CHAPTER 6

Metric Development for
Object-Oriented Software

James M. Bieman

6.1 Introduction

A programming paradigm of great interest and activity is object-
oriented programming and design. The reasons to develop and
use software metrics for software implemented in imperative pro-
gramming languages also apply to software developed using object-
oriented programming languages. Perhaps metrics are even more
important in the object-oriented paradigm, because, in many ways,
object-oriented programming can be even more complex than im-
perative programming.

A foundation like measurement theory is critical for the devel-
opment of metrics for object-oriented programs. Much of the work
done in developing metrics for imperative programs was ad hoc.
Users and researchers have tended to look at particular problems
or needs and have come up with specialized solutions. The obvi-
ous difficulty is that these problems have for the most part been
approached in an ad hoc manner without any theory or founda-
tion to give guidance in the development of the solutions. Thus,
there is no reliable way to understand how metrics for imperative
programs can be adapted — if they can be — for object-oriented
programs, and there is no real experience except for ad hoc meth-
ods that can be used to develop metrics for a new programming
paradigm such as object-orientation. Thus, the work presented in
this chapter is important for its own sake and as a way of gaining

Published in Software Measurement, edited by Austin Melton, pp. 75-92.
Copyright ©1996 International Thompson Computer Press.

Contents and format does not exactly match that in the published book.

76 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

insight into metric development which can at least in part be used
when metrics for other programming paradigms are needed.

Software metrics are derived to quantify properties of both ex-
isting and planned software. Thus, software metrics research and
development tends to focus on products developed using software
development methods and languages that are current at the time of
the research. Halstead’s software science metrics focus on the ba-
sic language units of assembly and Fortran code—operators and
operands (Halstead[77]). This focus on operators and operands
matches the software development process commonly used in the
1960’s and early 1970’s. Much of the research on control flow mea-
surement reflects the focus of the software engineering community
on structured programming during the late 1970’s (McCabe[76],
Fenton-Whitty[86], Whitty[89], Howatt-Baker[85b,89], Zuse[91]).
Metrics developed to quantify attributes such as module cohesion
assume that a module is a procedure or function (Ott[92], Ott-
Bieman[92], Ott-Thuss[93], Bieman-Ott[94]). This assumption also
fits the structured programming paradigm.

Software measurement research must adapt to the emergence of
new software development methods and new perspectives of soft-
ware engineering. These emerging methods include specification
techniques and logic programming. Metrics for new language and
design paradigms must be based on models that are relevant to
these paradigms (Melton et al.[90]). Myers and Kaposi give ini-
tial results on developing metrics for Prolog programs based on a
model of Prolog data (Myers-Kaposi[91]). In the chapter Analysis
and Measurement Techniques for Logic-based Languages McCauley
and Edwards discuss new techniques for developing and verifying
metrics for logic languages. Whitty defines metrics of Z specifica-
tions (Whitty[89]).

Measurement should be applicable to a high-level perspective
of large systems with thousands of program units. Such design
metrics need not deal with all of the details of an implementation.
In a comprehensive 1988 report, Ince and Sheppard conclude that
“progress has been very slow” in developing appropriate software
design metrics (Ince-Sheppard[88]).

Object-oriented design and object-oriented programming appear
to be the structured programming of the 1990’s. Software metrics
researchers need to focus on this new paradigm (Bieman[91]). At-
tributes that are well understood in the world of procedural pro-
gramming may not be directly relevant to object-oriented software.

INTRODUCTION 7

For example, the concepts of coupling and cohesion need to be re-
formulated in order to be applied to object-oriented systems or to
abstract data types (Woodward[93]).

In an object-oriented system, the basic program unit is a class
rather than a procedure. A class with its encapsulation of state
with associated methods (operations) is a significantly different
and richer abstraction than the procedure units within procedural
programs. The inclusion of inheritance in object-oriented systems
further complicates the static relations between classes. Models and
abstractions that are appropriate to the object-oriented paradigm
are needed.

Seldom have new design techniques been evaluated in a rigor-
ous and quantitative fashion. The object-oriented paradigm is no
exception. Proponents assert that object-oriented programming is
the silver bullet solving the software problem (Cox[90a], Cox[90b]),
with little data to support such claims. Object-oriented software
is supposed to be easy to reuse, yet few quantitative studies on
reuse have been conducted, and metrics to quantify the amount of
reuse in object-oriented software are lacking. Object-oriented pro-
ponents argue about the effects of the use of particular language
constructs. For example, the effects of the use of private inheri-
tance on class reuse in C++ programs are frequently debated on
the comp. lang. c++ internet news group. Empirical studies could
resolve such debates.

Significant data exists for empirical studies of properties of
object-oriented software. Many object-oriented software libraries
are in the public domain. New systems, in theory, are extensions
of existing code. Thus, once metrics are rigorously defined, plenty
of data exists to test hypotheses regarding quantitative properties
of object-oriented software.

The object-oriented paradigm is ideal for metrics research. Data
is available and hypotheses concerning quantifiable properties of
object-oriented software are known. However, rigorous, well defined
models suitable for defining metrics of attributes of object-oriented
software are needed. In this chapter we take a measurement theory
approach; the focus is on the measurement of structural properties
of software artifacts.

The rest of the chapter is organized as follows: Section 2 de-
scribes the differences between procedural and object-oriented soft-
ware from the perspective of deriving software metrics. These dif-
ferences translate into appropriate research goals for developing

78 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

metrics for object-oriented software. In Section 3, an overview of
some of the on-going work in developing object-oriented metrics is
given. Section 4 provides some details of the object-oriented reuse
measurement project at Colorado State University, which has stud-
ied reuse in both Ada and C++ systems. The use of measurement
to quantify desirable and undesirable structural style in object-
oriented software is described in Section 5. Concluding remarks
are in Section 6.

6.2 How Is Object Oriented Software Different?

From all of the hype concerning object-oriented programming, we
must assume that there is something special about an object-
oriented program. In this chapter the structure of object-oriented
programs is examined so as to identify the unique aspects of these
programs. Further, object-oriented software is examined from the
perspective of software metrics development, and measuring at-
tributes of the static structure of software documents is looked at.
These are the structures used in object-oriented programs, object-
oriented design, and object-oriented analysis. The two central ab-
straction mechanisms in object-oriented software are data abstrac-
tion and inheritance. The control and communication mechanism
is message passing rather than direct procedure or function invoca-
tion. Global variables are not directly accessed. Rather, variables
are accessed via messages passed to objects.

We can view the static definition of an object-oriented software
system as a collection of abstract data types called classes. A class
is an encapsulated specification of both the persistent state of an
abstract data type and its operations. An instantiation or instance
of a class is an object. There may be several concurrently active
objects of one class; each instantiation is a different object. Sup-
pose a class defines a stack abstract data type. We can instantiate
several stack objects, and each object may contain different values
in their stack frames. To change the internal state of an object, a
message with a specified state changing effect must be sent to the
object. Responses to messages are specified via methods which are
components of classes. Methods are essentially procedures which
are local to a class or inherited. Methods may have parameters,
assignments to local variables and persistent class variables, and
may send other messages. A stack class will contain methods for
common stack operations such as push, pop, top, is empty, etc.

HOW IS OBJECT ORIENTED SOFTWARE DIFFERENT? 79

An object-based system is one that is built around data abstrac-
tion; an object-oriented system also makes use of inheritance. In-
heritance provides language support for specifying that “I want
something just like that except” A developer can modify a
particular class to create a new class that behaves somewhat dif-
ferently than the parent class. The original class is the superclass
and the new class is the subclass. The subclass can be modified by
adding new state variables, adding new methods, and/or changing
existing methods. When creating a subclass, a developer need only
specify the differences from the superclass.

Traditional software uses procedures and functions as the major
abstraction mechanisms. The focus of abstraction is on the ac-
tions taken, the procedure, rather than the data that is acted on.
A traditional module is a procedure or function, and most of the
unit-level metrics have been developed with the assumption that a
module is one procedure or function. Control flow measurement is
based on the flowgraph model, which is appropriate for one proce-
dure (McCabe[76], Fenton[86], Zuse[91]). A traditional system is a
collection of procedures and functions.

Metrics developed for traditional software can be applied to
object-based and object-oriented software. Chappell, Henry and
Mayo developed a measurement tool to take a set of traditional
measurements on object-based Ada code (Chappell et al.[90]). The
metrics included in the tool are lines of code, Halstead metrics (Hal-
stead[77]), cyclomatic complexity (McCabe[76]), review complex-
ity (Woodfield[80]), and information flow (Henry[81]). The authors
found the tool useful for evaluating programming style. However,
they were unable to measure factors related to abstract data types
as a unit, since the metrics treat procedures as a unit.

Tegarden, Sheets, and Monarchi applied a similar set of tra-
ditional metrics to object-oriented software (Tegarden et al.[92]).
The metrics used were lines of code, a set of Halstead metrics, and
cyclomatic complexity. They applied the metrics to one example
of an object-oriented system implemented in C++. They demon-
strated that the use of polymorphism through operator overloading
and/or inheritance can decrease many of the metrics. The authors
are not confident about the magnitude of the metrics, but feel that
the ordering implied by the metrics is accurate. Thus, the met-
rics appear to be on an ordinal scale and not an interval or ratio
scale. They also seek metrics that focus on attributes unique to
object-oriented systems.

80 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

Metrics are generally based on structural components and levels
of a software system. Tegarden, Sheetz, and Monarchi identify a
set of levels for object-oriented metrics (Tegarden et al.[93]). The
levels are

1. variable level,
2. method level,
3. object level, and
4. system level.

In this chapter a similar set of levels is used. However, since the
focus is on larger software components, the variable levels are not
addressed. Since objects are dynamic rather than static program
entities, the generic term wunit level or class level rather than ob-
ject level referred to by (Tegarden et al.[93]) is used. Also, unit
level can refer to units such as packages or modules in object-based
languages such as Ada or Modula-2. In (Tegarden et al.[93]) inheri-
tance issues are addressed at each level. In this chapter inheritance
is treated as an independent issue (and level). Thus, the focus is on
measurement for the method-level, class or unit-level, systems- or
integration-level, and inheritance-structure of an object-oriented or
object-based system. At each level, various models may be useful
for deriving metrics.

Method-level. The method-level refers to the defined operations of
a class. This is the level that most resembles procedure or function
modules of traditional software. As a result, measurements used
for traditional software are most applicable at this level. At this
level, the control flowgraph model can be used to derive control
complexity metrics, and a model of a method as a set of program
slices can be used to derive metrics of cohesion (Ott[93]).

Class-level or unit-level. The unit of an object-oriented system
is the class or abstract data type, while the unit of a procedu-
ral system is a procedure or function. A procedure or function
corresponds to a class method, and methods are really sub-units
in a class. Thus, most of the traditional unit-level measurements
can be applied only to individual methods. Control flowgraphs are
intuitive abstractions for describing and measuring properties con-
cerning the control flow in a method. To characterize the structure
of an abstract data type, we need an abstraction that combines the
methods and data structure of an ADT in an intuitively satisfying
way. But, there is no obvious abstraction for describing properties

HOW IS OBJECT ORIENTED SOFTWARE DIFFERENT? 81

of an abstract data type. A core problem in designing metrics for
object-oriented software is determining appropriate unit-level ab-
stractions. Sets can be an initial model of the Class level, where a
class is considered a set of methods and instance variables.

System-level. Each program unit (class, package, module, etc) in
an object-based or object-oriented system must hide details from
other program units to preserve the information hiding proper-
ties of abstract data types. Abstractions that capture the name
space of a system will prove useful to measure and will be helpful
in analyzing information hiding attributes. Message passing deter-
mines the control and data connections between program units (ob-
jects). Call graphs are appropriate abstractions of the control flow
between units for both object-oriented and traditional software.
However, for object-oriented software, call graph edges represent
messages rather than invocations. Booch diagrams are appropriate
abstractions for object oriented designs (Booch[91]). The key dif-
ference between traditional and object-oriented systems here is the
use of messages rather than invocations. Dynamic scoping in many
object-oriented languages can make the derivation of a call graph
at compile time difficult. Here we can model a system as a set
of class inheritance hierarchies, and we may also include message
targets of classes as sets of relations.

Inheritance Structure. Inheritance is unique to object-oriented
systems. The class, superclass, subclass hierarchy can be repre-
sented by a class hierarchy graph. Figure 6.1 shows an example
class hierarchy graph from a object-oriented data base of univer-
sity records.

The inheritance graph abstraction can be used to describe some
object-oriented software attributes and derive their metrics. (Note
that many object-oriented languages, such as C++ support multi-
ple inheritance, and so one class may have several superclasses.)

Models for deriving OO Metrics

For class or unit level metrics we can represent a class as a set of
methods and instance variables. We can represent methods using
slices and control flowgraphs. A system can be viewed as a tuple
including a set of classes, a set of inheritance relations between
classes, and a set of message passing relations. The most common
way to view the inheritance relations is through an inheritance

82 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

Class Person

N

Class Student Class Employee

/NN

Class Undergrad Class Grad Class Faculty = Class Staff

Figure 6.1 Inheritance hierarchy graph abstraction

tree or graph, but such a graph can be generated through a set
of inheritance relations. However, some measurable attributes may
require the use of several of these models. For example, a metric
that indicates the number of inherited methods may be derived.
Such a metric depends on both the set of inheritance relations and
the names of the actual methods in each class.

Choosing the right model to use for deriving a metric depends
on matching the attribute of interest to the necessary information
represented in the model. Inheritance and the use of classes rather
than procedures as the units of program development are the con-
structs that most distinguish object-oriented software from proce-
dural software. Thus, the focus is on measurements of properties
of classes and inheritance, and now we look at how object-oriented
metrics have been developed (both with and without using explicit
models).

6.3 Object Oriented Measurement Research

Research efforts can be evaluated in terms of how constructs unique
to object-oriented software are addressed. Key concepts are unit-
level measurement, inheritance, and interconnection issues such as
information hiding and message passing. A key issue in deriving
metrics appropriate for object-oriented software is defining abstrac-
tions or models of object-oriented software properties.

Gannon, Katz, and Basili look at metrics for object-based Ada
software (Gannon et al.[86]). They propose simple and more elabo-
rate package metrics. The simple metrics are counts of the number

OBJECT ORIENTED MEASUREMENT RESEARCH 83

of declared packages, generic packages, and instantiations of generic
packages. (An instantiation of a generic package is equivalent to the
declaration of a non-generic package.) A component access metric
indicates the relative number of components of non-local data ob-
jects that are accessed in a package unit. It is calculated as the
ratio of the number of non-local (declared in an external package)
record fields that are accessed by a package to the package length
(measured in lines of code). Here, a package is modeled as a set of
record fields. The authors show via a case study that this metric
is related to the difficulty of changing a package. The component
access metric indicates a form of coupling. Thus a relationship with
the difficulty of modifying a package is expected. The component
access metric also indicates reuse; we see that there is a connection
here between reuse and coupling.

Another metric proposed by Gannon, Katz, and Basili is a pack-
age visibility metric. This metric is based on counts of the number
of

1. package units that access information in a package (Used)
2. units where the package is visible (Current),

3. units where a package could be made visible by adding a with
clause (Awvailable), and

4. units where the package are visible after moving with state-
ments to the most local subunits (Proposed).

Package bodies are not included in the calculations. Visibility
ratios can be computed that compare the actual visibility with
the highest possible visibility, for example, Used/Available (UA))
and Proposed/ Current (PC). These ratio measurements range in
value from 0 to 1 and can indicate the level of information hid-
ing. A high UA(P) for package P indicates that P is accessed in
most of the units that could access P. A low UA(P) indicates that
few of the units with access to P actually use P. A high PC(P)
indicates that P must be visible (based on system structure) to
(almost) only the units that actually access P. Since visibility is
a key concept in object-based (and object-oriented) software these
ratio metrics should prove useful. For these visibility metrics, we
might think that sets of packages is the model used for measure
derivation. However, Ada allows unbounded nesting of packages,
and this nesting complicates a model based on sets.

Sheetz, Tegarden, and Monarchi derive a set of primitive counts

84 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

of attributes of object-oriented code at several levels (Sheetz et
al.[91]) oriented software are those related to the class level (called
the object-level by (Sheetz et al[91], Tegarden et al.[93])) and in-
heritance structure. All of these metrics can be derived from a
model of an object-oriented system as a tuple with a set of classes,
a set of inheritance relations, and a reference set for each class.
The metrics at these two levels that are clearly defined include:

Class level metrics:

used-by/uses: number of classes [using /used by] a class.

fan-in/fan-out: number of unique messages [received/sent] by
a class.

fan-down: number of subclasses of a class

fan-up: number of superclasses of a class

class-to-root depth: maximum number of levels above a class
in the inheritance hierarchy

class-to-leaf depth: maximum number of levels below a class in
the inheritance hierarchy

local-to-parent conflicts: number of properties defined in a class
with the same name as an inherited property.

parent-to-parent conflicts: number of properties defined in mul-
tiple parents of a class with the same name.

Inheritance structure metrics:

max depth of hierarchy: number of levels from the root to the
leaf that is at the greatest distance.

max breadth of hierarchy: maximum number of classes at any
one level.

inheritance links: number of inheritance links.

The authors provide a model of complezity based on the metrics,
and some intuition concerning the relationship between the metrics
and coupling and cohesion; they use this model to combine the
primitive metrics into composites.

Lake and Cook developed a tool that counts various attributes
in C++ programs (Lake-Cook[92]). The tool can generate the in-
heritance hierarchy tree and indicate the number of classes at each
level, the depth of a class in the tree, and the number of sub-classes.
They use the tool in an experiment to determine the relationship

OBJECT ORIENTED MEASUREMENT RESEARCH 85

between class depth in the inheritance tree and the ability of pro-
grammers to perform maintenance tasks. The results indicate that
it is easier for programmers to perform tasks on classes at or near
the root of the inheritance hierarchy tree. These results are pre-
liminary, since the study included only eleven subjects.

Chidamber and Kemerer report efforts on developing structural
metrics for object-oriented design (Chidamber-Kemerer[91]). They
develop a set of metrics at the class level including:

. a size metric based on the number of methods per class;
. the depth of inheritance of a class;

. the number of children;

. non-inheritance couples with other classes;

. the number of methods that can be invoked by a class;

S U s W

. the non-cohesion of a class based on the number of non-shared
instance variables.

Chidamber and Kemerer apply these metrics to two software
systems, one system implemented in C++ and one implemented
in Smalltalk (Chidamber-Kemerer[92]). Of interest in these mea-
surements is the fact that inheritance was not greatly used in these
systems. The median depth of inheritance is only 1 in the C++
system, and 3 in the Smalltalk system. (Smalltalk requires a higher
depth of inheritance since all classes are subclasses of a base class.)

Li and Henry add additional metrics to those developed by Chi-
damber and Kemerer (Li-Henry[93]). They add a class level metric
of coupling through message passing defined as the number of send-
statements defined in a class and coupling through an abstract
data type defined as the number of abstract data types defined in
a class. They also define several class size metrics including the
number of local methods and the number of semicolons (clearly a
language-dependent metric). They also show that the metrics can
be statistically related to maintenance effort.

The foregoing is just a sample of some of the current efforts to
define metrics for object-oriented software. Some common software
measurement research problems still need to be resolved (Melton et
al.[90], Baker et al.[90]). Zuse and Fetcke (Zuse-Fetcke[95]) provide
some new insights into how to validate scale factors for object-
oriented measures.

Several of the proposed object-oriented metrics (1) combine met-
rics of different attributes into composites, thus losing sensitivity,

86 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

(2) adjust simple counts with weights, making it difficult or impos-
sible for them to be on an interval or ratio scale, and (2) confuse
measurement systems with prediction systems. However, new in-
sights into object-oriented software measurement are provided.

6.4 The OO Reuse Measurement Research Effort

As an example of current research on object-oriented measure-
ment, the reuse metrics project at Colorado State University (CSU)
is described. Proponents assert that a major benefit of object-
oriented or object-based design and programming is the generation
of reusable software components (Meyer[87]). Components can be
reused as is, or modified using subclassing facilities. Henderson-
Sellers provides insights into the differences between process met-
rics for object-oriented software development and such metrics for
traditional development (Henderson-Sellers[91,92]). These differ-
ences result primarily from effects of the reuse of code on process
prediction models.

To support or refute claims that object-oriented or object-based
software promotes software reuse and to adequately evaluate the
effects of reuse on process models, one must be able to measure
reuse in these systems. Current reuse metrics are not directed to-
ward the object-oriented approach. Thus, there is a strong moti-
vation to develop metrics to quantify reuse in object-oriented and
object-based software.

New definitions of attributes, abstractions and metrics that sup-
port data abstraction, information hiding and inheritance con-
structs are needed to measure reuse in object-oriented systems. A
research group at CSU is studying this problem. (Bieman[91]) de-
fines the classes of software reuse, identifies important perspectives
of reuse, proposes relevant reuse abstractions, and suggests reuse
attributes and associated metrics applicable to object-oriented sys-
tems. In (Karunanithi-Bieman[93a]), these definitions and metrics
are extended with a focus on Ada object-based software which is of
primary interest to the project’s sponsors (NASA, CTA, and the
Colorado Advanced Software Institute).

6.4.1 Object Oriented Reuse Classifications

Reuse can be classified in one of the following ways: public/private,
verbatim/generic/leveraged, and direct/indirect. Public reuse is

THE OO REUSE MEASUREMENT RESEARCH EFFORT 87

reuse of externally constructed software while private reuse is reuse
of software within a product (Fenton[91]). Verbatim reuse is reuse
without modifications. Leveraged reuse is reuse with modifications.
These modifications can be either ad hoc modifications (modifi-
cations not supported by the programming language) or modi-
fications with some language support. Generic reuse is reuse of
generic packages. Generics are simply templates for packages or
subprograms. They are general versions of processes that can be
modified by parameters at compilation time. Direct reuse is reuse
without going through an intermediate entity. Indirect reuse is
reuse through an intermediate entity. The level of indirection is
the number of intermediate entities between a client and a server.
There may be different possible intermediate entities connecting a
client and a server.

Object-oriented languages support reuse in the following ways:

e verbatim reuse through instantiation and use of previously de-
fined classes,

e generic reuse through generic templates, and

o leveraged reuse through inheritance.

Leveraged reuse applies to reuse with any type of modification.
Since it is difficult to measure ad hoc leveraged reuse, we consider
only leveraged reuse for modifications with some language support.
Object-oriented support of leveraged reuse via inheritance provides
an enhanced ability to analyze and measure leveraged reuse.

6.4.2 Perspectives and Reuse Measurement

Different reuse attributes are visible when reuse is examined from
different perspectives. Consider a system where individual modules
access some set of existing software entities. When module M uses
program unit S, M is a client and S is a server. A program unit
being reused is considered a server and the unit accessing that
program unit is considered a client. Reuse can be observed from
the perspectives of the server, the client, and the system. Each of
these perspectives is relevant for the analysis and measurement of
reuse in a system. A set of potentially measurable attributes can
be derived based on profiles of reuse from each perspective.

In object-oriented systems, reuse is not restricted to modules. A
class can reuse another class, a global module (or subprogram), a
local module, and a class module can reuse another class module.

88 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

When a class reuses another class, it can inherit from another class,
instantiate a generic class, and/or use another class. Thus, metrics
of the number of servers reused, the number of times a server is
reused, the number of clients for a server, size of each server and
each client, etc. are important. Size for the relevant attributes can
be determined by source lines of code, number of bytes, or any rele-
vant metric. Again, a client can reuse a server either directly or in-
directly. Hence, the number of indirect servers, indirect clients, lev-
els of indirection, etc., can be measured. All of these types of reuse
can be measured from each of the three perspectives. Using each
perspective, reuse can be categorized as either verbatim, generic,
or leveraged. As a result, numerous measurable attributes can be
defined. Because of the numerous potential reuse metrics, they are
best presented in a tabular fashion. Table 6.1 and Table 6.2 from
(Karunanithi-Bieman[93b] and Bieman-Karunanithi[95]) show the
set of potential reuse metrics from the client perspective and the
server perspective.

Prototype tools to collect a set of metrics for both Ada and C++
software have been developed. The Ada Reuse Metrics Analyzer
(ARMA) (Karunanithi-Bieman[93b], Bieman-Karunanithi[95]) is
based on the semantic analysis system in the Anna-I tool (Men-
dal[92]). ARMA generates counts of the number of packages im-
ported and the number of times the packages and their components
are referenced. The information is generated from both the client
and server perspective, and can be examined from various levels
of abstraction. ARMA produces a reuse data representation of an
Ada system using an internal forest of trees that contains the in-
formation necessary to produce the primitive metrics. An example
internal forest for an Ada system is shown in Figure 6.2.

The internal forest representation tracks the names and the num-
ber of uses of servers and clients for each package and subpackage.
Developers can use the reuse data representation to produce cus-
tomized reports to satisfy a wide range of measurement goals.

The CSU research group used ARMA to measure primitive reuse
attributes for data sets of Ada software provided by CTA, Inc.,
and it also showed that ARMA can be used to generate a set of
component access and package visibility metrics.

The CSU research group has also developed tools to analyze
C++ programs. One tool, Jasmin, generates information concern-
ing the inheritance hierarchy. Jamin was used to measure the use
of inheritance in more than 50 Mbytes of software from 19 C++

THE OO REUSE MEASUREMENT RESEARCH EFFORT 89

Candidate Metrics

Definition

18.

19.

Leveraged

Direct server classes
Indirect server classes

Indirect parent servers

Direct server methods
inherited
Direct server methods
extended

Direct server methods
overridden

Direct server overloaded
methods

Size: each direct server method
that is reused / extended

Size: direct server interface

Size: global defs in server interface

Size: global defs in server body
Size: each client method
Size: client interface

Size: global defs in client interface

Size: global defs in client body
Paths to indirect servers

Length of paths to indirect
servers

Paths to indirect parent
servers

Length of paths to
indirect parent servers

Inheritance relationship
metric

direct superclasses.

classes that direct servers
have Using, Instantiation
and Inheritance indirect
relationships.

indirect superclasses for
client.

methods from server class
available for client.

methods in client extended
from corresponding server
methods.

methods in client
overridding corresponding
server methods.

methods in client
overloading server methods.

paths connecting client and
indirect servers.

edges in a path connecting
client and indirect

servers.

paths connecting client and
indirect parent servers.

7 edges in a path connecting
client and indirect

parent servers.

Table 6.1 Leveraged reuse metrics from client perspective

90 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE
Candidate Metrics Definition
Leveraged Inheritance
Relationship
metric
1. # Direct clients # direct subclasses.
2. # Indirect clients # classes with Using,

Instantiation, and
Inheritance indirect
relationships with
direct clients.

clients that have
inherited indirectly
from server.

times a method in
server is reused in all
all its clients.

3. # Indirect child clients

4. # Client invocations of server
method

Size of server methods

Size of server interface

Size of global definitions in

in server interface

8. Size of global definitions in
in server body

9. Paths to indirect clients

N o

paths connecting
server and clients.

edges in a path
connecting client and
server.

paths connecting
server. and child clients.
#t edges in a path
connecting a server

and child client.

10. Length of paths to indirect clients

11. Paths to indirect child clients

12. Length of paths to indirect
child clients

Table 6.2 Leveraged reuse metrics from server perspective

systems with a total of more than 265,000 non-commented source
lines of code (NCSL) and 2,744 separate C++ classes (Bieman-
Zhao[95]). Although inheritance is used extensively in many of the
measured systems, it is used very infrequently in others. The av-
erage depth of inheritance for classes was less than 1.0 in half of
the systems. The greatest use of inheritance is in the GUI appli-
cations, perhaps because GUI applications tend to model a hierar-
chical world of user interface objects such as icons and windows.
Reuse library classes use inheritance much more than the appli-
cations system classes. The measurements also indicate that there
are many classes that exist independently with no parent or child
classes.

THE OO REUSE MEASUREMENT RESEARCH EFFORT 91

(@ packageXis (b)
subtype My_Int is Integer range 1..100; Y e
function Add (F :in My_Int; 1 - in Integer) return Integer; ©~ S1etE ', XA ;
unction Add (f:inMy_Int; | in Infeger) retum Integer; Vetae 6 ot cieo A
endX: | Y2(ntefece) G Ot L Gt ¥(Boch) 6. Crt1L_Crt0
i Y(Body)G Cnil Cot0 Y.Z(Body) G_Cnt:1L_Cnt:0
package body X is { YZ(Bok)GOnLL OO Y.z Compute{Body) G_Cnt:1L_Cnt:1
function Ada(f : inMy_Int; | Integer) return Integeris V'Z'Cump\{efggd{) ?’fm‘l oo
begin R > X U Teea
body - / | \
retum (F4); ' XAdd
end Add;
end X;
With X;
package Y is
packageZ is
size: X-My_nt;
function Compute return Integer;
endZ;
procedure Print;
endY;
TN
With Text_lo; Mo e N .
! : N R VAN
package body Y is Telog ontl o0 oo
H ext_lol ine \ er N
package body Z is T GOmiLCnd, xGomiLco .
function Compute return Integer is XOCUILCLO oy pig cntL oo o,
X XAddG_Cntil Cnt0 N
begin ot \ N
return X Add (1,2); LTt o | 1 Y.Z Compute!
end Compute; Ted Jo K Sve:
adZ; N xecomatomo
i) XAQIG_On1L_Citl
procedure Print is 1 Y.Pint_; S
. Server:
begin P . Text l0G_Cnt:1L Cnt0
Text_lo.Put_Line ("An Example Ada System’); [Textlo f=--._ TedloMilieGOmilL Gil
end Print; et " Text loPut Line:
) ¥(Body) G_Cnt:1L_Cit Eeputsc s At
endY; Y Prini(Body) G Crt:LL_Cit0 Client:

Y(Body) G_Crt:1L_Cnt:0
Y Print(Body) G_Cnt:1L_Cn:1

Figure 6.2 An Ada System (a) and its internal representation (b)

Figure 6.3 from (Bieman-Zhao[95]) shows that few of the 19
measured systems have the 7+ 2 maximum class inheritance depth
recommended by Booch (Booch[94]). Two of the systems exceed
Booch’s maximum, while most of the systems never reach this max-
imum. We did not measure the maximum width of individual in-
heritance trees; however, 32% of the systems had classes with more

92 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

Number of Systems

0 1 2 3 4 5 6 7 8 9 10 Maximum Depth

Figure 6.3 Mazimum Class Inheritance Depths in 19 C++ Systems

than 16 children. We also found that multiple inheritance is not
used very often.

The relationship between class cohesion and private reuse was
also studied by the CSU group (Bieman-Kang[95]). To do this,
sensitive class cohesion measures were developed. Cohesion refers
to the “relatedness” of module components. Method and instance
variable class components are treated as the key class units that
may or may not be connected. Two methods are related (con-
nected) through instance variable(s) if both methods use the in-
stance variable(s). Using this orientation, class cohesion can be
measured by the relative connectivity (through instance variables)
of the methods.

Two measures of class cohesion are defined based on the direct
and indirect connections of method pairs. Let NP(C) be the total
number of pairs of visible methods in a class C, NP be the maxi-
mum possible number of direct or indirect connections in a class,
NDC(C) be the number of direct connections, and NIC(C) be the
number of indirect connections in class C. The two measures are
Tight class cohesion and Loose class cohesion:

1. Tight class cohesion (TCC) is the relative number of directly

THE OO REUSE MEASUREMENT RESEARCH EFFORT 93

connected methods:
TCC(C) = NDC(C)/NP(C)

2. Loose class cohesion (LCC) is the relative number of directly or
indirectly connected methods:

LCC(C) = (NDC(C) + NIC(C))/NP(C)

The CSU research group applied the class cohesion measures
to the InterViews system, a reasonably large C++ system devel-
oped at Stanford University. It consists of more than 25,000 non-
commented lines of code. 14% of the classes in InterViews do not
have any methods; these classes were excluded from our measure-
ments. Also removed were all virtual methods with empty bodies.
Only local cohesion was measured—inherited methods were not in-
cluded in the measurement. Reuse was measured by counting the
number of descendents of a particular class.

No relationship was found between class cohesion and instan-
tiation reuse in the InterViews system. However, significant rela-
tionships were found between cohesion and inheritance reuse. Fig-
ure 6.4 from (Bieman-Kang[95]) shows the relationship between the
number of descendents and local class cohesion. Average values of
tight class cohesion and loose class cohesion are provided for four
different categories based on the number of descendents. Figure 6.4
clearly shows that the classes that are reused more frequently ex-
hibit lower cohesion. It was also found that this relationship holds
generally for all levels of depth in the inheritance hierarchy. A T-
test and the Wilcoxon rank-sum test were used to evaluate the
significance of the results. A T-test can be used for data with a
normal distribution and an interval scale, and the Wilcoxon rank-
sum test can be used if there is a question concerning distributions
or if the data is ordinal. Both tests shows that the relationship we
see in Figure 6.4 is significant (to the .05 level) and not due to
chance.

Although, the most cohesive classes in InterViews tend to have
fewer descendents, most of the classes are quite cohesive. The mean
TCC is 0.75 and median is 1.0; the LCC mean is 0.8 and median
is 1.0. Thus, most of the pairs of methods in most of the classes
are connected.

An alternative approach for measuring cohesion is based on gen-
erating “slices” for each instance variable over all class methods

94 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

10 1.0
08 + 0.8
g g
O o6+ b 06
= ks
O o4+ § 0.4 1
5 T
= 02+ = 02
0.0 0.0
0 1~9 10~29 >29 0 1~9 10~29 >29
No. of Descendents No. of Descendents
€Y (b)
10
3
3 O
O -
= ks
5 g
5 E
= =
0 1~9 10~29 >29 ’ 0 1~9 10~29 >29
No. of Descendents No. of Descendents
(c) (d)

Figure 6.4 Number of descendents and Class Cohesion in Inter Views

(Ott et al[95]). Then the similarity of the slices is used to de-
termine cohesion. Two measures are proposed, strong data cohe-
ston and weak data cohesion, following a derivation similar to that
used by Bieman and Ott to develop functional cohesion measures
(Bieman-Ott[94]). This alternative approach is now under evalua-
tion.

6.5 Quantifying Structural Style

We see that there are many metrics that can be used to characterize
object-oriented systems. The correct metrics to use depend on the
software attributes of interest. Rombach can help determine the
appropriate metrics for a particular purpose (Basili-Rombach|[88]).
The GQM paradigm requires that software measurements be tied

QUANTIFYING STRUCTURAL STYLE 95

to a software engineering goal. For example, the goal might be how
to characterize reuse in an object-oriented system. A goal leads
to questions. For example, “What structures are used to facili-
tate reuse?” The answers to such questions lead to metrics. In the
reuse example, metrics can indicate the number of times that reuse
structures appear in a software artifact.

Many software metrics have been derived to quantify attributes
of the traditional software unit, the procedure or function. Yet in
an object-oriented or object-based system, the software unit is a
class or abstract data type. If we want to answer questions about
common concerns such as control flow complexity and cohesion in
object-oriented or object-based systems, we need to redefine our
metrics so that they can apply to classes and abstract data types.

It would be really good to use measurement to help indicate the
structural quality of a system. For example, inheritance is supposed
to be a useful tool to support reuse. Thus the inheritance graph
structure should help indicate how inheritance supports reuse. Met-
rics that indicate the structure of the inheritance hierarchy should
prove useful. For example, potential metrics include the maximum
depth or width and other attributes of an inheritance hierarchy
graph. The structure of an inheritance hierarchy graph can be used
to indicate the quality of a software design. However, first we need
to determine what is a good way to use inheritance and what kinds
of inheritance structures should be avoided.

Good and bad structures can be determined through experi-
ence and through more formal experimentation. Lake and Cook
use experimentation to show the relationship between the size of
inheritance trees and the comprehension of C++ programs (Lake-
Cook[92]). Li and Henry also find that many structural attributes
are related to the effort to maintain a system (Li-Henry[93]).
They show that size alone is not enough to predict the number
of changes.

The component access metric and the visibility metrics of Gan-
non, Katz, and Basili quantify some aspects of programming style
(Gannon et al.[86]). The component access metric indicates the
non-local coupling, and the visibility metrics indicate the amount
of unnecessary visibility. Both coupling and visibility should be
minimized according to style rules.

Software development experience can provide insights about de-
sirable software structure. Lieberherr, Holland and Riel suggest
that limiting references to non-local objects will ease modification

96 METRIC DEVELOPMENT FOR OBJECT-ORIENTED SOFTWARE

effort (Lieberherr et al.[88]). They define an object-oriented soft-
ware design style, the Law of Demeter:

For all classes C, and for all methods M attached to C, all objects
to which M sends a message must be instances of classes associated
with the following classes:

1. The argument classes of M (including C).

2. The instance variable classes of C.

(Objects created by M, or by functions or methods which M calls,
and objects in global variables are considered as arguments of M.)

Lieberherr et al. argue that by following the Law of Demeter a
developer can control coupling, control access to information, nar-
row interfaces, and facilitate semantic analysis. These arguments
are intuitive, and we can use metrics to provide empirical support.
We can design measurement tools to indicate the classes that vio-
late the Law of Demeter (and corollaries described by (Lieberherr,
Holland, Riel[88])), and then empirically validate the claims. We
can also use metrics that indicate violations of the law as a mech-
anism to identify classes that need inspection or redesign.

In his recent book, Cargill provides a set of guidelines for good
C++ programming style (Cargill[92]). Included in his numerous
style recommendations are that developers should limit polymor-
phism and inheritance, design consistent structures, and reduce
coupling. Many of the recommendations can be used to derive
structural metrics.

With structural style metrics, we can empirically determine the
benefit of alternative design styles. Once we really understand the
structural styles that promote good quality — reliability, main-
tainability, reusability, etc — we can use measurement to ensure
that development is consistent with desired structural style.

6.6 Conclusions

The utility of software development paradigms, such as object-
oriented or object-based programming, design, and analysis can
be evaluated through quantitative studies. Measurement tools de-
veloped specifically for the special characteristics of object-oriented
software are needed.

The features that are unique to object-based systems include
reliance on data abstraction and generic modules. Object-oriented

CONCLUSIONS 97

software also uses inheritance and message passing. We need soft-
ware metrics that treat a class or abstract data type rather than a
procedure or function as a basic unit. We also need software metrics
that quantify attributes of inheritance and inheritance hierarchies.

Researchers have derived metrics to quantify the amount of non-
local references, the visibility of components, inter-class depen-
dencies, the inheritance structure, and the structure of individual
classes. Metrics of interest focus on program units — packages and
classes, and inheritance hierarchies.

The most general model for deriving metrics appropriate for
object-oriented systems is a tuple that includes a set of classes,
a set of inheritance relations between classes, and a set of class
relations of interest. Classes must also be modeled as sets of meth-
ods and instance variables. More detailed models may be necessary
to derive specific metrics, and nested units, such as Ada packages,
make the use of sets to model systems more difficult.

There is no single metric to indicate the amount of reuse in
a system. Rather, a vector of metrics is needed to quantify vari-
ous attributes of reuse. In a similar manner, other researchers find
many ways to quantify structural attributes of object-oriented and
object-based software.

Having numerous metrics to quantify the various attributes of a
system provides flexibility to those analyzing a system. A developer
can use the metric or combination of metrics that are appropriate
to answer specific questions about a system. Questions about reuse,
the use of inheritance, and visibility can be answered by selecting
the particular metrics that quantify relevant attributes.

We can use measurement to evaluate development style. Intu-
ition about good structural style can be formalized into quantita-
tive metrics, and then we can determine if a system is consistent
with the desired style.

Future research ought to focus on quantitative evaluations of
structural style, and the relation between style and (hopefully
quantifiable) attributes such as reuse, reliability, and maintainabil-
ity. We also need better models for deriving object-oriented metrics
— models that match the unique characteristics of object-oriented
software.

References

[Note] References for all chapters were placed in one list at the
end of the book. The following list of references should match
the references in the chapter. However some references may
have been updated or added, and a different labelling scheme
is used.

[BBFt90] A.L. Baker, J.M. Bieman, N. E. Fenton, A.C. Melton, and
R.W. Whitty. A philosophy for software measurement. Journal of
Systems and Software, 12(3):277-281, July 1990.

[Bie92] J.M. Bieman. Deriving measures of software reuse in object-
oriented systems. In T. Denvir, R. Herman, and R. Whitty, edi-
tors, Formal Aspects of Measurement. (Proc. BCS-FACS Workshop
on Formal Aspects of Measurement), pages 79-82. Springer-Verlag,
1992.

[BO93] J.M. Bieman and L.M. Ott. Measuring functional cohesion. IEEE
Trans. Software Engineering, August 1994.

[Boo91] G. Booch. Object-Oriented Design with Applications. Ben-
jamin/Cummings, Redwood City, CA, 1991.

[BR88] V.R. Basili and H.D. Rombach. The tame project: Towards
improvement-oriented software environments. IEEE Trans. Software
Engineering, SE-14(6):758-773, June 1988.

[Car92] T. Cargill. C++ Programming Style. Addison-Wesley, Reading,
MA, 1992.

[CHM90] B.L. Chappell, S. Henry, and K.A. Mayo. Measurement of Ada
throughout the software development life cycle. Proc. 8th Conf. on
Ada Technology, pages 525-531, 1990.

[CK91a] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. Technical Report CISR WP No. 249, Sloan WP No.
352-93, Center for Information Systems Research, Sloan School of
Management, MIT, Cambridge, MA, 1991.

[CK91Db] S.R. Chidamber and C. F. Kemerer. Towards a metrics suite for
object oriented design. Proc. OOPSLA’91, pages 197211, October
1991.

[Cox90a] B. J. Cox. Planning the software industrial revolution. IEEE
Software, 7(6):25-33, November 1990.

[Cox90b] B. J. Cox. There is a silver bullet. Byte, 15(10):209, October

100 REFERENCES

1990.

[Fen91] N. Fenton. Software Metrics - A Rigorous Approach. Chapman
and Hall, London, 1991.

[FM90] N. Fenton and A. Melton. Deriving structurally based software
measures. Journal of Systems and Software, 12(3):177-187, July 1990.

[FW86] N. E. Fenton and R. W. Whitty. Axiomatic approach to software
metrication through program decompostion. The Computer Journal,
29(4):329-339, 1986.

[GKBS86] J.D. Gannon, E.E. Katz, and V.R. Basili. Metrics for Ada
packages: An initial study. Communications of the ACM, 29(7):616—
623, July 1986.

[Hal77] M. H. Halstead. Elements of Software Science. Elsevier, New
York, 1977.

[HB85] J. W. Howatt and A. L. Baker. Definition and design of a tool
for program control structure measures. Proc. of the IEEE Computer
Society’s Ninth International Computer Software €4 Applications Con-
ference (COMPSACS85), pages 214-220, 1985.

[HB89] J. Howatt and A. Baker. Rigorous definition and analysis of pro-
gram complexity measures: An example using nesting. The Journal
of Systems and Software, 10(2):139-150, 1989.

[HK81] S. Henry and D. Kafura. Software structure metrics based on
information flow. IEEE Trans. Software Engineering, SE-7(5):510-
518, 1981.

[HS91] B. Henderson-Sellers. Some metrics for object-oriented software
engineering. Proc. TOOLs Pacific 91 (Technology of Object-Oriented
Languages and Systems, pages 131-139, 1991.

[HS92] B. Henderson-Sellers. Managing and measuring object-oriented
information systems development. Proc. Workshop on Object-
Oriented Software Engineering Practice, February 1992.

[IS88] D. C. Ince and M. J. Sheppard. System design metrics: A review
and perspective. Proc. 2nd IEE/BCS Conf. on Software Engineering,
pages 23-27, 1988.

[KB93a] S. Karunanithi and J.M. Bieman. Candidate reuse metrics for
object oriented and Ada software. IEEE-CS Int. Symp. Software Met-
rics, 1993.

[KB93b] S. Karunanithi and J.M. Bieman. Measuring software reuse in
object oriented systems and ada software. Technical Report CS-93—
125, Computer Science Dept., Colorado State Univ., Fort Collins, CO,
1993.

[LC92] A. Lake and C. Cook. A software complexity metric for C++.
Technical Report 92-60-03, Computer Science Dept., Oregon State
Unviersity, Corvallis, Oregon, 1992.

[LH93] W. Lei and S. Henry. Maintenance metrics for the object ori-
ented paradigm. Proc. IEEE-CS Int Software Metrics Symp., page to

REFERENCES 101

appear, May 1993.

[LHR88] K. Lieberherr, I. Holland, and A. Riel. Object-oriented pro-
gramming: An objective sense of style. Proc. OOPSLA‘88, pages
323-334, September 1988.

[McC76] T. J. McCabe. A complexity measure. IEEFE Trans. Software
Engineering, SE-2(4):308-320, 1976.

[Men92] G. Mendal. The Anna-I User’s Guide and Installation Man-
ual version 1.4 edition. Stanford University, Computer Systems Lab,
Stanford, CA, 1992.

[Mey87] B. Meyer. Reusability: The case for object oriented design. IEEE
Software, 4(2):50-64, March 1987.

[MGBB90] A.C. Melton, D.A. Gustafson, J.M. Bieman, and A.L. Baker.
A mathematical perspective for software measures research. Software
Engineering Journal, 5(5):246-254, 1990.

[MK91] M. Myers and A. Kaposi. Modelling and measurement of Prolog
data. Software Engineering Journal, pages 413434, November 1991.

[OB92] Linda M. Ott and James M. Bieman. Effects of software changes
on module cohesion. Proc. IEEE/ACM Conf. on Software Mainte-
nance, pages 345-353, November 1992.

[Ott92] L. M. Ott. Using slice profiles and metrics during software main-
tenance. Proc. 10th Annual Software Reliability Symp, pages 16-23,
June 1992.

[Ott93] L. M. Ott and J.J. Thuss. Slice based metrics for estimating
cohesion. Proc. 1993 IEEE-CS Int. Software Metrics Symp., pages
71-81, May 1993.

[STM91] S. D. Sheetz, D. P. Tegarden, and D. E. Monarchi. Measuring
object-oriented system complexity. Proc. 1st Workshop on Informa-
tion Technologies and Systems, December 1991.

[TSM92] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi. Effectiveness
of traditional software metrics for object-oriented systems. Proc. 25th
Hawaii Int. Conf. Systems Sciences (HICSS-25), January 1992.

[TSMar] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi. A soft-
ware complexity model of object-oriented systems. Deciston Support
Systems: The International Journal, to appear.

[Whi89] R. Whitty. Structural metrics for Z specifications. Proc. 4th Z
User Meeting, pages 186-191, December 1989.

[Wo080] S.N. Woodfield. Enhanced Effort Estimation by Eztending Ba-
stc Programming Models to Include Modularity Factors. PhD thesis,
Purdue University, W. Lafayette, IN, 1980.

[Wo093] M. R. Woodward. Difficulties using cohesion and coupling as
quality indicators. Software Quality Journal, 2(2):109-127, June 1993.

[Zus91] H. Zuse. Software Complezity Measures and Methods. W. de
Gruyter, Berlin, 1991.

