
CHAPTER 4

Fundamental Issues in Software

Measurement

James M. Bieman, Norman Fenton, David A. Gustafson,

Austin Melton, and Linda M. Ott

4.1 Introduction

This chapter builds on the previous one. In the previous chapter the

emphasis is on measurement theory, and software measurement is

discussed as a type of measurement. In this chapter the emphasis is

on software measurement, and ideas from measurement theory are

used to guide and direct our development of software measurement

ideas and methods.

4.1.1 Terminology

Interestingly, the term metric has more than one meaning in soft-

ware measurement. It is used in at least the three ways depicted

below:

1. A number derived from a product, process or resource. For ex-

ample, one hears about the metric number of function points or

the metric lines of code (LOC) per programmer month.

2. A scale of measurement. For example, one hears about a pro-

posed nominal scale, i.e., classi�cation, of software failures as a

metric.

3. An identi�able attribute. For example, one hears about the met-

ric portability of programs or the metric coupling in designs,

even though no number or function is necessarily attached.

This confusion is unnecessary since all of the above ideas may

be accommodated within the framework of scienti�c measurement,

using the well de�ned terms and notions which have long been



2 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

established there. For example in 1 above, metric is really referring

to direct or indirect measurements .

In order to be precise, it is important that the terms be pre-

cisely de�ned. Following classical texts in the science of measure-

ment (Krantz et al.[71], Kyburg[84], Roberts[79]), the following

de�nitions for software measurement are used in this chapter.

De�nition 4.1.1 An attribute is a feature or property of an entity.

De�nition 4.1.2 Measurement is the process of empirically and

objectively assigning numbers (or symbols) to the attributes of

entities (including objects and events) in the real world in such a

way as to describe them.

De�nition 4.1.3 A measure is an empirical objective assignment

of numbers (or symbols) to entities to characterize a speci�c at-

tribute.

De�nition 4.1.4 Direct measurement of an attribute is measure-

ment which does not depend on the measurement of any other

attribute.

De�nition 4.1.5 Indirect measurement of an attribute is mea-

surement which involves the measurement of one or more other

attributes.

The following de�nitions come from (Fenton[91]).

De�nition 4.1.6 A model is 1) an abstraction of a class of objects

that retains certain attributes of those objects and ignores other

attributes or 2) a mathematical formula that relates two or more

measures.

For example, control owgraphs are an abstraction of programs.

Control owgraphs retain the control attributes but throw away

the data ow attributes.

De�nition 4.1.7 A product is an artifact, i.e., a deliverable or a

document, that is produced during software development.

De�nition 4.1.8 A process is a software related activity.

De�nition 4.1.9 A resource is an input to a process.

De�nition 4.1.10 An internal attribute of an entity is an at-

tribute that can be measured purely in terms of the entity itself.

De�nition 4.1.11 An external attribute of an entity is an at-

tribute that can only be measured with respect to how the entity

relates to its environment.



INTRODUCTION 3

4.1.2 The Need for a Foundation

This chapter is motivated by critically looking at the current state

of software measurement. Software metrics and their measurements

should be used to determine the state of software and to regulate

and guide the development of software. However, most who design

or use software metrics readily admit that our current metrics are

not, in general, reliable, where reliability is assumed to mean accu-

rately reecting the real world. What is amazing is that given this

acknowledged state of a�airs, very few researchers are suggesting

substantial changes in what we do; most suggestions for improve-

ments represent only minor, cosmetic adjustments. But software

measurement will not reach an acceptable state of reliability (in

the above sense) and acceptance via minor adjustments. We have

too far to go; we must make substantial changes. In this chapter

fundamental questions about what we are doing, how we are doing

it, and what we really need to be doing are asked and answered.

In spite of our past failures we can build a foundation upon which

reliable and useful metrics can be de�ned.

It is important to note the di�erence between the everyday use of

reliable and valid and the use of these terms in disciplines based on

measurement theory, and it is important to understand the di�er-

ence between these two terms (Stanley-Hopkings[72]). A measure is

reliable if the method used to obtain the measurement provides con-

sistent results.
�
Thus, two di�erent people using the same method

to obtain the measurements will get the same value, or one person

using the same method at di�erent times will get the same value.

A measure is valid if it accurately reects the real world. Thus, for

example, if measurements on program A and program B indicate

that there is a higher degree of coupling in the code for program

A than in the code for program B, then we want it to be the case

that the coupling in the code for program A really is at a higher

degree than the coupling in the code of program B. This is the rep-

resentation condition of measurement as presented in the previous

chapter.

� Although one does not commonly encounter discussions of the formal notion
of the reliability of a software measure, this concept was introduced into the
software metrics literature at least as early as 1979 (Chapin[79]).



4 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

4.1.3 The Bene�ts of a Foundation

Building a foundation for software measurement is important not

only for software measurement but also for software engineering be-

cause with a formal foundation for software measurement we could

dramatically increase our understanding of software and software

engineering. Software measurement theory may be at the heart of

software engineering. Such a claim may seem strange when �rst

heard { especially given the current state of software measure-

ment. However, when we realize that to truly measure something,

one must understand what is being measured, then the claim is

very reasonable. One very serious misunderstanding which we in

software measurement have for sometime had is the belief that by

assigning numbers to software documents, we are measuring the

documents, and thus, we must be understanding the documents

and their attributes. To assign numbers to a collection of entities

does not produce or increase understanding. In fact, just the oppo-

site is often the case. Assigning numbers without understanding,

only leads to confusion or even worse { to an unfounded belief that

one has understanding. This de�ning of metrics without under-

standing what is being de�ned, has led us to a situation analogous

to the emperor's new clothes. We have convinced ourselves that

we have developed profound and wonderful metrics; however, the

simple observer sees that we have only exposed our lack of under-

standing.

For another argument showing that real measurement will help

us better understand software engineering, consider the following.

We want to measure many external factors of our software docu-

ments, e.g., reusability and maintainability, and we are instructed

in our software engineering courses and by many leading software

experts that by having certain internal structure such as well con-

structed modules and low coupling we can improve important ex-

ternal characteristics. Thus, we should be trying to indirectly mea-

sure or predict external characteristics based on direct measure-

ments of internal ones. However, we do not understand how the

internal characteristics inuence the external ones, and thus, we

are unable to determine the needed connections to develop indi-

rect measurement and prediction tools.



VALIDATING SOFTWARE METRICS 5

4.2 Validating Software Metrics

A number of reasons have been cited for the poor industrial accep-

tance of software measurement. A common one is that managers

simply do not know what to do with the measurements. Probably

a more fundamental reason, and one which is also responsible for

the conicting claims of researchers in this area, is the lack of seri-

ous validation of proposed metrics; and thus, a lack of con�dence

in the measurements.

Validation when applied to software metrics has often been mis-

used. Managers and researchers often confuse worth of or ease of

use with validity. While not belittling these characteristics of met-

rics, there are di�erences between these characteristics and validity.

Many people would consider that barometric measures of atmo-

spheric pressure are not easy to obtain but that does not mean

that they are not valid. Let us consider demonstrating the validity

of metrics in the formal sense; this is a necessary requirement of

all measurement activity.

By classifying software entities into products, processes , and re-

sources , it can be shown that most software measurement activities

involve the derivation of either:

1. measures which are de�ned on certain entities and characterize

numerically or symbolically some speci�c attributes of these, or

2. prediction systems involving a mathematical model together with

prediction procedures.

4.2.1 Measurement Activities

Components of some typical software measurement activities are

shown in Table 4.1. In this table it is seen that measurements are

used for assessment of attributes of entities which already exist (for

example, for assessing the cost of a completed software project

or the size of code produced) and for prediction of attributes of

entities which may or may not already exist (for example, for the

operational reliability of a software system which is currently being

developed). Assessment is done via direct or indirect measurement.

4.2.2 Models and Predictions

There are essentially two di�erent types of models which are of

interest for software measurement.



6 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

Software Entity Entity Attribute Measurement
measurement type example
activity

Cost Process Developing a Cost Prediction
estimation project from

speci�cation to
operation

Productivity Resource Personnel Productivity Assessment
modeling

Reliability Product Executable Operational Prediction
modeling code reliability

Complexity Product Source Structuredness Assessment
metrics listing

Table 4.1 Components of typical software measurement activities

1. There are the models of the various products, processes and

resources which are necessary to de�ne metrics unambiguously.

Such models must capture the attributes being measured, e.g.,

a owgraph model of source code captures certain attributes

relating to control structure. Even to de�ne a measure of an

apparently simple and well understood attribute like program

source-code length, we need a (formal) model of program source-

code.

2. There are models which relate two or more metrics in a mathe-

matical formula.

Let us look more closely at the latter case. Most indirect mea-

sures are models in this sense since an indirect measurem generally

has the form:

m = f(x1; : : : ; xn)

where the variables x1; : : : xn (n > 0) are measures of attributes.

The extent to which such a model is being used for assessment

as opposed to prediction depends on how much is known about the

variables xi and any constant parameters of the model. In terms of

measurement theory, assessment completely describes the attribute

in question, and prediction only approximates it.

Consider a very simple example:

m = x=a



VALIDATING SOFTWARE METRICS 7

where x is a measure of source-code program length in lines of

code (LOC), m is a measure of the number of hard copy pages

for source-code programs, and a is a constant. If a is known to

be 55 in a speci�c environment and if a program exists with a

known x, then the indirect measure of hard copy pages computed

by the formula cannot really be claimed to be solving a prediction

problem. However, the object to which m relates may not yet exist

nor may even the objects to which the x relates, and the constant

parameters may have to be determined by empirical means. In

such circumstances we are certainly using the model to solve a

prediction problem. The more unknowns we are confronted with,

the more di�cult the prediction problem becomes.

Consider two well-known examples of such \models" in software

measurement.

Example 4.2.1 Boehm's simple COCOMOmodel asserts that ef-

fort (measured by E person-months) required for the process of

developing a software system and size (measured by S thousands

of delivered source statements) are related by

E = aSb

where a; b are parameters which are determined by the type of

software system to be developed (Boehm[81]).

In this case to use the model for e�ort prediction (as it was

intended) at the requirements capture stage, we need a means �rst

of determining, i.e., predicting, the parameters a; b (Boehm gives

three choices for the constants, these being dependent on the type

of software system) and then of determining, i.e., predicting, the

size S of the eventual system.

Example 4.2.2 The Jelinski-Moranda model for software relia-

bility prediction assumes an exponential probability distribution

for the time of the ith failure (Jelinski-Moranda[72]). The mean of

this distribution (and hence the Mean Time to ith failure) is given

by

MTTFi =

�

N � i+ 1

where N is the number of faults assumed to be initially contained

in the program and � (= 1=�) represents the size of a fault , i.e., the

rate at which it causes a failure. Faults are assumed to be removed

on observation of a failure, and each time a fault is removed the rate



8 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

of occurrence of failures is reduced by �. The unknown parameters

of the model, N and �, have to be estimated by some means, for

example by using Maximum Likelihood Estimation after observing

a number of failure times.

In both the previous examples, the model alone is not enough to

perform the required prediction. Additionally we need some means

of determining the model parameters, and a procedure to obtain

the results. Thus, in the case of the COCOMO cost prediction

model, the parameters are determined by a combination of cali-

bration according to past history, expert judgement, and subjective

judgement; the theory provides various means of interpreting the

results based on a plug-in rule for the parameters. In the case of

reliability growth prediction models, it is not enough just to have

a probabilistic model such as Jelinski-Moranda, but one must also

have a statistical inference procedure for determining the model pa-

rameters and a prediction procedure for combining the model and

the parameter estimates to make statements about future reliabil-

ity (Jelinski-Moranda[72]). With these observations, Littlewood's

de�nition (Littlewood[89]) of prediction systems is used to encom-

pass the notion of the underlying model and the prediction proce-

dures.

De�nition 4.2.3 A prediction system consists of a mathematical

model together with a set of prediction procedures for determining

unknown variables and parameters.

Thus, it is incorrect to talk about the COCOMO method (or

\metric") for cost estimation or the Jelinski-Moranda model for

reliability prediction since any results obtained on the same data

will vary according to the particular procedures used. We should

instead talk about COCOMO cost prediction systems and J-M

reliability prediction systems.

A model de�nes an association between attributes, and a pre-

diction system illuminates the nature of that association. However,

in some cases it is not necessary to determine the full functional

form of the relationship; a procedure for con�rming the existence

of the association and certain properties of the association may be

su�cient.

Example 4.2.4 Kitchenham, Pickard and Linkman con�rmed an

association between large values of certain program structures and

size measurements on one hand and large values of measures of



VALIDATING SOFTWARE METRICS 9

fault-proneness, change-proneness, and subjective complexity on

the other hand (Kitchenham et al.[90]). Thus, they were predicting

fault-proneness, change-proneness and subjective complexity based

on their structure and size measurements. As a result of their study,

a special type of prediction system was constructed. This had two

components:

1. a procedure for de�ning what was meant by a large value for

each measure and

2. a statistical technique for con�rming that programs with large

values of size and structure metrics were more likely to have a

large number of faults, and/or changes, and/or to be regarded

as complex than programs that did not have large values.

Kitchenham et al. concluded that their procedure of identify-

ing programs with large values of size and/or structure could be

used to assist project managers to reduce potential project risks

by identifying a group of programs or modules which were likely

to bene�t from additional software development, for example re-

design or additional testing. However, they also pointed out that

because the associations were quite weak:

1. some programs with large size and structure values would not

exhibit any problems, so that additional e�ort spent on their

development would be wasted and

2. many programs which later exhibited problems did not have

large size or structure values.

There is often confusion about the applicability of proposed

models and metrics. Since it is often believed that the ultimate

goal of software measurement is prediction, proponents of a partic-

ular metric have often claimed that their measure is part of some

prediction system when in fact it might simply (and usefully) be a

measure of an interesting attribute as opposed to a predictor.

Example 4.2.5 Albrecht's Function Points (FPs) (Albrecht[79]).

It seems that these were intended to measure the attribute of func-

tionality in speci�cation documents as perceived by a user. This is a

product measure, and to validate it as such would require con�rma-

tion that it captures (at least) the intuitive order of speci�cations

with regard to their amount of functionality. This is, if speci�cation

S1 has more functionality than speci�cation S2, then the function

point measure for S1 must be greater than that for S2. (Unfortu-

nately, they are de�ned in such a way that attributes such as the



10 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

systems analysts' view of complexity rather than the user view of

functionality is also taken into consideration by the weighting fac-

tors.) A validated measure of such an important product attribute

would be very welcome. However, it would appear that nobody

has ever attempted to validate the FP measure with respect to

this intuitive order. In fact, FPs are not used as measures. They

are used as part of a cost prediction system, and when people refer

to the validation of FPs, they implicitly refer to validation of this

predictive theory.

4.2.3 Formal Validation

There many software metrics in the literature. Not only do these

aim to measure a wide range of attributes, but also there are many

irreconcilable metrics all claiming to measure or predict the same

attribute such as cost, size, or complexity. In this section the nec-

essary validation procedures which could at least partially resolve

many problems are described.

In the software measurement literature software metrics may re-

fer tomeasures or prediction systems . Informally, ameasure is valid

if it accurately characterizes the attribute in question; a prediction

system is valid if it makes accurate predictions. The approaches

to validation in each case, starting with prediction systems, will

be described. In the case of validating measures there is often an

implicit assumption that a measure must always be part of a pre-

diction system to be useful; the pitfalls of this assumption are ex-

amined. Proper validation approaches and traditional validation

approaches are compared, and ways to avoid typical mistakes in

validation experiments are given.

Validation of Prediction Systems

De�nition 4.2.6 Validation of a prediction system in a given en-

vironment is the process of establishing the accuracy of the pre-

diction system by empirical means, i.e., by comparing the model's

performance with known data points in the given environment.

Thus, validation of prediction systems involves experimentation

and hypothesis testing. It is not analogous to mathematical proof,

but rather it involves con�rming, or even failing to disprove, a

hypothesis.

This type of validation is reasonably well accepted by the soft-



VALIDATING SOFTWARE METRICS 11

ware engineering community. For example, it is what is normally

meant when one hears about an attempt to validate the COCOMO

model or a particular software reliability growth model. As a spe-

ci�c example Abdel-Ghaly, Chan, and Littlewood describe a pro-

cedure for evaluating software reliability growth models in such

away that the most valid in a given environment can be deter-

mined (Abdel-Ghaly et al.[86]). These ideas are taken further in

(Brocklehurst et al.[90]) where by using techniques of recalibration

a new prediction system for software reliability prediction (using a

multi-model approach) is shown to be valid.

Just how accurate a prediction system has to be before we accept

it as validated will in many cases depend on the person using it.

However, there seems to be a distinction between prediction sys-

tems which are deterministic with regard to the underlying model

(meaning that we always get the same output for a given input)

and those which are stochastic (meaning that the output for a given

input will vary probabilistically).

Example 4.2.7 Suppose that we count LOC by number of car-

riage returns. If we know that a printer prints 55 lines to a page,

then the prediction system for computing number of pagesm based

on the model m = LOC=55 is deterministic. There should be no

deviation at all in the result. In fact, we should probably not call

this system a predication system.

On the other hand, if we used the same model where LOC is

de�ned by

LOC =

Total number of characters

35

(where 35 is the average number of characters per line), then the

prediction system for number of pages is stochastic. We would ex-

pect any prediction to be accurate only within certain bounds,

to allow for the fact that the number of characters on a line is a

random variable.

Some stochastic prediction systems are more stochastic than oth-

ers, i.e., the error bounds are wider. The last example is much less

stochastic than a prediction system for number of failures which is

based on the model

Number of failures =

LOC

100

:

Prediction systems for software cost/e�ort estimation and relia-



12 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

bility are clearly very stochastic, i.e., the margins of error are large.

Boehm has claimed that under certain circumstances the CO-

COMO e�ort prediction system will be accurate to within �20%.

This speci�es the acceptance range for validation. When no such

range has been speci�ed, it is up to the user of a prediction system

to specify in advance what range is acceptable.

A common mistake in software measurement is to formulate

stochastic models as if they were deterministic. COCOMO is again

a good example. Boehm suggests three pairs of values for the a and

b parameters used in his equation. When empirical studies identify

di�erent values, we should not reject the COCOMO cost predic-

tion system but rather suggest that the new values be used to cal-

ibrate the model. This may be regarded as a minor point, but lack

of appreciation of the stochastic nature of most of our prediction

systems means that people forget that estimates of the parameter

values are themselves subject to error. This is a particular problem

when cost estimators want to use the value b to identify whether

or not there are economies or diseconomies of scale in a software

environment.

For example, Banker and Kemerer investigated possible reasons

for economies and diseconomies of scale by drawing inferences from

the b values found in 9 data sets although they themselves provide

the analysis which shows that only 2 data sets had values of b signif-

icantly di�erent from 1 (Bankar-Kemerer[89]). Their �nal analysis

may be reasonable, but their original assertion that there appeared

to be a relationship such that values of b < 1 were associated with

data sets which involved small projects and values b > 1 were as-

sociated with data sets which involved large projects seems to be

unjusti�ed.

Validation of Measures

Metrics used for assessment are simply measures in the sense of

measurement theory. Hence we turn to measurement theory for

the appropriate notion of validation.

De�nition 4.2.8 Validation of a software measure is the process

of ensuring that the measure is a proper numerical characterization

of the attribute in question; this means showing that the represen-

tation condition is satis�ed.

Example 4.2.9 A valid measure of the attribute ofmodule cou-

pling of designs must not contradict any intuitive notions about



VALIDATING SOFTWARE METRICS 13

module coupling. Speci�cally, it requires a formal model for designs

(to enable objectivity and repeatability) and a numerical mapping

which preserves any relations over the set of designs which are

intuitively imposed by the attribute of module coupling. Thus, a

proposed measure of module coupling should indeed measure pre-

cisely that; in particular, if it is generally agreed that design D1

has a greater level of module coupling than design D2, then any

measure m of module coupling must satisfy m(D1) > m(D2). A

speci�c measure of module coupling which is valid in this sense is

proposed in (Fenton-Melton[90]).

This type of validation is based on the representational theory of

measurement. Practitioners may prefer to regard this as ensuring

the well de�nedness and consistency of the measure. Examples of

how this approach may be used to de�ne and validate measures of

speci�c internal product attributes like structuredness , coupling,

modularity , and reuse are described in (Fenton[91]).

4.2.4 How \Validation" Has Been Performed

There is an implicit assumption in much of the software engineering

community that validation (in the measurement theory sense) of a

measure is not su�cient. Speci�cally, it is expected that validation

must also entail the demonstration that the measure is itself part

of a valid prediction system.

Some people argue that LOC is not a valid software measure

because it is not a good predictor of reliability. However, whether

LOC is or is not a good predictor of reliability is not the deciding

factor as to whether LOC is a valid software measure.

It is often assumed that a measure should be an accurate pre-

dictor of some software attribute of general interest. These are

assumed to be certain process attributes like cost, certain external

product attributes like reliability, and certain resource attributes

like productivity. A typical harmful rami�cation of this assump-

tion is to reject as invalid perfectly good measures of, for example,

internal product attributes (like size, structuredness, and modu-

larity) on the grounds that they do not measure something which

is of su�cient interest.

Formalizing this commonly accepted assumption would lead to

a new de�nition of validation for a measure. Let us say that a

measure is valid in the extended sense if it is



14 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

1. internally valid (meaning valid in the measurement theory sense)

and

2. a component of a valid prediction system.

Let us suppose that we wish to show that a measure is valid in the

extended sense. Then what we really need is a hypothesis propos-

ing a speci�c relationship between our measure and some useful

attribute. We would then need to conduct an experiment to gather

the relevant data to test the hypothesis.

Unfortunately, what has often happened is a measure is shown to

be valid or invalid in the extended sense by correlation against any

interestingmeasurements which happen to be available as data. For

example, a measure of modularity might be claimed to be valid or

invalid on the basis of a comparison with known development costs

if the latter data is available. This would be done even though no

claims were ever made about a relationship between modularity

and development costs.

It is perhaps conceivable that a measure could be shown to be

valid in the extended sense even though no hypothesis initially ex-

isted. For this to happen, the data which happen to be available

would have to be shown to be consistently related via a formula de-

termined, for example, by regression analysis. However, given our

poor understanding of software, this type of validation appears

fraught with di�culty. And yet many software engineers have as-

sumed this as the major approach to validation.

It may be of some comfort to the many researchers who have

taken this approach to note that they have not been alone in mak-

ing these mistakes. Indeed, speaking quite generally about mea-

surement validation, Krantz in his excellent formal treatment of

measurement (Krantz et al.[71]) asserts:

A recurrent temptation when we need to measure an attribute of in-

terest is to try to avoid the di�cult theoretical and empirical issues

posed by fundamental measurement by substituting some easily mea-

sured physical quantity that is believed to be strongly correlated with

the attribute in question: hours of deprivation in lieu of hunger; skin

resistance in lieu of anxiety; milliamperes of current in lieu of aver-

siveness, etc. Doubtless this is a sensible thing to do when no deep

analysis is available, and in all likelihood some such indirect mea-

sures will one day serve very e�ectively when the basic attributes are

well understood, but to treat them now as objective de�nitions of

unanalyzed concepts is a form of misplaced operationalism.



VALIDATING SOFTWARE METRICS 15

However, measurement and prediction are not completely sepa-

rate issues. On the contrary, as Kyburg observes (Kyburg[84]):

If you have no viable theory into which X enters, you have very little

motivation to generate a measure of X.

The initial obligation in proposing metrics is to show that they

are valid in the narrow sense. Good predictive theories only fol-

low once we have rigorous measures of speci�c well understood at-

tributes.

Another common approach taken to validating new metrics is to

show that they correlate with some well known existing metrics.

An example of an extensive validation of this sort is given in Li and

Cheung (Li-Cheung[87]). The common notion that metrics such as

Halstead's, McCabe's, and LOC are in some sense validated (in

the extended sense) is a historical aberration resulting from a mis-

understanding of the obligations of true measurement. While these

might be valid metrics of very speci�c attributes (like number of

decisions in the case of McCabe and source code program length

in the case of LOC), they are not valid metrics of things like cogni-

tive complexity, correctness, and maintainability. Although there

is empirical evidence to suggest that these metrics are associated

with development and maintenance e�ort and errors, such corre-

lations in no way imply that these are good predictors of these

attributes. The many claims made to the e�ect that metrics like

Halstead's and McCabe's have been validated as part of prediction

systems are equaled by studies which show that they correlate no

better with the process data than a simple measure of size like

LOC (Hamer-Frewin[82]).

A more compelling reason why we have to be very wary of the

correlate against existing metrics approach is that unstructured

correlation studies run the risk of identifying spurious associations.

For example, using the 0.05 signi�cance level, we can expect a

signi�cant but spurious correlation 1 in 20 times by chance. This

means that if you have 5 independent variables and look at the

10 possible pairwise correlations, there is a 0.5 (1 in 2) chance of

getting a spurious correlation.

Examples of Validations

Example 4.2.10 Between 1986 and 1988, one of the authors was

involved in a UK government (Alvey) funded collaborative project



16 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

(Fenton[90]). This project su�ered from some of the above miscon-

ceptions surrounding validation.

It was already known to the project team that their results on

the theory of structure had provided a useful tool for analysis dur-

ing maintenance. They had metrics of various internal structural

attributes. Without even considering whether these metrics were

valid and without any hypotheses or proper experimental frame-

work, they attempted to correlate values of the metrics for speci�c

modules or programs against historically collected data. The data

were process-type metrics, e.g., cost, changes made, etc., which

happened to be available for the modules and programs. Not sur-

prisingly, the results were the same as those of many previous stud-

ies, i.e., all the metrics correlated reasonably well with each other,

and none correlated with the data signi�cantly better than lines of

code (LOC).

In this case there should have been some speci�c hypotheses pro-

posed as the basis for a prediction system. Based on their knowl-

edge of the applications of the metrics, the project members should

have started by attempting to show that a number of metrics of

di�erent structural properties were speci�cally related to the main-

tainability of the resulting code. This would have required collect-

ing data which was speci�cally relevant for maintainability, such

as time to �nd and repair bugs. Due in part to a fear that placing

emphasis on maintenance could be seen as a negative selling point,

this kind of hypothesis was never properly articulated.

There are some additional observations which should be noted

from the experiences on this project and which appear to be gen-

erally relevant.

1. Historical data is notoriously unreliable, partly because there are

no agreed upon standards for de�ning the process-type metrics.

2. If one believes that a measure correlates with a speci�c attribute,

like for example reliability , then it does not help if the only data

are historical metrics of say cost and changes to modules. What

one would need is some data relating to failures .

3. Ideally, what is needed is �rst to formulate the hypotheses and

then design experiments before data collection. If there is no

alternative than the use of historical data, then at least the

hypothesis should be formulated before the data is analyzed.

Example 4.2.11 A very simple example of a software measure is

the much quoted lines of code metric, LOC. Is this a valid measure?



VALIDATING SOFTWARE METRICS 17

In the measurement theory sense it is indeed valid; it is de�ned on

a speci�c software product { code { and suitable formal models

exist to allow an unambiguous formal de�nition of LOC. There is

a very well-known attribute of the code which is captured by LOC,

namely, length. This is a useful attribute to know; for example, it

gives a clear indication of how much paper will be required for

a print out and how many disks will be required for its storage.

(Strictly speaking of course models and prediction systems are re-

quired to make even these simple assumptions formal.) Length is

an attribute which imposes intuitively understood and accepted

empirical relations on all instances of code. People can generally

reach agreement on which of two pieces of code is longer, and the

representation condition assures us that LOC is a valid measure

of length if it preserves this relation. And it certainly will preserve

the relation (given a suitably rigorous de�nition). Thus LOC is a

valid measure of length.

However, LOC has not been shown convincingly to be a valid

measure of complexity , nor has it been shown to be part of an accu-

rate prediction system for complexity. Complexity is an ill-de�ned

attribute. In the software engineering literature it is assumed to be

an attribute which in itself impacts a wide range of other attributes

like reliability, maintainability, and cost.

Example 4.2.12 In a recent paper (Fenton-Melton[90]), there is

an example of how a previous \validation" study would have ben-

e�ted from a consideration of the two types of validation dis-

cussed here. The study by Troy and Zweben attempted to show

that coupling was a valid measure for designs and programs (Troy-

Zweben[81]). Given the data which they used to perform validation,

their implicit hypothesis can be reconstructed.

Designs (programs) with high coupling contain more errors than de-

signs (programs) with low coupling, i.e., \quality" measured by num-

ber of discovered program errors is inversely proportional to the level

of coupling.

The problem is that Troy and Zweben have not proposed a spe-

ci�c measure of coupling, and without a proposed measure of cou-

pling the hypothesis is untestable. What Troy and Zweben did was

attempt a linear correlation of all the various \counts" which they

felt might contribute towards coupling (like number of modules,

total number of module connections, etc.) separately against num-



18 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

ber of errors recorded for various programs. This did not test the

hypothesis above.

With a measure of coupling as described in (Fenton-Melton[90]),

a more interesting hypothesis (which gets rid of many of the ex-

perimental design aws) could be properly tested:

For programs of similar length, those with higher coupling contain

more errors.

In fact, a number of other similar hypotheses could be tested.

For example, contain more errors could be replaced by are more

di�cult to maintain. Given a good measure of functionality, one

could re�ne the hypothesis by adding and of similar functionality

after length. What is interesting about this approach is that it may

lead to metrics of coupling and the like being used constructively

in design. We should dispel the idea of simple linear correlations

between coupling and errors. It seems far more plausible that for

a given size program, there is a stochastically optimal level of cou-

pling with regard to likely errors (and this optimal level will cer-

tainly not be zero as is implied by simple linear correlations). It is

these kinds of numerical standards which may be achievable.

Choosing Appropriate Prediction Systems

In order to help formulate hypotheses necessary for validating the

predictive capabilities of metrics, it is necessary to be clear about

the di�erent types of prediction systems which are appropriate.

Such systems can be divided into the following classes:

1. Using internal attribute measures of early lifecycle products to

predict metrics of internal attributes of later lifecycle products,

e.g., metrics of size, modularity, and reuse of a speci�cation to

predict size and structuredness of the �nal code.

2. Using early lifecycle process attribute measures and resource

attribute measures to predict measures of attributes of later

lifecycle processes and resources, e.g., number of errors found

during formal design review to predict cost of implementation.

3. Using internal product attribute measures to predict process at-

tributes, e.g., metrics of structuredness to predict time to per-

form some maintenance task or number of errors found during

debugging.

4. Using process metrics to predict later process metrics, e.g., met-

rics of failures during one operational period to predict likely



SUMMARY 19

failure occurrences in a subsequent operational period. In exam-

ples like these where an external product attribute (reliability)

is e�ectively de�ned in terms of process attributes (operational

failures), we may also think of prediction systems as process

metrics being used to predict later external product metrics.

It may be di�cult to design prediction systems relating internal

structural attributes to external and process attributes. However,

it is generally assumed that certain internal attributes which are

the result of modern software engineering techniques, e.g., modu-

larization, low coupling, control and data structuredness, informa-

tion hiding, and reuse, will generally lead to products which exhibit

a high degree of the desirable external attributes like reliability and

maintainability. Thus, programs and modules which exhibit poor

values for the desirable internal attributes, e.g., large unstructured

modules, are likely (but not certain) to have more faults and take

longer to produce and maintain. A sensible manager will develop

some procedures for handling such components before they become

problems, e.g., break them up into smaller items or give them ex-

tra review and testing e�ort. This is using measurement for risk

reduction, which in this case amounts to redistributing develop-

ment e�ort to the areas which are most likely to bene�t and �ts in

with a decision theoretic framework.

4.3 Summary

Software measures and prediction systems will not be widely used

or respected without a proper demonstration of their validity. How-

ever, commonly accepted ideas and approaches to validating soft-

ware measures bear little relation to the requirements of validation

for measurement in other disciplines. Speci�cally there are formal

requirements for validation which we must �rst address before we

can hope to tackle the informal notions like usefulness and practi-

cality. These requirements are:

� In the case of measures | justify that the measure characterizes

the stated attribute in the sense of measurement theory.

� In the case of prediction systems | decide how stochastic the

prediction system is, i.e., what are the acceptable error ranges,

and conduct experiments to compare performance of the pre-

diction system with known data points.



20 FUNDAMENTAL ISSUES IN SOFTWARE MEASUREMENT

Software metrics which characterize speci�c attributes do not

have to be shown to be part of a valid prediction system in order

to be valid measures. A claim that a measure is valid because it is

a good predictor of some interesting attribute can only be justi�ed

by formulating a hypothesis about the relationship. This amounts

to validating a proposed prediction system.


