class3::func5

Class2::func2

Class3::func1

Class3:func2

Class1

Class2

Class3

a. Call-graph showing all functions. b. Higher-level call-graph showing
class relationship.

Figure 4: Using modularity to simplify a call-graph.

For a set of hierarchical views to be useful, each view must make intuitive sense. Does a view
using classes as nodes (as in Figure 4(b)) make more intuitive sense than a view using functions
as nodes (as in Figure 4(a))? The basic idea behind object-oriented design is to view classes as
independent entities which communicate through message passing. In practice, message passing

17

is implemented via function calls. A call arc from a class, A, to another class, B, would literally
mean that some method in A makes a function call to some method in B. The higher-level object-
oriented view is that class A sends a message to class B. So, the class-level view (Figure 4(b))
better matches the client/server object-oriented model than the call-graph that displayed each
function as a node (Figure 4(a)).

Using the nodes to represent classes rather than functions makes the user's job of selecting an
initial set of nodes easier. In the previous example the user had to select a set of functions. With
a class-level call-graph, the user still needs to select a set of nodes (which now represent classes),
but the number of choices has decreased signi�cantly.

While the class model aids the understanding the system at a high level, the user still needs
to understand implementation details in order to perform actual maintenance on the system. The
class-level call-graph does not show the function-level detail. The user needs a mechanism to
move from a high-level initial view to a lower-level view without displaying all of the functions in
the system.

Consider again the road atlas analogy. A map of the entire United States will not show city-
level detail, but rather, separate views of the details of the cities are available. Because it is
often di�cult to determine how a separate, detailed view �ts into a large scale view, some maps
show in-place intermediate blow-up views. These views help determine how the roads entering
and leaving the city match up with separate detailed views. Intermediate views for software
call-graphs can be created by expanding classes of interest to show their internal functions (see
Figure 5(a)). Function-level detail can be shown by creating a separate view of the internal
methods of a class, or as is shown in Figure 5(a), by expanding the class in place. The �rst type
of class-expansion is useful for showing the intra-class calling relationships, while the second is
useful for showing inter-class calling relationships at the individual function level. By allowing
multiple levels of resolution to be shown simultaneously, detail can be ignored throughout large
parts of the system, and can be included where detail is desired.

4.4 3-D Viewing

Expanding classes in place can cause information overload when several classes are expanded in
the same view, The viewing area (\real estate") in a single two dimensional display is limited.
Any given pair of classes may contain enough methods to �ll up the entire view.

Three-dimensional graphics techniques help solve this problem. In the physical world, when
real estate is limited, high-rise buildings are built. Similarly, the third dimension can be used to
show internal details of classes, as shown in Figure 5(b), without using up additional space in
the 2-D plane. Furthermore, the original, high-level view's layout does not have to be redone to
account for each detailed view which be shown.

Clearly, since the 3-D view must be shown on a 2-D screen, the amount of clutter in the view
has not really decreased. However, a 3-D view can be rotated interactively, so that the user can
see the same view from many di�erent angles. Since the view is contained in a simulated volume,
rather than a
at plane, there is conceptually more room in which to show the same amount of
information.

The expanded classes in Figure 5(b) no longer show the intra-class call relations; they show
the inter-class call relations. Information has been lost in the translation from part (a) to part
(b) of Figure 5, but, a separate intra-class view can be provided. Furthermore, as long as intra-
class information is available, it should not be displayed in the high-level inter-class view. The
low-level intra-class information would distract from the displayed high-level relationships and
further clutter the image. Similarly, in a road atlas, multiple blow-ups of major cities are usually

18

Class2::func3

Class2::func1 Class2::func2

Class3

Class1::func4Class1::func3

Class1::func2Class1::func1

Class2:

Class1:

a. In-plane class expansion.

Class2::func1

Class2::func2

Class2::func3

Class1::func2

Class1::func3

Class1::func4

Class1::func1

Class3

Class2

Class1

X

Z

Y

b. Class expansion along a third axis.

Figure 5: High level call-graph with two classes expanded to show internal detail.

available. A blow-up which shows the major routes into and out of the city may be shown in the
corner of the state map, while a highly detailed map of the inner city would probably be on a
separate page.

Multiple levels of resolution and 3-D graphics are implemented in our prototype CIV system.

19

5 Change Impact Viewer (CIV)

The prototype CIV implements solutions to the scalability problems described in Section 4. We
provide an overview here; more detailed information can be found in [20]. CIV builds hierarchies
of 3-D views in which objects (classes, �les, functions, or variables) are related through calls and
data-
ow. These relationships are shown as arcs between objects on the screen. The user can
make change impact queries, such as, \What is the impact of changing the implementation of
some speci�c function?" The system then shows the resulting impact by highlighting the arcs
and nodes that might be a�ected by the change.

CIV is an X-Windows/Motif application for analyzing C++ and C programs; it will run on any
HP700 workstation. Graphics rendering for CIV is performed by SPHIGS (Simple Programmer's
Hierarchical Graphics Standard [18]).

5.1 Static Analysis

Both the impact analysis and the general visualization features of CIV make use of a static analysis
sub-system, using a static analysis class library provided by Hewlett Packard. Static analysis is
performed on a static database �le. This �le is produced with the SoftBench C++ compiler when
given the proper command-line
ag. Queries, such as �nding all calls to a given function, are
performed as read-only transactions on the database through the static analysis classes.

5.2 Visualization Features

CIV consists of two primary views which show inter-class and inter-�le relations, respectively.
From either of these views, a sub-view can be shown which shows the internal details of a speci�c
class or �le. Each of the four views can show a call-graph and/or a def/use-graph. The inter-
class view also contains a graph of the inheritance relationships between classes. Color is used to
distinguish between graphs | arcs in the call-graph are green and arcs in the def/use graph are
orange.

All views are displayed in 3-D, and can be viewed from arbitrary angles by moving the view
point and orientation via the mouse. In both primary views, classes or �les are laid out on the
X-Z plane. Classes or �les can then be expanded along the Y-axis. (This looks like the example
shown in Figure 5(b).) In this way, di�erent parts of a project can be displayed with di�erent
levels of resolution.

The basic layout of the primary 3-D views was inspired by previous work by Litau Wu [25].
A prototype system that he developed for a class project used 3-D graphics in a similar way. The
class hierarchy was laid out on the X-Y plane, and member functions were shown along the Z-axis.
This was used to visualize function reuse through inheritance. A major di�erence between his
project and CIV, is the use of user interaction to dynamically expand or contract parts of a class
along the third axis.

Call and def/use graphs in CIV are updated whenever the resolution is changed. For example,
a call arc exists between two classes if some method in one class calls some method in the other
class. One or both of these classes can then be expanded to determine which methods are actually
involved in the call.

The next two sections describe each of the primary views and their sub-views in more detail.
They also provide several screen \snap-shots" of various views. Each view is a visualization of
the same test system (an early prototype version of CIV).

20

Class Views

Inter-Class Relational View The inter-class view displayed in Figure 6 shows various rela-
tionships which exist between classes. Inheritance is shown as blue arcs (when displayed in color)
between class nodes. The source of an inheritance arc is the derived class and the destination is
the base class (this corresponds to the \is-a" relation, which exists between a sub-class and its
base-class(s)).

Figure 6: Inter-class relation default view. Blue arcs (when displayed in color) represent class
inheritance (the \is-a" relationship). The source class is derived from the destination class.

A call or def/use arc entering or leaving a class indicates that the source or destination of
that arc is a member of the class. For example, a call-arc between two classes indicates that
some method in one class calls some method in the other class. Examples of a call and a def/use
graph are shown in Figures 7 and Figure 8. Both the call and def/use graphs can also be shown
simultaneously, but such a simultaneous display can create a somewhat cluttered view.

Figure 7: Inter-class view with call-graph shown.

As mentioned above, the internal parts of a class can be expanded along the Y-axis. Any or
all of the following parts of a class can be shown: public data; public methods; protected data;
protected methods; private data; and private methods. The given order of these options re
ects
the precedence in which they are displayed. Those listed �rst will be shown on top of the ones
listed later (i.e. higher on the Y-axis). This order is maintained so that if, for example, the public
data of a class is shown �rst, and then later the protected data is shown, then the public data
would be moved up, and the protected data would be inserted underneath. The order is preserved
in order to maintain a consistent interface.

21

Figure 8: Inter-class view with def/use graph shown.

Figures 9, 10 and 11 show how various parts of classes can be expanded to determine how
classes interact at the function level. Call-arcs in these examples are updated as classes are
expanded. For example, Figure 7 shows a call-arc from the GRAPH class node to the GRAPHICAL

class node. This means that one or more methods in GRAPH call one or more methods in GRAPHICAL.
After expanding the public methods of GRAPHICAL, as shown in Figure 9, it becomes clear that
GRAPH actually makes calls to four di�erent constructors of the GRAPHICAL class. If any call-arc
still terminates at the class node after the public methods have been expanded, then there are
class methods (protected or private) that are still not shown.

Intra-Class Relational View The intra-class relational views displayed in Figures 12 and 13
show internal relationships between the methods and data of a class. Method and data nodes are
laid out in circles parallel to the X-Z axis. Each circle represents a speci�c part of the class, such
as private data or public methods. The circles are separated along the Y-axis such that public
methods are on top, followed by public data, protected methods, protected data, private methods
and �nally private data on the bottom.

File Views

Inter-File Relational View The inter-�le relational view, displayed in Figure 14, shows var-
ious relationships between �les. The �le view is similar to the class view; it groups functions
together to form higher-level objects. While the class view more closely matches the hierarchy in-
tended in the original object-oriented design, the �le view provides additional information about
class are implementation. By using both views, users get a better picture of how design and
implementation interact.

The �le view allows the system to work for both C++ and standard C source code. Information
about the source language is contained in the static database �le, which enables CIV to distinguish
between C and C++ source code. Therefore, CIV can provide the same �le views for C source
code as for C++ source code, and then simply disable class views for any systems not implemented
in C++.

Files can be expanded in the same manner as in the inter-class view. Global data, exported
functions, and local functions can be displayed. Global data consists of any variables declared
in a �le's scope. Exported functions are those functions whose prototypes are listed in a header
�le, or are otherwise referenced in other �les. \Exported" is used here to mean that the function
could be called from another �le, but its use is not guaranteed. Public member functions are an
example of functions which are exported from the �le where they are de�ned. Local functions are

22

Figure 9: Inter-class view with call-graph and one class expanded.

functions that are not made public to other �les. These functions cannot be referenced outside
of the �le in which they are de�ned. As in the inter-class view, the spatial ordering of expanded
parts is constant regardless of the order of expansion. Global data is always on the top, followed
by exported functions and local functions.

Call and def/use graphs can be shown as in the inter-class view. These graphs are also sensitive
to expansion of �les in the same way that the call and def/use-graphs are sensitive to expansion
of classes in the inter-class view.

Intra-File Relational View The intra-�le view shows relationships between the internal func-
tions and global data de�ned in a speci�c �le. Similar to the intra-class view, function and data
nodes are laid out in two circles parallel to the X-Z axis. The top-most circle contains the func-
tions, and the bottom-most circle contains the global data. All other features of the intra-class
view also apply to the intra-�le view.

23

Figure 10: Inter-class view with call-graph shown and two classes expanded.

5.3 Impact Analysis Features

CIV can show the results of impact analysis queries. Queries are made by selecting a function,
then selecting a change type from a list of possible high-level changes to that function. Change
options include adding a parameter to the function's interface, deleting a parameter, change a
parameter, modify the function's return value. A very conservative approach is now used to
calculate change impact: the impact is always the transitive closure produced by following the
call arcs backwards towards main. Limitations in impact analysis calculations result primarily
from the limitations of the static analysis database.

Although the impact analysis calculations are now very simplistic, and err on the conservative
side, the visualization features of CIV make it capable of showing detailed IA information. A�ected
portions of the view (the current view in which the IA query was made) are highlighted to show
impact. In addition, arcs which contribute to the impact are highlighted, so that the user not only
knows what has been impacted, but also has information concerning how that impact occurred.
For example, in a more sophisticated IA system, the impact might be felt through a def/use
relation. In this case, the def/use arcs involved in the impact would be highlighted. Also, several

24

Figure 11: Inter-class view with def/use-graph shown and one class expanded to show its public
data.

Figure 12: Intra-class relation with call-graph shown for class GRAPH. This class contains only
public methods, private methods, and private data.

types of impact could be shown by using multiple highlight colors or line styles. Currently,
highlighting of objects (nodes) is performed by changing their color to red. Highlighting of arcs
is accomplished by changing the thickness of the lines. In this way, the color of the arc | which
is used to specify what type of relation the arc represents | is not changed.

Figure 15 shows the change impact for a single class method. By expanding the a�ected
classes in this view, the impact will be updated to show how each class was impacted internally
as displayed in Figure 16. Still more detail about the impact can be seen by performing the IA
analysis in the internal class view as is shown in Figure 17.

25

Figure 13: Intra-class relation with def/use-graph shown.

Figure 14: Inter-�le view with call-graph shown and one �le expanded.

26

Figure 15: Inter-class relation with call-graph and impact shown for a change to the function
POINT :: POINT ().

27

Figure 16: Inter-class relation with call-graph and impact shown for a change to the function
POINT :: POINT (). An a�ected class is expanded to show how it is a�ected internally.

28

Figure 17: Intra-class relation with call-graph and impact shown for a change to the function
GRAPH :: initializeNodes().

29

6 Evaluation of Results

We evaluate our solution to the scaling problem as embodied in the prototype CIV system against
a set of criteria, and we compare its performance with that of other existing systems.

6.1 Overall Evaluation

CIV can currently display classes, �les, functions, and data as abstract objects. Four types of
views are used to show inter-class, intra-class, inter-�le, and intra-�le relationships. In each view,
call and def/use graphs are used to show how objects interact through data and control-
ow.
The inter-class view also contains a class-inheritance graph which shows the \is-a" relationships
between classes. Results of impact analysis are shown by highlighting a�ected areas of the various
graphs. A�ected nodes are highlighted in addition to any arcs which contributed to the impact.

The three evaluation criteria de�ned in Section 2.2 are usefulness, intuitiveness, and scalability.

Usefulness

CIV is useful as a high-level code browser. By starting with the inter-class view, a user can
quickly view the entire class hierarchy of the system. Then, by adding the call-graph, the user
can view the entire call-graph at a high-level. At this high level, the user can quickly determine
which classes interact directly and which do not. By expanding class nodes, the user can then see
how the classes actually interact at the method level.

This same type of top-down analysis is not be possible via direct inspection of the source code.
The user would have to search header �les for class speci�cations, and then piece together the
class-hierarchy from the bottom up.

Bottom-up code browsing is also possible using CIV. As will be discussed in Section 7, a
logical extension of CIV is to allow direct access to the source code through method nodes. In
this manner, the lowest level of detail can be accessed through the high-level, inter-class view.
Also, by opening a separate view for a particular class, the intra-class interaction can be seen.
Then, multiple levels of detail can be shown simultaneously, giving the user a better understanding
of how the low-level parts of the system interact at a higher level.

Section 3.1 describes the usefulness of impact analysis. While the impact analysis features of
CIV are not fully functional, the basic design of the system will support the following process. A
user selects a node, and suggests one of several types of changes. The system will then show the
area of the view which is potentially a�ected by the change. By highlighting relational arcs which
contribute to the e�ect, the system will also show how the a�ected objects were a�ected.

Intuitiveness

A qualitative argument demonstrates the intuitiveness of CIV. CIV is intuitive in that it contains
call-graphs and def/use graphs which, aside from being displayed in 3-D, are similar to those drawn
by hand in many design documents. Nodes are labeled, colored, and distinctly shaped so that
the user can easily distinguish between classes, methods, and data. The concept of encapsulation
is maintained by showing class methods as being internal parts of the class. Furthermore, classes
can be viewed as either closed \black boxes" or expanded sets of functions, matching the basic
premise of object-oriented programming | an object should have a public interface and a private
implementation.

The IA features of CIV are also intuitive. Visual feedback about change impact is more easily
understood than the textual report that would be generated by a program slice. The purpose of

30

a program slice is to determine a subset of the code that contributes to a speci�ed subset of the
program's behavior. A visual representation of that subset should be more intuitive than a new
version of the source code. In the best case, a visual display would be shown �rst, and then the
text report could be studied. Then there would be some immediate recognition of the subset that
the code represents.

Scalability

By making use of the natural encapsulation which exists in object-oriented software, CIV is
capable of showing full-system views of medium-sized programs. The largest system that has been
visualized by CIV is CIV itself, which contains approximately 10; 000 lines of code and 60 classes.
Figure 18 shows the initial inter-class view for CIV. Note that CIV is currently not capable of
distinguishing classes de�ned in third-party libraries from classes de�ned in the application code.
Therefore, the system being in Figure 18 actually contains about 150 classes.

Figure 18: Inter-class view of CIV.

While the view in Figure 18 exhibits information overload, a user can use the view to gain
useful insight into the system. For example, the view shows that a few classes (e.g. Symbol |
second to last row, and fourth from the right) serve as base classes for a wide range of other
classes.

As the number of classes increases, the inter-class view becomes more complex. However, the

31

intra-class views maintain fairly constant complexity. That is, as systems grow large, the number
of classes tends to increase much faster than the size of each class. This growth relationship is
especially true when classes are reused. Rather than add new functionality to an existing class,
designers may created a new, derived class which adds the new functionality. Figure 19 shows the
internal view of a typical class in CIV.

Figure 19: Intra-class view of class GRAPH in CIV.

The use of the class hierarchy alone has not solved the problem, it has only postponed it.
Higher-level grouping is needed to reduce the total number of objects that are shown in a single
view. For example, since CIV contains many small classes which are contained in only a few
source �les, the �le view provides a less cluttered picture of the system. Figures 20 and 21 show
a call-graph in the inter-�le view for CIV. The use of higher-level grouping is discussed further in
Section 7.

Figure 20: File view of CIV showing call-graph.

32

Figure 21: File view of CIV showing call-graph with �le menu.C expanded.

6.2 Comparison with Other Systems

The analysis done in the previous section was largely subjective. A more objective analysis can be
performed through comparison with other existing systems. In this section, visualization features
of CIV are compared directly with those of HP SoftBench for the same input data. A less direct
comparison with Imagix 4D is also given, but due to the lack of a full, working copy, this system
could not be tested with the same data. Other systems described in Section 2 are not directly
comparable with CIV due to di�erences in system capabilities.

HP SoftBench

The HP SoftBench Static Analyzer was compared with CIV for two input systems: an early
prototype of CIV containing about 2000 lines of code and 15 classes; and the full implementation
of CIV.

For comparison purposes, CIV generated all of the snapshots in the last section from the small
system. We compare these snapshots to those generated by HP Softbench. CIV showed clear

33

advantages in scalability. The �gures from CIV show improved scalability and lower information
overload than the snapshots generated by HP SoftBench.

Figure 22 shows the call-graph and class-inheritance graph created by SoftBench for the small
system. The call-graph takes up slightly more than three virtual screens which can be viewed in
SoftBench by scrolling. The inheritance relationships between the classes are shown as a separate
graph. In Figure 7, CIV displays the entire class hierarchy in conjunction with a high-level view
of the entire call-graph. More detail can then be shown by expanding classes of interest as is
shown in Figures 9 and 10. Some scrolling of the image is required to see all of the methods in
large classes, but the image can also be \zoomed out" to show the entire graph. In general, more
information is shown in less space by CIV than by SoftBench.

CIV can also visualize larger systems with less clutter than SoftBench. Compare Figures 18
and 19 generated by CIV with Figures 23 and 24 generated by SoftBench for the same system.
Figure 23 shows approximately 1

30th
of the entire call-graph, and Figure 24 shows approximately

1

5th
of the entire class-inheritance graph. Conversely, Figure 18 shows about 90% of the entire

class-inheritance and high-level call-graph view, and Figure 19 shows 100% of the detailed internal
view of a single class. So, while CIV exhibits information overload for the larger system, SoftBench
has greater information overload problems.

In addition to scalability improvements, CIV has the advantage that it shows the relationships
between the call and def/use graphs and the class-inheritance graph. With SoftBench it is not as
clear how functions are grouped into classes. Also it is not clear how classes relate to each other
at a high level, other than through inheritance.

Imagix 4D

The visualization features of Imagix 4D provide primarily low-level views of functions. Unlike
SoftBench, which shows a call-graph for the entire system, Imagix 4D shows the call-graph for
only one function at a time. While these function-level views are supplemented by the hyper-text
code browser, the actual visualization does not provide any additional information. The functions
called by a single speci�c function can be determined by simply reading that function's code. In
contrast, the high-level call information shown by CIV would require scanning the entire system
to attain by hand.

Class and �le relational views are also provided by Imagix 4D. Figure 25 shows a �le-inclusion
graph produced by Imagix 4D (their class-inheritance graph is similar). Unlike CIV, �les or
classes cannot be expanded to see their internal methods and data. So, while these graphs
provide useful information, it is unclear how they are related to the function-level views. Much
like SoftBench, a user cannot easily determine how a particular method �ts into the class view. By
incorporating multiple relationships into single views, CIV clearly shows the interrelation between
the relationships.

6.3 Impact Analysis in CIV

The impact analysis features of CIV are not fully functional, because the HP static analysis
database does not contain the necessary control-
ow information. High-level control-
ow informa-
tion such as function calling and def/use location is available, however, function level control-
ow
information, such as order of operation, cannot be determined. Without this level of control-
ow
information, standard dependency analysis techniques cannot be applied. While some amount of
conservative estimation can be made through def/use information within the function, the lack
of control-
ow information makes pruning of the impact results di�cult.

34

a. Upper left-hand corner of call-graph.

b. Class hierarchy view.

Figure 22: HP SoftBench call-graph and class-inheritance graph for small test system.

35

Figure 23: Part of the call-graph produced by SoftBench for CIV.

CIV provides a solid foundation on which more sophisticated impact analysis systems can be
built. Given more full-
edged IA features, CIV could be used both to help understand a system
and to make changes with more con�dence. For example, suppose a maintenance engineer wants
to make a change to a particular return value in a function. Through CIV, he/she could quickly
determine the parts of the system that would likely be a�ected by the change. Some of the a�ected
functions may be expected by the user, but others may be a surprise. Often, a�ects are propagated
in indirect ways that would not be obvious without a visualization tool. For example, suppose a
method in class A is modi�ed, and the a�ect is felt by a method in class B. This method a�ects
another method in class B that in turn a�ects a method in class C. In this case, CIV would show
at a high level that classes A, B, and C are potentially a�ected. By expanding these classes, it
would be obvious how class C was a�ected through class B. The ability to quickly recognize these
unexpected relationships makes CIV a powerful tool for software maintenance. Understanding all
aspects of a change can help the user make changes with a minimum of unwanted side e�ects. In
many cases, there are several possible source code changes that will produce the desired e�ect. A
system like CIV can greatly reduce the e�ort of choosing between these changes.

36

Figure 24: Part of the class-graph produced by SoftBench for CIV.

37

Figure 25: File inclusion graph generated by Imagix 4D.

38

7 Conclusions and Future Work

Most prior SV systems are not scalable, and thus cannot adequately visualize large-sized, real-
world systems. Without scalability, acceptance of these systems by industry will be limited. The
use of 3-D graphics together with a hierarchical viewing scheme can provide visualizations that
are limited in clutter without sacri�cing the amount of information shown. Evaluations using our
prototype CIV system support the hypothesis that a hierarchy of views with multiple levels of
resolution is useful for increasing scalability. Examples suggest that abstract information, such as
the results of impact analysis, can be visualized at a high level for large systems. Quick access to
low-level views then provides the missing details. Furthermore, by allowing expansion of objects
within a view, in addition to providing separate low-level views, an intermediate level of detail
is provided. This overlap of high-level and low-level information adds high-level context to the
low-level view.

The use of 3-D graphics provides a means of showing more information on the screen at one
time. While individual 2-D images from the visualization may appear somewhat cluttered, the
user can interactively rotate the view so that the information of interest can be seen clearly. The
primary advantage of 3-D viewing is through the ability to interactively manipulate the view.

Impact analysis remains a di�cult problem. Without a high degree of semantic understanding,
IA systems can only produce approximate results. Since automated IA systems do not produce
exact results, the IA process should be interactive in nature [17]. Feedback with the user is
necessary to prune the potential impact set as the analysis propagates through the system. By
highlighting potentially a�ected areas of the system, our prototype CIV provides quick, intuitive
feedback about the potential impact of a change. The user can quickly assess both where and how

the impact of a change is felt. This makes it useful as an interactive tool for IA. Additionally,
the IA results are intuitive at all levels of resolutions, since they show a subset of the currently
displayed graph. This is easily interpreted as the \physical area" a�ected by the given change.

Extensions to CIV and Open Problems

To visualize very large systems, the hierarchy of views needs to be extended. Systems need to
be grouped at a higher level than is currently supported by CIV. For example, classes can be
grouped into logical sub-systems. Unfortunately, determining these groups is a di�cult problem.
Classes that are related through inheritance might not be part of the same logical sub-system.
For example, a class might be derived from both \GRAPHICAL" and \LIST ITEM" base classes
| logically, the derived class is meant to be part of the graphics sub-system, and not part of the
dynamic storage sub-system of which LIST ITEM is a part. The use of packages as in Java provids
a language de�ned mechanism for programmers to specify hierarchies of subsystems, which can
be used in SV.

Another problem with the addition of more hierarchical levels is the lack of additional spatial
dimensions for expansion. One solution is to use in-plane expansion similar to that shown in
Figure 5(a). Another possibility is to have the option of either expanding the classes in the
groups along the third axis, or opening a separate inter-class view for the group.

A number of simpler extensions can be added to CIV to make it more robust. First, the
layout of classes in the inter-class view does not group related classes together | a simple grid is
used. A more sophisticated layout scheme can replace the grid with an organized 2-D layout of
the class hierarchy. This layout would increase cohesion in the inter-class view, and increase its
intuitiveness. Techniques for this type of layout are described by Bertolazzi, Battista, and Liotta
[3].

39

Second, function-level information could be added. The text of a function could be viewed
in a separate text-window by clicking on a function object. The graphical display of CIV could
be used to access a hyper-text code browser similar to that used in Imagix 4D. This would
provide lower-level information than is currently available, as well as a better logical connection
between the source code and the visualization. The advantage of this over Imagix 4D, is that the
visualization would show higher-level information than the code view. Immediate access to the
code of individual functions would provide better understanding of the relationships that exist
in the higher-level call and def/use graphs. In this way, the code view and abstract visualization
would complement each other.

Dynamic analysis could also be incorporated into CIV by integration with a run-time debugger.
Nodes and arcs could be highlighted as the execution progressed. This would provide high-level
information that would not be immediately obvious in a text-based debugger. For example, when
tracing into a function with a debugger, it may not be immediately obvious that the code being
executed is in a di�erent module or �le. It may also not be obvious whether a modi�ed variable
is a class member or a global variable. Also, dynamic binding could be shown by highlighting a
path through the class hierarchy from the called function to the inherited virtual function that is
actually executed.

Other simple improvements have been suggested. Curved arcs could be used in situations
where multiple relationships exist between two nodes. For example, if two class nodes have
both a call arc and an inheritance arc between them, then the inheritance arc could be drawn
straight, and a call-arc could curve below the plane. This would make it clear that two separate
relationships exist between the two nodes.

Another suggestion is to encode additional information in the size of the nodes, and thickness
of arcs. For example, by making the size of a class node proportional to the amount of code in
the implementation of the class (or the number of functions in the de�nition of the class), the
user could quickly see which classes make up most of the system. Also, the thickness of a call-arc
between two classes could indicate the number of actual calls represented by the arc.

Finally, empirical experiments need to be performed to more rigorously test our hypotheses.
Experiments need to directly compare the usefulness, intuitiveness, and scalability of CIV with
other existing systems. However, since these are highly subjective properties, they can only
be measured indirectly. For example, the amount of time needed for an average programmer to
become familiar with a new software system using each of a set of tools, can be used to indicate the
relative usefulness of those tools. Repeating this experiment with software systems of increasing
size would provide an indication the relative scalability of the tools in terms of usefulness.

References

[1] R. Arnold and S. Bohner. Impact analysis | towards a framework for comparison. Proceed-
ings IEEE Int. Conference on Software Maintenance, pp. 292{301, 1993.

[2] T. Ball and S. Eick. Software visualization in the large. Computer, pp. 33{43, April 1996.

[3] P. Bertolazzi and G.L.G. Di Battista. Parametric graph drawing. IEEE Transactions on

Software Engineering, 21(8):662{673, August 1995.

[4] G. Duggan. Visualizing c++ programs, April 1995. Hewlett Packard Application Develop-
ment White Paper.

40

[5] L. Ford. Automatic software visualization using visual arts techniques. Research Report 279,
University of Exeter, Exeter, U.K., September 1993.

[6] L. Ford. How programmers visualize programs. Research Report 271, University of Exeter,
Exeter, U.K., March 1993.

[7] Hewlett Packard. Exploring HP SoftBench: A Beginner's Guide, 1989.

[8] Hewlett Packard. HP SoftBench Static Analyzer: Analyzing Program Structure, 1989.

[9] D. Jackson and D. Ladd. Semantic di�: A tool for summarizing the e�ects of modi�cations.
Proc. IEEE Int. Conference on Software Maintenance, pp. 243{252, 1994.

[10] D. Jerding and J. Stasko. Using visualization to foster object-oriented program understand-
ing. Technical Report GIT-GVU-94-33, Georgia Institute of Technology, Atlanta, GA, July
1994.

[11] F. Brooks Jr. No silver bullet. Computer, pp. 10{19, April 1987.

[12] J. Loyall and S. Mathisen. Using dependency analysis to support the software maintenance
process. Proceedings IEEE Int. Conference on Software Maintenance, pp. 282{291, 1993.

[13] M. Moriconi and T. C. Winkler. Approximate reasoning about the semantic e�ects of program
changes. IEEE Transactions on Software Engineering, 16(9), September 1990.

[14] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company, 1994.

[15] N. Pennington. Comprehension strategies in programming. In Proceedings of the Second

Workshop on Empirical Studies of Programmers, pp. 100{112, 1987.

[16] B. A. Price, R. M. Baecker, and I. S. Small. A principled taxonomy of software visualization.
Journal of Visual Languages and Computing, 4(3):211{266, 1994.

[17] J-P. Queille and J-F. Voidrot. The impact analysis task in software maintenance: A model
and a case study. Proceedings IEEE Int. Conference on Software Maintenance, pp. 234{242,
1994.

[18] D. Frederick Sklar and C. Brown. SPHIGS for ANSI-C, v1.0 edition, March 1993.

[19] E. Soloway, B. Adelson, and K. Ehrlich. Knowledge and processes in the comprehension of
computer programs. In M. Chi, R. Glaser, and M. Farr, editors, The Nature of Expertise,
pp. 129{152. A. Lawrence Erlbaum Associates, 1988.

[20] M. Staples. Scalability and software visualization. Master's thesis, Colorado State University,
1996.

[21] J. Stasko. Three-dimensional computation visualization. Technical Report GIT-GVU-92-20,
Georgia Institute of Technology, Atlanta, GA, 1992.

[22] A. von Mayrhauser. Software Engineering: Methods and Management. Academic Press Inc.,
1990.

[23] A. von Mayrhauser and A. M. Vans. Program comprehension during software maintenance
and evolution. Computer, 28(8):44{55, August 1995.

41

[24] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, pp. 352{357, 1984.

[25] L. Wu. A tool for the visualization of c++ classes, methods and their relations. Class Project,
December 1993.

42

