Reuse Through Inheritance:
A Quantitative Study of C++ Software*

James M. Bieman

Josephine Xia Zhao

Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
(303)491-7096, Fax: (303) 491-6639
bieman@cs.colostate.edu, zhaox@cs.colostate.edu

Abstract

According to proponents of object-oriented programming,
inheritance is an excellent way to organize abstraction and
a superb tool for reuse. Yet, few quantitative studies of the
actual use of inheritance have been conducted. Quantitative
studies are necessary to evaluate the actual usefulness of
structures such as inheritance. We characterize the use of
inheritance in 19 existing C++ software systems containing
2,744 classes. We measure the class depth in the inheritance
hierarchies, and the number of child and parent classes in the
software. We find that inheritance is used far less frequently
than expected.

1 Introduction

Object-oriented analysis, design and programming appear
to be the “structured programming” of the 1990’s. Propo-
nents assert that object-oriented programming is the solu-
tion to the “software problem” [8]. Software developed using
object-oriented techniques is touted as more reliable, easier
to maintain, easier to reuse, etc.

The object-oriented paradigm may be effective in helping
to solve many of the outstanding problems in software en-
gineering. However, the claims of the proponents for object-
orientation are primarily based on opinion or anecdote rather
than rigorous, quantitative studies.

Seldom have new design techniques been evaluated in a
rigorous and quantitative fashion [11]. The object-oriented
paradigm is no exception. Few quantitative studies have

*Research partially supported by NASA Langley Research Center
grant NAG1-1461.

Appeared in Proc. ACM Symposium on Software
Reusability (SSR’95), April, 1995.

Copyright ©1995 by the Association for Computing
Machinery, Inc. Permission to make digital or hard
copies of part of this work for personal or classroom
use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on
the first page or intial screen of the document. Copy-
rights for components of this work owned by others
than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior spe-
cific permission and/or a fee. Request permissions from
Publications Dept., ACM Inc., fax +1 (212) 869-0481,
or permissions@acm.org,.

been conducted to verify claims concerning the reliability,
maintainability, and reusability of software developed us-
ing object-oriented techniques. For example, inheritance is
a fundamental feature in object-oriented programming lan-
guages; it is supposed to make systems easier to design and
make software components easier to reuse. Yet, the benefits
of inheritance have not been demonstrated through quanti-
tative evaluations.

We have previously studied data abstraction, generics,
operator overloading and their effects on reuse in object-
oriented and object-based software [1, 3]. Now we focus on
measuring significant attributes concerning inheritance.

Measurement can quantify object-oriented practices, yet
the commonly used software measures are developed to fit
the procedural paradigm. The software metrics community
is quite familiar with procedural measures—control com-
plexity is usually measured with the cyclomatic number (Mc-
Cabe measure), coupling is often measured using informa-
tion flow, cohesion can be measured using program slices,
functionality can be measured using function points, and
size is usually measured using lines of code [10].

To evaluate attributes of object-oriented structures, we
need measures that quantify these structures. Chidamber
and Kemmerer propose several useful measures of classes
including the number of methods, the depth of a class in
the inheritance tree, and the number of children [7]. Other
useful class-level measures include the number of inherited
methods, the number of parents, and the number of instan-
tiations of a class (determined through static analysis). The
depth and width (and other attributes) of inheritance trees
quantify the inheritance structure of a system.

2 Quantifying Inheritance Use

Inheritance is touted as an excellent way to organize abstrac-
tion, and as a tool to support reuse. The use of inheritance
does have some costs—inheritance increases the complex-
ity of a system and the coupling between classes. Thus,
Booch recommends that inheritance hierarchies be built as
balanced lattices and that the maximum number of levels
and the width be limited to 7 + 2 classes [5].

But how is inheritance actually used? Do developers gen-
erally reach the maximum sized inheritance hierarchies, or,
is inheritance an infrequently used construct? The useful-
ness of inheritance can be partially evaluated by examining
how developers actually use inheritance.

Table 1: Description of Collected C++ Software

Description: Reuse or No. of
System Applications System NCSL | Classes
Language tools:
EC++ C++ preprocessor (A) 1431 14
libg+4-2.5 GNU language tools (R) 34443 155
rx102 Rexx language interpreter (A) 11999 126
sockets C++ socket stream library (R) 810 7
Rocket compiler (A) 32390 222
nihcl NIH class library (R) 5262 138
GUI Toolkits & Applications:
InterViews GUI toolkit (R) 25427 922
Motif C++ | implementation of Motif (R) 20575 72
edge_3.0 graph editor (A) 30754 80
wat90 X Window/Motif application (A) 6467 6
C++Motif | Young’s book examples (A) 7055 69
anonymous | GUI for Mac computers (A) 712 41
et++4-2.2 user interface framework (R) 56277 508
Threads Packages:
awe2-0.1 Awesime threads package (R) 6803 76
prestol.0 parallel (threads) environment (R) 5909 28
Others:
RPCH++ RPC & XDR protocols (A) 805 8
MC++0.02 | particle physics simulator (A) 7377 49
c++suitel.0 | compiler validation suite (A) 2985 81
newmat matrix package (A) 8033 72

Totals: 265,514 2,744

NCSL — non-commented source lines
R — Reuse System, A — Applications System

2.1 Inheritance Measurement Tool

We developed the Jasmin tool (Josephine’s Analysis System
for Measuring Inheritance Numbers) to take measurements
of the inheritance structure of C++ software. Jasmin can
measure:

e the mean, median, and maximum depth of inheritance,
e the number of classes at each depth of inheritance, and

e the mean, median, and maximum number of children
and parent classes.

2.2 Empirical Data

We focus our initial empirical studies of object-oriented soft-
ware on C++ systems. There is a significant body of existing
code written in C++ and developing analysis tools is fairly
straightforward. We have been collecting C++ systems that
are in the public domain and are available over the inter-
net. We are also soliciting donations of code that is not in
the public domain. At present, we have 19 C++ systems,
with a total of more than 265,000 non-commented source
lines of code (NCSL) and 2,744 separate C++ classes. The
systems range in size from 7 to 922 classes, and from 712
to 56,277 NCSL. Some of these systems were designed for
reuse—the classes are to be used when developing other soft-
ware, while others are applications designed for customer
use. Included are some commonly referenced reuse libraries
such as InterViews, Motif_ C++ , and the National Insti-
tute for Health Class Library (NIHCL). Table 1 provides
descriptive information concerning the software data. The
collected software was developed for various applications ar-
eas including:

e Language tools: compilers, assemblers, linkers, debug-
gers, and general language reuse libraries.

e Graphical user interface (GUI) software: toolkits and
applications.

e Threads software: packages for implementing threads
and parallel programming.

e Other miscellaneous applications: communication pro-
tocol software, physics simulation, compiler validation
software, and a matrix arithmetic package.

A wide variety of systems will help us identify general char-
acteristics of object-oriented software, and characteristics of
software for particular application domains.

2.3 Inheritance in the C++ Software Data

Table 2 shows the use of inheritance in the collected soft-
ware. Only 37% of the systems have a median class inher-
itance depth that is greater than 1. However, individual
inheritance trees can be deep. Of the 12 systems with a
median class inheritance depth of 1 or less, five have a max-
imum inheritance depth that is 3 or greater. Out of all of
the systems, twelve (63%) have classes with a maximum in-
heritance depth that is 3 or greater.

We find real differences in the use of inheritance between
systems developed for different application domains. Sys-
tems that have been designed as applications also differ no-
tably from the reuse libraries.

The GUI applications tend to have the greatest use of
inheritance as indicated by relatively high mean inheritance
depth (3.46) for the classes in these systems. The mean

Table 2: Class Inheritance Depth for the C++ Systems

System Mean | Median | Max
Lang. Tools:
EC++ 0.7143 1 2
libg++-2.5 0.7677 0 5
rx102 0.9841 1 2
sockets 0.7143 0 2
Rocket 1.3468 1 5
nihcl 2.3116 2 6
All Lang. Tool Classes: | 1.3200
GUTI’s:
InterViews 3.7126 3 8
Motif C++ 5.8472 7 10
edge_3.0 0.4000 0 2
wat90 0.6184 1 2
C++Motif 1.8261 2 4
anonymous 2.0732 2 5
et++4-2.2 3.9055 4 9
All GUI Classes: | 3.4600
Threads:
awe2-0.1 1.0000 1 3
prestol.0 0.8571 1 3
All Thread Classes: | 0.9600
Others:
RPC++ 0.1250 0 1
MC++0.02 0.9388 0 4
c++-suite-1.00 0.3457 0 2
newmat 1.8889 2 4
All Other Classes: | 1.0000
All System Classes: | 2.6600

inheritance depth for the GUI classes is more than twice as
high as the inheritance depth for the other types of systems.

GUI software may be more suitable for designing with
inheritance. GUI software is designed to model “physical”
primitive entities, which include buttons, menus, and win-
dows, as well as the objects built on top of these primitives.
The primitives are usually rooted inside some container ob-
jects. The objects and primitives in GUI toolkits or appli-
cations usually contain one another. Thus, GUI applica-
tions match the hierarchical approach to design that allows
greater use of inheritance.

Table 3 shows that the reuse library classes have rela-
tively greater use of inheritance than the application sys-
tems. The mean inheritance depth for reuse library classes
is three times greater than for application system classes.
Seven of the eight reuse libraries (87.5%) have a maximum
class depth of inheritance of 3 or greater, while only five
of the eleven (45%) application systems have a maximum
inheritance depth of at least 3.

The reuse programs are constructed with the intention
to be used by others, they are generally larger programs
with greater, and more varied functionality. We expect that
developers put more effort into the design of reuse library
software than applications software. Therefore, developers
can take greater advantage of inheritance. However, we have
heard conflicting, anecdotal evidence from internet news-
group discussions that systems with deep inheritance hier-
archies are harder to reuse. Unfortunately, we do not have
data to evaluate how often the reuse libraries themselves are
accessed by clients.

Table 4 shows the distribution of classes at various depths
of inheritance. Note that a class may be at more than one
class depth due to multiple inheritance. We see that all of

Table 3: Reuse vs. Applications Class Inheritance Depth

System Mean | Median | Max
Reuse Libraries:

sockets 0.7143 0 2
nihcl 2.3116 2 6
InterViews 3.7126 3 8
Motif C++ 5.8472 7 10
et+-+-2.2 3.9055 4 9
libg++-2.5 0.7677 0 5
awe2-0.1 1.0000 1 3
prestol.0 0.8571 1 3

All Reuse Classes: | 3.3400
Applications Systems:

EC++ 0.7143 1 2
rx102 0.9841 1 2
Rocket 1.3468 1 5
edge_3.0 0.4000 0 2
wat90 0.6184 1 2
C++Motif 1.8261 2 4
anonymous 2.0732 2 5
RPC++ 0.125 0 1
MC++0.02 0.9388 0 4
c++-suite-1.00 0.3457 0 2
newmat 1.8890 2 4

All Applications Classes: | 1.1100

the systems tend to have more classes at lower inheritance
depths. There are clearly many classes at depth 0 or 1 with-
out any subclasses, and in most of the systems, there are few
classes at depth greater than two. At deeper levels of inher-
itance, the referencing of methods in super-classes becomes
more and more distant and indirect. Some of the applica-
tions may not be really suited for inheritance. Inheritance is
best suited for software that simulates “real world” entities,
and some applications, such as language tools, may not be
suitable for reuse through inheritance.

Eleven of the 19 systems (58%) have classes clustered
near the mid-range between the highest and lowest inheri-
tance depth. Perhaps the restrictions or specialization pro-
vided by inheritance is most effective at this mid-level.

Fourteen of the systems (74%) have more level 0 classes
than level 1 classes. Thus, we have many no-parent, no-
children classes which do not use inheritance at all. These
classes may take advantage of the data hiding capabilities
of C++ and they may support classes in the deeper trees by
processing messages. These classes may be instances of a
procedural design style in an object-oriented language.

Figure 1 is a bar graph that shows the number of sys-
tems with a maximum inheritance depth at various levels.
Nearly one-third of the systems have a maximum depth of
inheritance of two, which corresponds to 3 inheritance tree
levels—level 0, level 1, and level 2. Most (74%) of the sys-
tems use between three and six inheritance tree levels. Yet,
Booch recommends a maximum number of inheritance lev-
els at 7+2 (a maximum inheritance depth of 6 +2) [5]. The
data indicates that, in most of the systems, fewer inheritance
levels than Booch recommends are actually used. Note that
Booch’s recommendations apply to individual trees. Our
data is generated for the entire system and there are many
individual inheritance trees with lower maximum depths
than the system maximum.

Table 5 shows the mean, median, and maximum number
of children and parents, and the use of multiple inheritance.

Table 4: Class Inheritance Hierarchy Depth Distribution

Number of Classes at Depth:
System 0 1 2 3 4 5 6 7] 8 910
Lang. Tools:
EC++ 6 8 1
libg++-2.5 99 29 18 18 11 6
rx102 37 54 35
sockets 5 3 1
Rocket 67 54 70 20 10 1
nihcl 17 44 28 23 17 8 7
GUT’s:
InterViews 144 | 132 | 102 | 220 | 158 | 103 | 85 | 86 | 21
Motif C++ 8 1 2 4 5 8 7 9|14 | 13 1
edge_3.0 57 14 9
wat90 37 45 1
C++Motif 13 14 22 16 5
anonymous 11 4 9 6 10 1
et+4-2.2 76 23 68 84 | 102 74| 74 | 36 9 3
Threads:
awe2-0.1 20 37 15 3
prestol.0 11 11 5 1
Others:
RPC++ 7 1
MC++40.02 25 10 3 4 4
c++-suite-1.00 59 26 1
newmat 20 8 10 28 6

Number of Systems

0 1 2 3 4 5 6 7 8 9 10 Maximum Depth

Figure 1: Maximum Class Inheritance Depths in the C++ Systems

The number of children of a class is the number of immedi-
ate subclass(es) of the class, and the number of parents is
the number of immediate superclass(es) of the class. It is
clear that many of the classes have few or no child classes,
while a few of the classes have many subclasses. Six of the
systems (32%) have classes with 17 or more children. Thus,
some classes are particularly amenable to reuse via inher-
itance. But most of the classes are rarely reused through
inheritance.

There is an invariant relationship between children and
parents over an entire class hierarchy. Adding a child to a
class, also adds a parent to the child class. With multiple
inheritance, each additional parent has an additional child.
Thus, the mean number of children is always equal to the
mean number of parents, as shown in Table 5.

Table 5 also includes the percentage of the classes in each
of the systems with more than one parent, which indicates
the use of multiple inheritance. Only nine of the systems
have any classes that use multiple inheritance. In four sys-
tems, more than 5% of the classes use multiple inheritance.
Overall, multiple inheritance is only infrequently used.

One of our early motivations for this study was to deter-
mine whether the use of private sections and private inheri-
tance was related to the reuse of a class through inheritance.
We found little difference between the number of subclasses
of classes with or without private sections or private inheri-
tance.

3 Related Studies of Inheritance

Few quantitative studies of the use of inheritance in “real”
software systems have been published. We found two rele-
vant studies: one by Chidamber and Kemerer [7], and the
other by Lake and Cook [12].

Chidamber and Kemerer defined a set of six measures
for object-oriented software including depth of inheritance
and the number of children. They applied these measures to
two sets of object-oriented software—one was implemented
in C++ and the other was implemented in Smalltalk. Ta-
ble 6 shows Chidamber and Kemerer’s measurements of the
C++ system. We do not include the measurements for the
Smalltalk system because of the significant differences be-
tween the two languages. Smalltalk requires that deeper
inheritance hierarchies be used—classes at level zero in a
C++ system must be subclasses of more general classes in
Smalltalk. The C++ system is a GUI implementation that
corresponds to one of the larger systems that we studied.
This system has a lower mean depth of inheritance and fewer
children than the comparable GUI systems in our data (In-
terViews and et++). We do not know whether this software
can be classified as an application or reuse library. Chi-
damber and Kemmerer comment that the “data seem to
strongly suggest that reuse though inheritance may not be
fully adopted” at the two sites that they measured. Our
results are only slightly more optimistic.

Lake and Cook applied a metric tool to four C++ pro-
grams, an APL Compiler, Borland’s C++ library, some C++
instructional code, and an accounting application [12]. They
do not report the actual measurements for the programs.
However, they found that the programs generally consist of
unconnected classes with little use of inheritance. Most of
the inheritance trees were flat. In the few cases with inheri-
tance trees of depth three or more, the trees tend to be very
narrow—there were few classes at the deeper levels. Most

Table 6: Class Depth & Children in Chidamber/Kemerer
data [7]

Description | C++ GUI implementation
Number of Classes | 634

Measure Mean | Median Max
Depth of Inheritance 1.54 1 8
Number of Children 0.67 0 42

of the programs had (1) fewer than 20 classes of small or
moderate size, and (2) inheritance trees of depth one.

Lake and Cook also studied how inheritance depth can
affect the performance of software developers. Their pre-
liminary results show a tendency for programmers to more
effectively debug and modify classes that have a lower depth
of inheritance.

A long term study at the NASA/Goddard Software En-
gineering Laboratory provides initial evidence that object-
oriented technology can improve reuse (performance prob-
lems were also reported) [14]. However, the developers were
using Ada which does not support inheritance. Thus, the
use of inheritance as a reuse tool was not evaluated.

4 Conclusions

We measured the use of inheritance in more than 50 Mbytes
of C++ software. Although inheritance is used extensively in
many of the measured systems, it is used very infrequently in
others. The average depth of inheritance for classes was less
than 1.0 in half of the systems. The greatest use of inheri-
tance is in the GUI applications, perhaps because GUI appli-
cations tend to model a hierarchical world of user interface
objects such as icons and windows. Reuse library classes use
inheritance much more than the applications system classes.
The measurements also indicate that there are many classes
that exist independently with no parent or child classes.

Few of the measured systems have the 7 + 2 maximum
class inheritance depth recommended by Booch [5]. Two
of the systems exceed Booch’s maximum, while most of the
systems never reach this maximum. We did not measure
the maximum width of individual inheritance trees, however
32% of the systems had classes with more than 16 children.
We also found that multiple inheritance is not used very
often.

We expected to find more use of inheritance than we
actually found. We expected to find deep, balanced inher-
itance trees. However, most of the trees are fairly shallow.
When designing object-oriented software, developers must
deal with a conflict between the advantages of inheritance
(increased reuse, and improved similarity of implementation
and problem structure) and disadvantages (increased cou-
pling and complexity). Because of this conflict, Cargill, in
his recent book, recommends that developers should limit
inheritance and reduce coupling [6]. We find that develop-
ers do limit the use of inheritance.

We continue to collect additional data from all avail-
able sources to further learn how developers actually use
the features of object-orientation. We are extending the
Jasmin tool, and we are developing additional measurement
tools using the GEN++ tool generation system from AT&T,
which is based on the GENOA tool specification language [9].
We are developing measurement tools to quantify additional

Table 5: Number of Children & Parents in C++ System Classes

Number of Children Number of Parents
% with > 1

System Mean | Median | Max || Mean | Median | Max | (multiple inherit.)

Lang. Tools:

EC++ 0.6428 1 3 0.6428 1 2 7.14

libg++-2.5 0.4452 0 10 0.4452 0 3 7.74

rx102 0.7063 0 33 0.7063 1 1 0

sockets 0.5714 1 1 0.5714 0 3 14.29

Rocket 0.6982 0 17 0.6982 1 1 0

nihcl 0.8913 0 44 0.8913 1 2 1.45

GUTI’s:

InterViews 0.8785 0 68 0.8785 1 3 3.15

Motif C++ 0.8889 0 7 0.8889 1 1 0

edge_ 3.0 0.2875 0 7 0.2875 0 1 0

wat90 0.6053 0 23 0.6053 1 2 9.21

C++Motif 0.8261 0 1 0.8261 1 2 1.75

anonymous 0.7317 0 9 0.7317 1 1 0

et++4-2.2 0.8681 0 35 0.8681 1 4 1.18

Threads:

awe2-0.1 0.7237 0 10 0.7237 1 1 0

prestol.0 0.6071 0 10 0.6071 1 1 0

Others:

RPC++ 0.1250 0 1 0.1250 0 1 0

MC++0.02 0.4694 0 8 0.4694 0 1 0

c++-suite-1.0 0.3333 0 5 0.3333 0 4 3.70

newmat 0.7222 0 9 0.7222 1 1 0
attributes of object-oriented systems including method and References
class cohesion [4, 2], method reuse through inheritance, and
coupling through message passing. We also want to mea- [1] J.M. Bieman. Deriving measures of software reuse in
sure the redefinition of methods and instance variables by object-oriented systems. In T. Denvir, R. Herman,
subclasses, since such redefinition can increase the difficulty and R. Whitty, editors, Formal Aspects of Measure-
of verification and testing [13]. Measurements of these ad- ment. (Proc. BCS-FACS Workshop on Formal Aspects
ditional attributes should provide further insight into the of Measurement), pages 79-82. Springer-Verlag, 1992.
actual use of object—orientgd programming co.nstructg. We [2] .M. Bieman and B-K. Kang. Cohesion and reuse
plan to connect these findings to other quality attributes . bi . d svst P ACM S ;
such as maintainability and reliability. in an object-oriented sys em.’ roc. A ymposwum

on Software Reusability (SSR’95), April, 1995, Seattle,
Washington.

[3] J.M. Bieman and S. Karunanithi. Measurement of lan-
guage supported reuse in object oriented and object
based software. The Journal of Systems and Software.
(to appear).

[4] J. Bieman and L. Ott. Measuring functional cohe-
sion. IEEE Trans. Software Engineering, 20(8):644—
657, Aug. 1994.

[6] G. Booch. Object-oriented Analysis and Design with
Applications 2nd Edition. Benjamin/Cummings, Red-
wood City, CA, 1994.

[6] T. Cargill. C++ Programming Style. Addison-Wesley,
Reading, MA, 1992.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Software En-
gineering, 20(6):476-493, June 1994.

[8] B. J. Cox. Planning the software industrial revolution.
IEEE Software, 7(6):25-33, November 1990.

[9] P. Devanbu. GENOA a customizable, language- and

front-end independent code analyzer. Proc. Int. Conf.
Software Engineering (ICSE), pages 307317, 1992.

[10]

[11]

[12]

[13]

[14]

N. Fenton. Software Metrics - A Rigorous Approach.
Chapman and Hall, London, 1991.

N. Fenton, S.L. Pfleeger, and R. Glass. Science and sub-
stance: a challenge to software engineers. IEEE Soft-
ware, 11(4):86-95, July 1994.

A. Lake and C. Cook. A software complexity metric
for C++. Technical Report 92-60-03, Computer Sci-
ence Dept., Oregon State Unviersity, Corvallis, Oregon,
1992.

G.T. Leavens. Modular specification and verification of
object-oriented programs. IEEE Software, 8(4):72-80,
July 1991.

M. Stark. Impacts of object-oriented technologies:
Seven years of software engineering. Journal of Sys-
tems and Software, 23:163-169, 1993.

