
Design-level Cohesion Measures:

Derivation, Comparison, and Applications�

Byung-Kyoo Kang James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523 USA
kang@cs.colostate.edu, bieman@cs.colostate.edu

Abstract

Cohesion was �rst developed to predict properties

of implementations created from a given design. Un-

fortunately, cohesion, as originally de�ned, could not

be objectively assessed, while more recently developed

objective cohesion measures depend on code-level in-

formation. We show that association-based and slice-

based approaches can be used to measure cohesion us-

ing only design-level information. Our design-level co-

hesion measures are formally de�ned, can be readily

implemented, and can support software design, main-

tenance, and restructuring.

Keywords: cohesion, software measurement and
metrics, software design, software maintenance, soft-
ware restructuring and re-engineering, software visu-
alization, software reuse.

1 Introduction

Module cohesion was de�ned by Yourdan and Con-
stantine as \how tightly bound or related its internal
elements are to one another"[9, p. 106]. They describe
cohesion as an attribute of designs, rather than code,
and an attribute that can be used to predict properties
of implementations such as \ease of debugging, ease
of maintenance, and ease of modi�cation" [9, p. 140].
Since cohesion refers to the degree to which module
components belong together, cohesion measurement
should prove to be a very useful restructuring tool [3].

Following the original guidelines [6], skilled engi-
neers conduct subjective assessments of module cohe-
sion. Such assessments are di�cult to automate and
use in practice [8].

There are objective, automatable methods for mea-
suring code-level cohesion. Lakhotia [4] uses an
association-based approach to formalize the notion of

�Research partially supported by NASA Langley Research

Center grant NAG1-1461.

the associations between processing elements as a set
of rules concerning data dependencies in module code.
Bieman and Ott [2] use a slice-based approach to mea-
sure functional cohesion in terms of the connections
between module output slices. Class cohesion mea-
sures for object-oriented software have also been de-
�ned using a slice-based approach, and by analyzing
the connectivity between methods through common
references to instance variables [1, 5].

We use both the association-based and slice-based
approaches to develop design-level cohesion measures.

2 Association-based Cohesion

Stevens, Myers and Constantine de�ne module co-
hesion (SMC Cohesion) on an ordinal scale including
coincidental, logical, temporal, procedural, communica-

tional, sequential, and functional cohesion [6]. Coinci-
dental is the weakest and functional is strongest cohe-
sion. SMC Cohesion is determined by the associations
between all pairs of a module's processing elements.

We [3] have used SMC Cohesion as an empirical
relation system to help us to derive a cohesion measure
that can be applied to both the design and code of
a module, and can be readily automated. We now
summarize the derivation.

2.1 A Design-Level View of a Module

The input-output dependence graph (IODG) mod-
els the data and control dependence relationships be-
tween module input and output components. Input
components of a module include in-parameters and
referenced global variables. Output components in-
clude out-parameters, modi�ed global variables, and
`function return' values. An array, a linked list, a
record, or a �le is one component rather than a group
of components. We use terms based on de�nitions
from compiler design sources [10].

IODG Preliminaries. Variable y has a data depen-

dence on variable x if x `reaches' y through a path con-
sisting of a `de�nition-use' and `use-de�nition' chain;
y has a control dependence on x if the value of x de-
termines whether or not the statement containing y

will be performed; y is dependent on x when there is
a path (a dependence path) from x to y through a se-
quence of data or control dependence; y has condition-
control dependence on x if y has a control dependence
on x, and x is used in the predicate of a decision (i.e.,
if-than-else) structure; y has iteration-control depen-

dence on x if y has a control dependence on x, and
x is used in the predicate of an iteration structure; y
has c-control dependence on x if the dependence path
from x to y contains a decision-control dependence; y
has i-control dependence on x if the dependence path
between x and y contains an iteration-control depen-
dence but no condition-control dependence.

IODG De�nition. The input-output dependence

graph (IODG) of a module M is a digraph, GM =
(V, E) where V is a set of input-output components
of M, and E is a set of edges labeled with dependence
types such that E = f(x; y) 2 V � V j y has data,

c-control, and/or i-control dependence on x g.

2.2 Design-Level Cohesion (DLC)

We de�ne six relations between a pair of output
components based on the IODG representation:

1. Coincidental relation (R1): Two module out-
puts have neither dependence relationship with
each other, nor dependence on a common input.

2. Conditional relation (R2): Two outputs are
c-control dependent on a common input, or one
output has c-control dependence on the input and
another has i-control dependence on the input.

3. Iterative relation (R3): Two outputs are i-
control dependent on a common input.

4. Communicational relation (R4): Two out-
puts are dependent on a common input. One has
data dependence on the input and the other has
either a control or a data dependence.

5. Sequential relation (R5): One output is de-
pendent on the other output.

6. Functional relation (R6): There is only one
output in a module.

Cohesion strength increases from relation R1 to R6.
These relations correspond to the association princi-
ples (temporal cohesion is not included) of SMC Co-
hesion with some degree of overlap.

1
1

1

3

1

1

2

4

3

avg

1
1
1

1
1

2

3
4

3

1
1

1

3

1

3

3
3

max

 (n : integer;

begin
 sum := 0;
 max = arr[1];
 for i := 1 to n do begin
 sum := sum + arr[i];
 if arr[i] > max
 max = arr[i];
 end;
 avg := sum / n;
end;

 var arr,
 sum,
 max : integer;

statementsum

 i : integer;

procedure Sum_Max_Avg

 var avg : float);

Communicational

FC measures :

SFC = 6 / 27 = 0.22

WFC = 17 / 27 = 0.63

A = (11*2 + 6*3) / (27*3)

= 0.49

SMC Cohesion :

Figure 1: Data slice pro�le for Sum Max Avg.

DLC Measure De�nition. The cohesion level of a
module is determined by the relation levels of output
pairs. For each pair of outputs, the strongest relation
for that pair is used. The cohesion level of the module
is the weakest (lowest level) of all of the pairs.

The DLC measure is consistent with the ordinal
scale of SMC Cohesion [3].

3 Slice-based Cohesion Measures

A program slice is the portion of the program that
might a�ect the value of a particular identi�er at a
speci�ed point in the program [7]. Slices can represent
the functional components of a module.

3.1 Functional Cohesion (FC) Measures

Bieman and Ott developed cohesion measures that
indicate the extent to which a module approaches the
ideal of functional cohesion [2]. They introduced three
measures of functional cohesion based on \data slices"
for each output of a procedure. The data slice of a
variable is the sequence of data tokens which have a
dependence relationship with the variable. Glue to-

kens are data tokens common to more than one data
slice; superglue tokens are common to every data slice
of a module. The adhesiveness of a data token is the
number of data slices that the data token lies on.

WFC Weak Functional Cohesion (WFC) is the ra-
tio of glue tokens to the total number of tokens in a
procedure. Strong Functional Cohesion (SFC) is the
ratio of superglue tokens to the total number of data
tokens in a procedure. Adhesiveness (A) is the ratio
of the amount of adhesiveness to the total possible
adhesiveness, which is the adhesiveness when all data
tokens are superglue tokens.

Figure 1 shows example functional cohesion com-
putations. Each column in the �gure corresponds to

arr

sum

n

com-
ponent

1

1

1

output

max

avg

0

1

sum max avg

1

1

0

1

0

1

1

1

0

1

(b)(a)

n arr

sum max

avg

Sum_Max_Avg

Figure 2: An example (a) the IODG and (b) IODT of
a procedure Sum Max Avg.

a data slice for each output. For example, the num-
bers in the �rst column are the number of data to-
kens in the corresponding line that a�ect the output
or are a�ected by the output. The data tokens that
are counted on more than two columns are glue data
tokens and those that are counted on all columns are
superglue data tokens.

3.2 Design-level Functional Cohesion
(DFC) Measures

We derive DFC measures following the approach
used to develop the functional cohesion measures.
Rather than analyzing code details, we use a design
level view modeled by the IODG to de�ne the mea-
sure. The DFC measures use a `simpli�ed' IODG
which includes only dependence relationships between
input-output components, without classifying the de-
pendences. Figure 2(a) shows an IODG diagram and
Figure 2(b) shows a tabular (IODT) representation of
procedure Sum Max Avg of Figure 1.

In the IODG diagram of Figure 2(a), an input is
represented by a circle, and an output by a square.
The texts in each circle and square are the names of
input and output variables. Each arrow indicates the
dependence between two components.

In Figure 2 (b), the names of the output are listed
in the �rst row and the names of the components (in-
puts and outputs) are in the �rst column of the �gure.
The \1" in the �gure indicates that the corresponding
component has a dependence relation with the named
output, and the \0" indicates no dependence relation.

The IODG and IODT show the relationship be-
tween input-output components of a module. The
DFC measures are de�ned using the concepts of iso-
lated and essential components, and component cohe-
siveness.

DFC Preliminaries: A component is isolated if it
a�ects only one local functionality, i.e., it has a de-
pendence relationship with only one output. A com-
ponent is essential if it a�ects (or is a�ected by) all
functionalities of the module | it has dependence re-
lationships with all outputs of the module.

Component `max' in Figure 2 is the only isolated
component; `max' has a dependence relationship with
only one output, itself. If a module contains only
one output, the output is the only functionality of the
module. Thus, all components in the module are es-
sential and not isolated. In Figure 2, components `n'
and `arr' are essential since they a�ect all outputs.

The cohesiveness of a component is its degree of
\relatedness" to the outputs. The cohesiveness of a
component represents the relative number of outputs
that the component relates together. In our model,
every component has a dependence relation with at
least one output. The cohesiveness of a component is
the relative number of the other output(s) with which
the component has a dependence relation. The cohe-
siveness of i'th component of a module is:

Ci =

�
Ni�1

O�1
if O > 1

1 otherwise

where Ni is the number of outputs in a dependence
relation with the ith component, and O is the number
of outputs in the module's IODG.

The cohesiveness of an isolated component is 0 and
the cohesiveness of an essential one is 1. In Figure
2(b), the cohesiveness of n and arr is 1, the cohesive-
ness of sum and avg is 1=2, and the cohesiveness of
max is 0.

DFC Measure De�nition. Loose Cohesiveness

(LC), Tight Cohesiveness (TC) and Module Cohesive-

ness (MC) are the relative number of non-isolated
components, the relative number of essential compo-
nents, and the average cohesiveness of the components
of the model, respectively:

LC(m) = D=T

TC(m) = E=T

MC(m) =

P
T

i=1
Ci

T

where D, E, and Ci are the number of non-isolated
components, the number of essential components, and
the cohesiveness of i'th component, respectively, in
the IODG of module m. T is the total number of
components in m.

Using the de�nition of component cohesiveness,
module cohesiveness can be expressed as

MC(m) =

P
T

i=1
(Ni � 1)

T � (O � 1)
=

P
T

i=1
Ni � T

T �O � T

The three measures for the procedure
Sum Max Avg in Figure 1 and 2 are

LC(Sum Max Avg) = 4=5 = 0:8

TC(Sum Max Avg) = 2=5 = 0:4

MC(Sum Max Avg) =
2 � 2 + 2 � 1

5 � 2
= 0:6

An isolated component has zero cohesiveness, a
non-isolated component has cohesiveness of greater
than 0, and essential component has cohesiveness of
one. Thus, for a given module m: E �

P
T

i=1
Ci � D

where D, E, Ci, and T are de�ned as above. There-
fore, TC(m) � MC(m) � LC(m).

3.3 DFC vs. FC measures
Figure 3 contains unlabeled IODG diagrams for

di�erent module con�gurations. Input, output, and
selected internal data tokens are represented by cir-
cles, squares, and square bars, respectively. Figure
3(d) shows three modules with the same number of
inputs and outputs, and the same dependence rela-
tions. Thus, their DFC measures are equal. However,
the second module contains more essential data to-
kens, and the FC measures of the second module are
higher than those of the �rst module. The third mod-
ule contains more isolated data tokens. Thus, the FC
measures of the third module are lower than those of
the �rst module. Figure 3 (e) and (f) also show that
an increase in the number of essential or isolated data
tokens a�ects the FC measures.

Figure 3 (a), (b), and (c) show that a change in
the number of essential or isolated data tokens in a
module may not a�ect FC measures. All input-output
components in a module are isolated for case (a), and
essential for cases (b) and (c). If the FC values are
1 for a given module, the DFC values are 1, if the
FC values are 0 for a given module, the DFC values
are 0. If the DFC values are between 0 and 1 for a
given module, the corresponding FC values depend on
the relative number of isolated, non-isolated, and es-
sential data tokens. Therefore, when FC > DFC, we
know that there is a greater relative number of essen-
tial data tokens than essential input-output compo-
nents. When DFC > FC, there is a greater relative
number of isolated data tokens than isolated input-
output components.

The DFC and FC measures are equivalent only for
some modules. There is, however, a general corre-
spondence between the DFC and FC measures. An

empirical study may con�rm or refute the correspon-
dence. Such a study can determine the distribution of
isolated and essential data tokens in real software.

FC measures provide more detailed information for
restructuring existing modules than DFC measures.
The FC measures captures the cohesion due to inter-
nal details. For example, the second module in Figure
3(d) is more di�cult to decompose into two modules
than the third module in 3(d). To decompose the sec-
ond module, most of data tokens need to be rewrit-
ten. However, the FC measures alone can not capture
input-output relationships. For example, high values
of FC measures may be due to essential input-output
components or other essential data tokens. Both mea-
sures, when used together, can provide more complete
information.

4 DLC vs. DFC Measures

The DLC measure is an association-based measure
and the three DFC measures are slice-based measures.
Both sets of measures have been de�ned using an in-
tuitive understanding of cohesion based on the \re-
latedness" of module components. An analysis of the
relationship between the DLC and DFC measures pro-
vides further evidence of how the measures correspond
to the intuition of cohesion.

We investigate the e�ect on the measures of in-
creases in the number of the connections between mod-
ule components and increases in the number of module
components. To compare the DFC measures with the
DLC measure, we use a simpli�ed IODG (without de-
pendence labels). The simpli�ed IODG cannot distin-
guish between `conditional', `iterative', and `communi-
cational' DLC levels, so these three levels are denoted
as `indirect' relations with `indirect' cohesion.

4.1 The e�ect of increasing the number of
dependence connections.

To see the e�ect of increasing the number of con-
nections on the measures, we assume a �xed number
of inputs and outputs for a set of modules. We look
at the e�ect of increasing the number of connections
for each measure.

MCmeasure. The DFC MC measure always detects
an increase in the number of dependence connections,
and is clearly more sensitive than the LC and TC mea-
sures. The MC values precisely correspond to changes
in the number of dependence connections in each mod-
ule, which is consistent with our intuition about cohe-
sion. That is, modules with more related components
are more cohesive than modules with fewer related
components.

LC measure. The LC measure captures the relative

(a)

(b)

(c)

(d)

(e)

(f)

DFC = FC DFC = FC

DFC = FC DFC = FC

DFC = FC DFC = FC

DFC = FC DFC < FC DFC > FC

DFC = FC DFC = FC DFC > FC

DFC = FC DFC < FC DFC > FC

Figure 3: Comparing the DFC and FC measures.

number of isolated (or non-isolated) components in a
module. A relatively low LC value means that there
are more isolated components than non-isolated ones.

TC measure. The TC measure detects the relative
number of the components with the strongest connec-
tion. These are the essential components of the mod-
ule. TC is zero when there are no components that are
used to compute every output. TC equals one when
all components in the module are tightly related and
essential to the functionality of the module.

DLC measure. DLC is not very sensitive to the
di�erent number of connections in the modules. In
contrast to MC and LC, DLC does not distinguish be-
tween modules with some unconnected components.
DLC �nds the weakest connection amongmodule com-
ponents. Finding the weakest connection is important,
because \for debugging, maintenance, and modi�ca-
tion purposes, a module behaves as if it were only as
strong as its weakest link" [9, p. 132].

Among MC, LC, and TC, TC is closest to DLC.
In calculating DLC, the lowest cohesion level of all
pairs is the cohesion of the module. TC is 0 for a
module when there are no essential components |
components that connect all outputs. Whenever the
DLC level for a module is `coincidental', the TC value
is 0. If there is even one pair of outputs whose rela-
tion level is `coincidental', there can be no component
that connects all outputs. The reverse is, however, not
true. When a module TC is 0, the cohesion level is not
always coincidental, because there may be some com-
ponents that connect some portion of the outputs, and
those components together connect all outputs. When
all outputs are connected, the DLC cohesion level is

not coincidental.
Both DLC and TC are calculated using the most

extreme cases. Thus, they generally correspond to
each other.

4.2 The e�ect of increasing the number of
input-output components.

If there is only one output in a module, DFC =
1 no matter how many inputs there are. The DLC
measure indicates \functional" cohesion. If there are
multiple outputs and every component is isolated, the
DFC measures are 0 without regard to the number of
inputs and outputs in the module, which corresponds
to coincidental cohesion as indicated by DLC.

The DFC measures are sensitive to the relative
number of isolated or essential components in a mod-
ule. As the relative number of isolated components in
a module is increased, (more components are not re-
lated with each other) the DFC value decreases. When
the relative number of essential components in a mod-
ule is increased, the DFC value increases. If the rela-
tive number of essential components are not changed,
the DFC values do not change.

The DLC measure does not capture the di�er-
ences in the relative number of cohesive components.
When the number of isolated or essential components
is changed, the corresponding DLC levels are not
changed.

To summarize, the DFC measures MC, LC, and
TC are sensitive to the relative number of dependence
connections, the relative number of isolated compo-
nents, and the relative number of essential compo-
nents, respectively. The DLC measure is, however,
not very sensitive to the relative number of connec-

tions, isolated, and essential components in a module.
However, the DLC measure always �nds the weakest
connection among module components to determine
the cohesion level. DLC also provides more precise
information for the relationship between output com-
ponents, than the DFC measures. Among the three
DFC measures, the TC measure corresponds to the
DLC measure.

There is a fundamental di�erence between the DFC
measure and the DLC measure. When calculating a
cohesion value, the DFC measures average the cohe-
sion values of all components, while the DLC measure
�nds the most weakly connected relation. This dif-
ference is intentional. The generated data from both
measures should be interpreted di�erently.

5 Applications
The IODG model and associated measures can im-

prove software quality during design and maintenance:

� IODG diagrams give a visual representation
of module interfaces. Such visualizations can
help software engineer understand the functional
structure of programs. For existing software, the
IODG information can be generated automati-
cally using a compiler-like tool. Without an im-
plementation, IODG information can be part of
a detailed design. IODG diagrams can be gener-
ated from IODG information.

� The DLC/DFC measures can identify modules
that perform multiple functions having no or
weak relations with each other. These modules
may be poorly-designed and should be redesigned
or restructured. The measures can be computed
easily from the IODG information.

� The IODG diagram and associated cohesion mea-
sures can support software redesign and restruc-
turing [3]. The measures are criteria for deter-
mining whether or not a given module should be
redesigned or restructured. An IODG diagram
can help engineers decide how to restructure se-
lected modules.

6 Conclusions
We formalize the concept of design cohesion using

a graph model of a procedure interface, the IODG.
The IODG models dependencies between externally
visible module components and can be generated from
design-level information.

The IODG forms the basis for a set of cohesion
measures that can be applied prior to implementation.
The behavior of these cohesion measures matches the

original intuitive, informal de�nition of software cohe-
sion [6], and generally correspond to several existing
code-level cohesion measures.

We derived these measures using the association-
based [6] and slice-based [2] approaches. Each measure
quanti�es di�erent attributes of the notion of cohe-
sion. Three slice based measures are sensitive to the
number of connections, the number of isolated com-
ponents, or the number of essential components (com-
ponents connected with all procedure outputs). One
association-based cohesion measure is sensitive to the
weakest connection between module components.

The IODG model can help visualize the functional
structure of programs and provides support for pro-
gram understanding. The design-level cohesion mea-
sures can identify poorly designed modules. The
model and measures can help to restructure software
during design and maintenance. We are now develop-
ing tools to partially automate a restructuring process
based on the IODG model and associated measures.

References
[1] J. Bieman and B-K Kang. Cohesion and reuse in an

object-oriented system. Proc. ACM Symp. Software

Reusability. (SSR'94), pp. 259{262, 1995.

[2] J. Bieman and L. Ott. Measuring functional cohe-

sion. IEEE Trans. Software Engineering, 20(8):644{

657, Aug. 1994.

[3] B-K Kang and J. Bieman. Using design cohesion to

visualize, quantify, and restructure software. Proc.

8th Int. Conf. Software Engineering and Knowledge

Engineering (SEKE'96), June 1996.

[4] A. Lakhotia. Rule-based approach to computing

module cohesion. Proc. 15th Int. Conf. Software En-

gineering, pp. 35{44, 1993.

[5] L. Ott, J. Bieman, B-K. Kang, and B. Mehra. Devel-

oping measures of class cohesion for object-oriented

software. Proc. Ann. Oregon Workshop Software Met-

rics (AOWSM'95), 1995.

[6] W. Stevens, G. Myers, and L. Constantine. Struc-

tured design. IBM Systems J., 13(2):115{139, 1974.

[7] M. Weiser. Program slicing. IEEE Trans. Software

Engineering, SE-10(4):352{357, 1984.

[8] M. Woodward. Di�culties using cohesion and cou-

pling as quality indicators. Software Quality J.,

2(2):109{127, June 1993.

[9] E. Yourdon and L. Constantine. Structured Design.

Prentice-Hall, Englewood Cli�s, NJ, 1979.

[10] H. Zima and B. Chapman. Supercompilers for Paral-

lel and Vector Computers. Addison-Wesley, 1991.

