Cohesion and Reuse in an Object-Oriented System*

James M. Bieman and Byung-Kyoo Kang
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
(303) 491-7096, Fax: (303) 491-2466
bieman@cs.colostate.edu, kang@cs.colostate.edu

Abstract

‘We define and apply two new measures of object-oriented
class cohesion to a reasonably large C++ system. We find
that most of the classes are quite cohesive, but that the
classes that are reused more frequently via inheritance
exhibit clearly lower cohesion.

1 Introduction

Software developers aim for systems with high cohesion
and low coupling. The value of these goals has not been
validated empirically [6]. Rather, they have been justi-
fied on the basis of intuition. The amount of reuse —
the number of times that a component is reused — is
an indicator of reusability. Of course, other factors such
as the usefulness of a component are also components
of reusability.

Cohesion refers to the “relatedness” of module com-
ponents. A highly cohesive component is one with one
basic function. It should be difficult to split a cohesive
component. Cohesion can be classified using an ordinal
scale that ranges from the least desirable category—
coincidental cohesion—to the most desirable—functional
cohesion [7]. To apply this cohesion model to classes in
object-oriented software, we need to add a new classifi-
cation, data cohesion [5].

Bieman and Ott developed a set of functional co-
hesion measures based on program slices [2]. These
measures apply only to individual functions; their ap-
plication to entire classes is not obvious. Chidamber

*Research partially supported by NASA Langley Research
Center grant NAG1-1461.

Appeared in Proc. ACM Symposium on Software
Reusability (SSR’95), April, 1995. pp. 259-262

Copyright ©1995 by the Association for Computing
Machinery, Inc. Permission to make digital or hard
copies of part of this work for personal or classroom
use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on
the first page or intial screen of the document. Copy-
rights for components of this work owned by others
than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior spe-
cific permission and/or a fee. Request permissions from
Publications Dept., ACM Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

and Kemerer developed a Lack of Cohesion in Meth-
ods (LCOM) measure for object-oriented software [3].
LCOM is effective at identifying the most non-cohesive
classes, but it is not effective at distinguishing between
partially cohesive classes. LCOM indicates lack of co-
hesion only when, compared pairwise, fewer than half
of the paired methods use the same instance variables.

Cohesion measures that are sensitive to small changes
are needed in order to evaluate the relationship between
cohesion and reuse. In this paper, we develop sensitive
class cohesion measures and apply them to a reasonably
large C++ system. We evaluate the relationship between
class cohesion and private reuse in this system.

2 Class Cohesion

The components of a class are the instance variables and
methods defined in the class plus those that are inher-
ited. A method and an instance variable are related by
the way that an instance variable is used by the method.
Two methods are related (connected) through instance
variable(s) if both methods use the instance variable(s).
Class cohesion is defined in terms of the relative number
of connected methods in the class.

2.1 Relations between Class Components

Individual methods are tied together via two mecha-
nisms. One mechanism, MIV relations, involves com-
munication between methods through shared instance
variables. The other mechanism, call relations, involves
the sending of messages directly (or indirectly) from one
method to another.

An MIV relation is created when two or more class
methods read or write to the same class instance vari-
able. We treat shared instance variables as glue that
binds the class methods together.

Instance variables used by the server may also used
indirectly by the client when one method invokes an-
other through message passing. Thus, a call relation
can be reflected by the MIV relation; two methods with
a call-relation are also connected through the instance
variables used by both methods. One method uses the
instance variable(s) directly and the other uses the in-
stance variable(s) indirectly through the call relation.
There is no MIV relation when a server method nei-
ther writes nor reads instance variables. Call relations
can not always be determined statically, due to dynamic

class Stack{
int *array, top, size;
public:
Stack(int s)
{size=s; array=new int[size]; top=0;}
int 1sempty()
{return top==0;}
int Size()
{return size;}
int Vtop()
{return array[top-1];}
void Push(int item)
{if (top==size)
printf("Empty stack.\n");
else array[top++] = item;}
int Pop()
{if (Isempty())
printf("Full stack.\n");
else --top;}
b

Figure 1: An example of a class stack

Stack

[lsempty] [Size |

Figure 2: MIV relations for class Stack

binding in object-oriented software. However, we have
observed very few cases where dynamic binding affects
class cohesion.

Figure 1 shows a C++ class Stack and Figure 2(a)
shows the MIV relations among class components of
Stack in Figure 1. A link between a rectangle and an
oval indicates that the method corresponding to the
rectangle uses the instance variable corresponding to
the oval. Figure 2(b) shows the connections for each in-
stance variable. Here, the instance variable top is used
by the methods Stack, Push, Pop, Vtop, and Isempty.
All of the methods that use the variable top are con-
nected through the variable top.

A class constructor (e.g., method Stack) is an ini-
tialization function. It will generally access all instance
variables in the class, and thus, share instance variables
with virtually all other methods. Constructors create
connections between methods even if the methods do
not have any other relationships. Thus, we remove con-

structor functions from our model and measures. Links
between the constructor Stack and instance variables in
Figure 2 are represented as dashed lines. We also do
not include destructor functions in our model.

2.2 \Visibility of Class Components

A client of a class can access only visible components of
the class. Class cohesion refers the relatedness of vis-
ible components of the class which represent its func-
tionality. Class cohesion is the degree that those com-
ponents are related. In our model of class cohesion,
invisible components of a class are included only indi-
rectly through the visible components. Therefore class
cohesion is modeled as the MIV relations among all vis-
ible methods (not including constructor or destructor
functions) in the class.

2.3 Inheritance and Cohesion

A subclass inherits methods and instance variables from
its superclass(es). We have several options for evaluat-
ing cohesion of a subclass. We can (1) include all inher-
ited components in the subclass in our evaluation, (2)
include only methods and instance variables defined in
the subclass, or (3) include inherited instance variables
but not inherited methods. The class cohesion measures
that we develop can be applied using any one of these
options.

3 Measuring Class Cohesion

The MIV relation model includes the information to
define class cohesion. A method is represented as a set
of instance variables directly or indirectly used by the
method. We call the representation of a method an
abstracted method, AM.

An instance variable is directly used by a method M
if the instance variable appears as a data token in the
method M. The instance variable may be defined in
the same class as M or in an ancestor class of the class.
DU(M) is a set of instance variables directly used by a
method M.

A direct/indirect call relation defines the indirect use
of an instance variable. A method M’ is directly called
by a method M if M is predecessor of M’ in the call
graph. Indirect call relations are the transitive closure of
the direct call relations. Thus, a method M’ is indirectly
called by a method M if there is a path from M to M’
in the statically determined call graph.

An instance variable is indirectly used by a method
M if (1) the instance variable is directly used by another
method M’ which is called directly or indirectly by M,
and (2) the instance variable directly used by M’ is in
same object as M. IU(M) is a set of instance variables
indirectly used by method M. An instance variable is
used by method M if the instance variable is directly or
indirectly used by M.

A class is represented as a collection of AM’s where
each AM corresponds to a visible method in the class.
The representation of a class is called an abstracted
class, AC:

AM(M)
AC(C)

DU(M) U IU(M)
[AM(2M) | M € V(O)]

V(C) is a set of all visible methods in class C' and the
ancestor classes of C. The AM’s of different methods
can be identical, thus there can be duplicate elements
in AC. Therefore, AC is a multi-set; “[” and “]” denote
a multi-set. A local abstracted class (LAC) is a collection
of AM’s where each AM corresponds to a visible method
defined only within the class:

LAC(C) = [AM(M)|M € LV(C)]

LV(C) are the visible methods defined within class C.
The abstracted class of the Stack of Figure 1 is

AC(Stack) = LAC(Stack) =
[{top}, {size}, {array, top}, {array, top, size}, {pop}]

AC(Stack) = LAC(Stack) since class Stack does not have
a superclass.

3.1 Connectivity between methods

The direct connectivity between methods is determined
from the class abstraction. If there exists one or more
common instance variables between two method abstrac-
tions then the two corresponding methods are directly
connected.

Two methods that are connected through other di-
rectly connected methods are indirectly connected. The
indirect connection relation is the transitive closure of
direct connection relation. Thus, a method M; is indi-
rectly connected with a method M, if there is a sequence
of methods M2, M3, . . ., M,_1 such that

Mi§Ms,- -, Mu_16 M,

where M; 6 M; represents a direct connection.

Figure 2(a) shows that methods Size and Pop are
indirectly connected; Size is connected directly to Push
which is in turn connected directly to Pop.

3.2 Definition of Measures

We define two measures of class cohesion based on the
direct and indirect connections of method pairs. Let
NP(C) be the total number of pairs of abstracted meth-
ods in AC(C). NP is the maximum possible number
of direct or indirect connections in a class. If there
are N methods in a class C, NP(C) is N = (N — 1)/2.
Let NDC(C) be the number of direct connections and
NIC(C) be the number of indirect connections in AC(C).

Tight class cohesion (TCC) is the relative number of
directly connected methods:

TCC(C) = NDC(C)/NP(C)

Loose class cohesion (LCC) is the relative number of
directly or indirectly connected methods:

LCC(C) = (NDC(C) + NIC(C))/NP(C)

The value of LCC is always greater than or equal to the
value of the corresponding TCC. For the Stack example
of Figure 1, the class cohesion measures are:

TCC(Stack)
LCC(Stack)

7/10 = 0.7
10/10 =1

The TCC measure indicates that 70% of the visible meth-
ods in class Stack are directly related. The LCC measure
shows that all visible methods of class Stack are related
directly or indirectly.

TCC and LCC indicate the degree of connectivity be-
tween visible methods in a class. These visible meth-
ods are those defined within the class or inherited to
the class. However, class cohesion measures for visible
methods defined only within the class are also useful,
because the measures are not affected by the cohesion
of a superclass.

Local class cohesion measures are defined by using
the local abstracted class (LAC) rather than the ab-
stracted class (AC). The instance variables used and
methods called by the visible methods for local class co-
hesion may include inherited variables. The local class
cohesion measures for class Stack are equal to the class
cohesion measures since class Stack does not use inher-
itance.

We have built a tool that takes the class cohesion
measures for C++ source programs. We specified our
measures in the GENOA tool specification language [4].
We used GEN++ from AT&T Bell Laboratories, an
application generator for creating code analyzers from
GENOA specifications, to implement our tool.

4 Measuring 00 reuse

We focus on private reuse—reuse within one software
system [5]. We evaluate reuse from the server perspec-
tive, since this is the best orientation for evaluating
reusability [1]. We are interested in two different forms
of class reuse, reuse via instantiation and reuse via in-
heritance. A class is reused by being instantiated in
other classes or by being inherited to them. Instantia-
tion reuse of a class is measured as the number of classes
where the class is instantiated. Inheritance reuse of a
class is the number of classes which inherit the class,
i.e., the number of descendents (both direct and indi-
rect descendents).

5 Applying the Cohesion & Reuse Measures

We applied the class cohesion measures to the Inter-
Views system, a reasonably large C++ system, devel-
oped at Stanford University. InterViews is a system
for window-based applications which provides a set of
classes that define the behavior of user interface objects.
It consists of more than 25,000 non-commented lines of
code. 14% of the classes in InterViews do not have any
methods; these classes were excluded from our measure-
ments.

We also removed all virtual methods with empty
bodies. Such methods do not use instance variables
or call other methods. Overloaded methods within the
same class are treated as one method.

‘We measured instantiation reuse and inheritance reuse
for all classes. We found no relationship between class
cohesion and instantiation reuse in the InterViews sys-
tem. However, we found significant relationships be-
tween cohesion and inheritance reuse.

The class cohesion of a subclass is affected by the
class cohesion of its superclass. To remove the effects of

1.0

08 T %)
%] Q
8 06+ }L—)
= k]
S o4f §
§]
= o2+ =
0.0 .
0 1~9 10~29 >29 0 1~9 10~29 >29
No. of Descendents No. of Descendents
@ (b)
10
%]
o
4] o
(@] -
= k]
5 &
§ B
= =

0 19 1029 >29 ’ 0 19 1029 >29
No. of Descendents No. of Descendents

© (d)

Figure 3: Number of descendents and Class Cohesion

the superclass, we use only local cohesion—we do not
include inherited methods in our measurement.

Figure 3 shows the relationship between the number
of descendents and local class cohesion. Average values
of tight class cohesion and loose class cohesion are pro-
vided for four different categories based on the number
of descendents. Figure 3 clearly shows that the classes
that are reused more frequently exhibit lower cohesion.
Table 1 shows that this relationship holds generally for
all levels of depth in the inheritance hierarchy.

‘We applied a T-test and the Wilcoxon rank-sum test
to evaluate the significance of our results. A T-test can
be used for data with a normal distribution and an inter-
val scale, and the Wilcoxon rank-sum test can be used
if there is a question concerning distributions or if the
data is ordinal. Both tests shows that the relationship
we see in Figure 3 and Table 1 is significant (to the .05
level) and not due to chance.

6 Discussion of Results

If a class is designed in ad hoc manner and unrelated
components are included in the class, the class repre-
sents more than one concept and does not model an
entity. A class designed so that it is a model of more
than one entity will have more than one group of con-
nections in the class. The cohesion value of such a class
is likely to be less than 0.5. For example, if five of the
six methods in a class are connected and the remaining
method has no connections, the TCC and LCC of the
class are both 0.67. If three of the six methods in a class
are connected, and the other three are also connected
with no connection between those two groups, both the
TCC and LCC of the class are 0.40. Therefore, the class
cohesion measures can be used to locate the classes that
may have been designed inappropriately.

Most of the classes in InterViews are quite cohesive.
The mean TCC is 0.75 and median is 1.0; the LCC

Table 1: Depth, Descendents, & Class Cohesion

No. of TCC LCC
‘ D ‘ Descendents N | Mean | Med | Mean | Med
1 n=20 367 0.91 1.00 0.94 1.00
1 1<n<10 20 0.69 0.88 0.75 1.00
1 10<n 7 0.58 0.48 0.61 0.51
2 n=20 190 0.53 0.61 0.57 0.71
2 1<{n<10 27 0.53 0.64 0.59 0.71
2 10<n 7 0.24 0.14 0.32 0.14
3 n=20 112 0.68 0.78 0.75 1.00
3 1<n<10 28 0.78 1.00 0.84 1.00
3 10<n 6 0.46 0.52 0.58 0.70
4 n=20 84 0.81 1.00 0.90 1.00
4 1<n<10 37 0.76 0.83 0.87 1.00
4 10<n 10 0.59 0.56 0.71 0.78
5 n=20 98 0.72 0.86 0.79 1.00
5 1<n<10 31 0.70 0.69 0.79 1.00
5 10<n 6 0.67 0.85 0.67 0.85
6 n=20 85 0.77 0.87 0.81 1.00
6 1<{n<10 17 0.75 0.74 0.79 0.85
6 10<n 5 0.50 0.52 0.52 0.60
7 n=20 35 0.84 1.00 0.87 1.00
7 1<n<10 18 0.67 0.71 0.75 0.82
7 10<n 2 0.08 0.17 0.08 0.17
8 n=20 51 1.00 1.00 0.84 1.00
8 1<n<10 11 0.72 0.75 0.81 0.82
9 n=20 14 0.86 1.00 0.93 1.00

D is the depth in the inheritance hierarchy.

mean is 0.8 and median is 1.0. The classes have an av-
erage of about six local visible methods. If the LCC of
a class is 0.8 and the class has six local visible methods,
then 80% of the pairs of methods in the class are con-
nected, i.e., among 15 pairs of methods 12 pairs are con-
nected. Thus, we know that most of InterViews classes
are quite cohesive and were designed carefully.

Our results show that the classes that are heavily
reused via inheritance exhibit lower cohesion. We ex-
pected to find that the most reused classes would be
the most cohesive ones. Studies of additional software
systems are needed to confirm these results.

References

[1] J. Bieman. Deriving measures of software reuse in object-
oriented systems. Proc. BCS-FACS Workshop Formal
Aspects of Measurement, pp. 79-82. Springer 1992.

[2] J. Bieman & L. Ott. Measuring functional cohesion.
IEEE Trans. Software Engineering, 20(8):644-657, Aug.
1994.

[3] S. Chidamber and C. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Trans. Software Engineering,
20(6):476-493, June 1994.

[4] P. Devanbu. GENOA a customizable, language- and
front-end independent code analyzer. Proc. ICSE-14, pp.
307-317, 1992.

[5] N. Fenton. Software Metrics - A Rigorous Approach.
Chapman and Hall, London, 1991.

[6] N. Fenton, S.L. Pfleeger, and R. Glass. Science and sub-
stance: a challenge to software engineers. IEEE Software,
11(4):86-95, July 1994.

[7] E. Yourdon and L. Constantine. Structured Design.
Prentice-Hall, Englewood Cliffs, NJ, 1979.

