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Abstract

Cohesion refers to the relatedness of module components and is a well-understood concept in

the procedural paradigm. In the object-oriented paradigm, a concept of class cohesion appears

to be necessary. In this paper, we compare two di�erent approaches to measuring class cohesion.

1 Introduction

Seldom have new design techniques been evaluated in a rigorous and quantitative fashion. The

object-oriented paradigm is no exception. Few quantitative studies have been conducted to verify

claims concerning the reliability, maintainability, and reusability of software developed using object-

oriented techniques. Such studies require appropriate measurement tools.

As with procedural software, we would like to be able to relate object-oriented structural quality

to critical reliability, maintainability, and reusability process attributes. We need appropriate

measures of object-oriented structure to begin to relate structure to process. The development

of measures of structure appropriate to object-oriented systems has just begun. One example is

the work of Chidamber and Kemerer who developed a suite of size and structure measures [5].

De�nitions of this suite were further re�ned by Churcher and Shepperd [6], who also developed a

conceptual framework for object-oriented metrics based on an entity-relationship model [7].
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Cohesion and coupling are two structural attributes whose importance is well-recognized in the

software engineering community. Here we focus on cohesion. Cohesion refers to the \relatedness"

of module components. In a procedural paradigm, a highly cohesive component is one with one

basic function. It should be di�cult to split a cohesive component. Cohesion can be classi�ed using

an ordinal scale that ranges from the least desirable category|coincidental cohesion|to the most

desirable|functional cohesion [11].

In the past, our joint work has focused on the rigorous development of functional cohesion

measures based on program slices [2]. Functional cohesion is an appropriate measure for procedural

code where basic software units are procedures and functions. In object-oriented software, the

basic design units are classes, which are collections of instance variables and methods. Functional

cohesion cannot be applied directly to classes. Fenton suggests that what we are interested in here

is a di�erent form of cohesion, namely data cohesion, rather than functional cohesion [9].

We really need to develop a notion of class cohesion, which is an indicator of the degree to which

the components of a class belong together. We have been working on developing class cohesion

measures both separately and together. By examining the ideas of class cohesion from several

di�erent viewpoints and through independently developed measures, we hope to come to a better

understanding of what is meant by cohesion in the object-oriented paradigm and the role cohesion

plays in the development of quality object-oriented systems.

Ott and Mehra's approach is a direct extension of our work on functional cohesion. Bieman and

Kang's approach evolved from Chidamber and Kemerer's measure of the lack of cohesion (LCOM)

between methods [5]. In both approaches, we treat the class as the basic unit and the instance

variables as the \glue" that connects the methods in a class. The di�erence in the approaches is in

how we measure the \glue".

2 Ott and Mehra's approach.

In [2], functional cohesion measures are presented based on a slice abstraction model of programs.

The underlying assumption is that in a procedural paradigm the intent of a module is to perform

a function which is, in general, manifested by the computation of one or more outputs. Modules

are assumed to be cohesive if the computations involved are related and therefore belong together.

In order to measure the relatedness of the computations, data slices are computed for each output

of a module where a data slice represents the data tokens in the module which have an e�ect on

that output or are a�ected by that output. Data tokens which belong to more than one slice are

considered \glue tokens" or indicators that the computations are related. The number of \glue

tokens" and the total number of data tokens are the basis for the measures of cohesion.

2.1 Class Slicing

In [10], Linda Ott and Bindu Mehra modify the above approach in an attempt to measure the

cohesion of classes in an object-oriented paradigm. Again, we assume that cohesion is an indication

that the elements belong together, however, here we are referring to the elements of a class. In

the object-oriented paradigm rather than assuming that the intent of a module is to perform some

function, we assume that the intent of a class is to model some object which is represented by

its behavior as re
ected through its methods and by its state information maintained in the class

private data or instance variables. Thus, we chose to develop a slice-based model where the slicing

is based on the class instance variables. Slices are obtained for each of the class methods and
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then concatenated together to form the slice model. Again, we measure the cohesion based on the

number of data tokens that appear in more than one slice and thus \glue" the module together.

Figure 1 is an example of a data slice pro�le for class list. For each statement included in the

data slice, the number of data tokens included in the slice from that particular statement is given.

This is done for every method of the class as the slice pro�le for a class is the concatenation of the

slice pro�les of each method of the class.

We de�ne a class slice abstraction of a class C, CSA(C), to be the set of concatenated slices,

one for each instance variable, formed by concatenating the data tokens obtained from the method

data slices for that instance variable. Thus, the slice abstraction for class list of Figure 1 is:

CSA(list) =

fhead1 �NULL1 � someitem1 � pt1 � pt2 � item1 � someitem2 � pt3 � 01 � is empty1 � head2 �

pt4 � tail2 �next1 � pt5 � pt6 �next2 �NULL3 � tail3 � pt7 � pt8 � temp1 � pt9 �head3 � pt10 � temp2 �
pt11 � pt12 � pt13 � next3 � temp3 � head4 � tail4 �NULL4 � head5 �NULL5 � true1 � false1;

tail1 � tail2 �NULL2 � someitem1 � pt1 � pt2 � item1 � someitem2 � pt3 � 01 � is empty1 �head2 �
pt4 � tail3 �next1 � pt5 � pt6 �next2 �NULL3 � tail3 � pt7 � pt8 � temp1 � pt9 �head3 � pt10 � temp2 �

pt11 � pt12 � pt13 � next3 � temp3 � head4 � tail4 �NULL4g

head1, NULL1 are the slice abstractions of method list() for slice data token head, and the other

data tokens similarly are data slices of other methods for the slice data token head; they are

combined to form the data slice for head for the class list. Similarly, a data slice for the slice data

token tail can be obtained for the class list.

2.2 Data Cohesion Measures

The data cohesion measures are described in terms of slice abstractions, data tokens, and glue and

super-glue tokens as applied to the object-oriented paradigm. The basic de�nition for a data token

and glue and super-glue tokens are similar to those used in the procedural paradigm, that is, glue

tokens are those data tokens that are elements of more than one data slice and super-glue tokens

are those glue tokens that are elements of all the data slices. The super-glue tokens for the class,

denoted as, SG(CSA(C)), is a union of the super-glue tokens of each of the methods of the class.

Similarly, the set of glue tokens for the class, denoted as, G(CSA(C)), are a union of the glue tokens

of each of the member methods of the class. tokens(C) is a set of all data tokens of a class C. The

following measures are based on the measures in [2] and have been modi�ed to use the concepts

presented here for the object-oriented paradigm.

Strong Data Cohesion is a measure based on the number of data tokens included in all the

data slices for a class, i.e. a count of the number of super-glue tokens in the class C. Thus, a class

with no super-glue tokens will have zero strong data cohesion.

SDC(C) =
jSG(CSA(C))j

jtokens(C)j

Weak Data Cohesion measures the amount of data cohesion in a class based on the glue

tokens. Glue tokens, unlike the super-glue tokens, do not necessarily bind together all the data

slices, hence are indicative of a weaker type of cohesion. A class with no glue tokens will have no

weak data cohesion.

WDC(C) =
jG(CSA(C))j

jtokens(C)j
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head tail Class List

list::list(){

2 head = NULL;

2 tail = NULL;

}

list::~list()

{

remove();

}

1 1 void list::append(Type someitem){

1 1 item *pt;

3 3 pt = new item(someitem);

2 2 assert (pt != 0);

1 1 if (is_empty)

2 2 {head = pt;}

else

3 3 {tail->next = pt;}

3 3 pt->next = NULL;

2 2 tail = pt;

}

void list:: remove(){

1 1 item *pt;

1 1 item *temp;

2 2 pt = head;

1 1 while(pt) {

2 2 temp = pt;

3 3 pt = pt->next;

1 1 delete(temp);}

3 3 head = tail = NULL;

cout <<"Removed all list elements"<< "\n";

}

boolean list::is_empty(){

2 if (head == NULL)

1 return(true);

else

1 return(false);

}

Figure 1: Data slice pro�le for the member functions of the class list. The number of data tokens

that are included in the data slice for the instance variable head are indicated with a number in

the column with header, head. Similarly for the instance variable tail.
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Data Adhesiveness is a more precise measure of the binding or relatedness among the data

slices. Data Adhesiveness for a class C is de�ned as the ratio of the sum of the number of slices

containing each glue token to the product of the number of data tokens in the class and the number

of data slices. Thus,

DA(C) =

P
d�G(CSA(C)) # slices containing d

jtokens(C)j � jCSA(C)j

As an example, we apply these cohesion measures to the class list. The CSA(list) has two slices

with 40 tokens and 31 glue tokens. Since there are only two data slices in the CSA(list), all glue

tokens are also super-glue tokens. Hence,

WDC(CSA(list)) = SDC(CSA(list)) =
31

40
= 0:78

Data adhesiveness is given as :

DA(CSA(list)) =
31� 2

40� 2
= 0:78

A second example is given in Figure 2. In this case there are more than two slices and therefore

the sets of glue and super-glue tokens are not identical. For this example, we have

SDC(CSA(stack)) =
5

19
= :26

WDC(CSA(stack)) =
12

19
= :63

DA(CSA(stack)) =
7 � 2 + 5 � 3

19 � 3
= :51

3 Bieman and Kang's approach.

Jim Bieman and Byung-Kyoo (Benjamin) Kang treat the method and instance variable class com-

ponents as the key class units that may or may not be connected [1]. A method and an instance

variable are related by the way that an instance variable is used by the method. Two methods are

related (connected) through instance variable(s) if both methods use the instance variable(s). Us-

ing this orientation, class cohesion can be measured by the relative connectivity (through instance

variables) of the methods.

We are analyzing several alternatives for quantifying class cohesion based on:

� Directly connected methods vs. indirectly connected methods. These indirect connections

can be through chains of variable uses and through messages sent between local methods.

� Read/Write dependencies (through instance variables) of methods vs. connections based only

on the use (read or write) without regard to the data dependencies of instance variables.

� Local and inherited class components vs. using only locally de�ned components.
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array top size Class Stack

class Stack {int * array, top, size;

public:

Stack (int s) {

2 2 size = s:

2 2 array = new int[size];

2 top = 0;}

int Isempty() {

2 return top==0};

int Size() {

1 return size};

int Vtop() {

3 3 return array[top-1];}

void Push (int item) {

2 2 2 if (top==size)

printf("Empty stack.\n");

else

3 3 3 array[top++]=item;}

int Pop() {

1 if(Isempty())

printf("Full stack.\n");

else

1 --top;}

};

Figure 2: Data slice pro�le for class stack.
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Figure 3: MIV relations for class Stack

We can �nd arguments to support any of these choices.

Individual methods in a single class can be connected via two mechanisms:

1. MIV relations involve communication between methods through shared instance variables.

An MIV relation is created when two or more class methods read or write to the same class

instance variable.

2. Call relations involve the sending of messages directly (or indirectly) from one method to

another. Instance variables used by the server may also be used indirectly by the client when

one method invokes another through message passing.

A call relation can be re
ected by the MIV relation; two methods with a call-relation are also

connected through the instance variables used by both methods. One method uses the instance

variable(s) directly and the other uses the instance variable(s) indirectly through the call relation.

There is no MIV relation when a server method neither writes nor reads instance variables. Thus,

we do not need to include call-relations separately from MIV relations in our cohesion model.

Figure 2 shows a C++ class Stack and Figure 3(a) shows the MIV relations among class com-

ponents of Stack in Figure 2. A link between a rectangle and an oval indicates that the method

corresponding to the rectangle uses the instance variable corresponding to the oval. Figure 3(b)

shows the connections for each instance variable. Here, the instance variable top is used by the

methods Stack, Push, Pop, Vtop, and Isempty. All of the methods that use the variable top are

connected through the variable top. These methods should be de�ned in one class or in classes

with an inheritance relationship in order to access the instance variable.

A class constructor (e.g., method Stack) is an initialization function. It will generally access all

instance variables in the class, and thus, share instance variables with virtually all other methods.
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Constructors create connections between methods even if the methods do not have any other

relationships. Thus, we remove constructor functions from our model and measures. Links between

the constructor Stack and instance variables in Figure 3 are represented as dashed lines. We also

do not include destructor functions in our model.

A client of a class can access only visible components of the class. Class cohesion refers to the

relatedness of visible components of the class which represent its functionality. Class cohesion is

the degree that those components are related. In our model of class cohesion, invisible components

of a class are included only indirectly through the visible components.

Instance variables are not usually visible to the clients of a class, the state of an object is provided

through class methods. In our model, cohesion of a class indicates the degree of connectivity of

the visible methods in the class. In C++ programs, the visible methods are de�ned in \public"

and \protected" sections; the methods in \private" sections are not visible. Instance variables are

involved in our cohesion model through MIV relations among visible methods. Invisible methods

are also involved indirectly when they are called by visible ones. Therefore class cohesion is modeled

as the MIV relations among all visible methods (not including constructor or destructor functions)

in the class.

3.1 Measuring Class Cohesion

The MIV relation model includes the information to de�ne class cohesion. In our model, a method

is represented as a set of instance variables directly or indirectly used by the method. A more

detailed derivation of our class cohesion measures are contained in [1]. Here we summarize the

derivation.

An instance variable is directly used by a method M if the instance variable appears as a data

token in the method M . The instance variable may be de�ned in the same class as M or in an

ancestor class of the class.

A direct/indirect call relation de�nes the indirect use of an instance variable. Figure 3(a) shows

that methods Size and Pop are indirectly connected; Size is connected directly to Push which is in

turn connected directly to Pop.

We de�ne two measures of class cohesion based on the direct and indirect connections of method

pairs. Let NP(C) be the total number of pairs of visible methods in a class C. NP is the maximum

possible number of direct or indirect connections in a class. If there are N methods in a class C,

NP(C) is N � (N � 1)=2. Let NDC(C) be the number of direct connections and NIC(C) be the

number of indirect connections in class C. The two measures are Tight class cohesion and Loose

class cohesion:

1. Tight class cohesion (TCC) is the relative number of directly connected methods:

TCC(C) = NDC(C)=NP (C)

2. Loose class cohesion (LCC) is the relative number of directly or indirectly connected methods:

LCC(C) = (NDC(C) +NIC(C))=NP (C)

The value of LCC is always greater than or equal to the value of the corresponding TCC. For the
Stack example of Figure 2, the class cohesion measures are:

TCC(Stack) = 7=10 = 0:7

LCC(Stack) = 10=10 = 1
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The TCC measure indicates that 70% of the visible methods in class Stack are directly related. The

LCC measure shows that all visible methods of class Stack are related directly or indirectly.

TCC and LCC indicate the degree of connectivity between visible methods in a class. These

visible methods are those de�ned within the class or inherited to the class. However, class cohesion

measures for visible methods de�ned only within the class are also useful, because the measures

are not a�ected by the cohesion of a superclass.

Local class cohesion measures are de�ned by using the local (non-inherited) methods in a class.

The instance variables used and methods called by the visible methods for local class cohesion may

include inherited variables. The local class cohesion measures for class Stack are equal to the class

cohesion measures since class Stack does not use inheritance.

3.2 Relationship to Other Cohesion Measures

Bieman and Kang's approach to developing class cohesion measures is related to that used by

Chidamber and Kemerer to develop the LCOM measure [5]. In [5], LCOM is de�ned as the

number of paired methods that do not use (read or write) a common instance variable. This is

most similar to a measure of class cohesion based only on direct connections. However, indirect

connections are clearly an aspect of class cohesion. Consider methods A and C that are indirectly

connected in this manner: method A and B reference a common variable v1, and method B and

C reference a common variable v2. We cannot easily split the class containing methods A, B, and

C to put method A and C into separate classes. Thus, the indirect connection does act as glue

binding method A and C. Message passing can also result in a similar indirect connection. In [5],

Chidamber and Kemerer focus on the similarity of methods, while we focus on the connections

between the methods. Our position is that cohesion is an attribute related more to the connections

that bind components than to their similarity.

Briand, Morasco, and Basili developed a measure designed to indicate cohesion in object-based

systems developed using languages such as Ada [3, 4]. Their primary cohesion measure, Ratio of

Cohesion Interactions (RCI), is based on the number of interactions between subroutines, variable

declarations, and type declarations. Our measures are based on the connectivity between only the

exported components, the methods. We do not consider references to types as connections since a

method cannot a�ect another method through a type reference. Information must be passed be-

tween methods through a variable or a direct invocation. RCI is calculated by counting interactions

rather than counting the number of variable pairs that interact. Thus, more connections are found

using the RCI measure than either the LCC or TCC measures. These additional connections can

represent multiple interactions between component pairs. The inclusion of interactions with type

declarations seems well suited to object-based software, rather than object-oriented software where

types alone are not exported. Our focus is on the connections between the key, externally visible

components in object-oriented software.

4 Comparison.

Both approaches assume that it is the data connections that bind class components together.

However, the two approaches use di�erent information to compute the measurement values. Bieman

and Kang look at a method as a single unit. A reference to an instance variable in only one statement

in a method is as signi�cant to the measures as if all components of the entire method a�ect the

instance variable.
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Table 1: Comparison of Class Cohesion Measures for the Stack Example

Approach Measure Value

Ott & Mehra SDC .26

DA .51

WDC .63

Bieman & Kang TCC .7

LCC 1.0

In contrast, Ott and Mehra consider the degree that all method statements may a�ect an

instance variable. For the strongest cohesion, all (or most) data tokens in all methods must a�ect

the value of all instance variables. Thus, Ott and Mehra's class cohesion measures indicates a very

\strict" view of cohesion. High cohesion classes will need to have very tightly coupled methods.

The two approaches for measuring class cohesion will clearly result in di�erent numerical values.

Bieman and Kang's cohesion measures will be higher than Ott and Mehra's measures. Table 1

compares the cohesion values for the stack example. Further analytical and empirical work is

needed in order to determine which of these (or other) approaches or measures best matches our

intuition about class cohesion.

5 Future Work.

We are now in the process of developing tools following both of our approaches. Our tool develop-

ment makes use of the gen++/GENOA system designed by Premkumar Devanbu at AT&T Bell

Labs [8]. Su�cient data is available for the analysis. We have located numerous object-oriented

systems to analyze { many of these systems are in the public domain which facilitates the com-

parison of our work by others also working on measurements. We have already collected 20 C++

systems containing more than 53 Mbytes of C++ software.

Based on a study of the InterViews system [1], we have found that the methods in an object-

oriented system exhibit high functional cohesion. The majority of the methods produce only one

output. We hypothesis that one of the advantages of object-orientation is that it promotes cohesion

at the method level. We also want to see if there are any empirical relationships between class

cohesion and reuse and between class cohesion and faults. Initial results from the InterViews

system showed that the classes that are heavily reused via inheritance exhibit lower cohesion. In

general, the classes of the InterViews system demonstrated high cohesion as measured by TCC and

LCC. Since these initial results about reuse are counterintuitive, we need further evidence of this

relationship. Assuming we �nd this evidence, we need to develop an understanding of why modules

with less cohesion tend to be reused more frequently.
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