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ABSTRACT’ 
The use of commercial-off-the-shelf (COTS) products creates a 
software integration problem. whether a single COTS software 
component is being integrated into a software system, or the 
whole system is being built primarily from COTS products. This 
integration may require considerable effort and affect system 
quality. A good estimate of integration cost can help in the 
decision of whether or not to use a COTS solution, the selection 
of the best COTS products, and determine the amount and type of 
glueware that needs to be built. In this paper, we introduce a set of 
variables that have the potential to estimate the integration cost. 
We present a classification scheme of software architectures with 
respect to the integration of COTS products. The scheme is based 
on inter-component interactions within software architectures. 
The classification scheme allows the comparison of integration 
costs of different COTS products relative to different software 
architectures. 
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1. INTRODUCTION. 
Commercial-off-the-shelf (COTS) software products are widely 
used now in software development [9], and their usage should 
increase quality of the product and reduce the time of its 
development. However, COTS products often require significant 
effort for their integration into a system [4]. Software system 
architecture is one factor that affects integration cost [5] 

The architecture of a software system is defined by its 
components and interactions between them, where components 
are things such as servers, databases, filters, etc. [ 1 O]. We can also 
consider computational units at a lower level such as procedures, 
objects, modules to be components. A COTS product can consist 
of one or many components. Interactions between the components 
can be simple, such as calling procedures or shared variables, ot 
complicated, such as data-base protocols [IO]. Besides 
conventional architectural styles such as main program and 
subroutines, 00 systems, interpreters, etc. [lo], a number of 
architectures have appeared recently to facilitate the integration of 
externally created components. Example architectures include 
industrial standards such as the Component Object Request 
Broker Architecture (CORBA) [l], Common Object Model 
(COM) [3], and experimental architectures such C2 [7]. 

When a software component is integrated into a system, it must 
support the style of the interactions of the system’s architecture in 
order to work together with other components. If a COTS product 
has another style of interactions, programmers must write 
integration software to allow this product to interact with other 
components of the system. An overview of integration techniques 
can be found in [9]. Most of the techniques either change the 
component being integrated, or create wrappers or adapters, 
which are special software that support interactions between the 
component and its environment. Since most COTS products can 
not be changed by users because of absence of source code and 
other reasons, the integration of COTS products is usually 
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performed by glueware. Glueware is integration software; it 
provides the proper interface for a component being integrated 
and serves as a mediator for its interactions with other 
components. 

Integration work increases the cost and development time of the 
system. Moreover, changing the COTS components, or adding 
glueware can lower system quality. An architectural style and 
COTS products with a close match can minimize integration 
work. In this study we use a set of variables to estimate the 
distance between architectures and components. These distance 
variables are ordinals; they provide relative distances between a 
COTS product and system requirements. Distance variables may 
be independent with independent and possibly conflicting 
orderings. This distance can be used to estimate integration effort 
from an architecture description and a COTS product 
specification. 

In section 2 we discuss the problem of interactions between 
components and their environment and the scope of our study. 
Section 3 gives the dimensions of interaction assumptions. 
Section 4 discusses types of interactions for different architectural 
styles and their classification. Section 5 describes the approach for 
estimating the integration cost based on the architecture 
classification. Section 6 contains the conclusions. 

2. INTERACTIONS AS THE ORIGIN OF 
THE INTEGRATION PROBLEM. 
Integration problems arise when a component depends on certain 
assumptions concerning its interactions with its environment, but 
is to be placed into a system that is based on different 
assumptions. The result is interaction protocol mismatches. We 
define four types of interactions: 

Component-platform interactions. A component must be 
executed somewhere. It can be either a real processor and an 
operating system for binary executables, or a virtual one. If an 
executable program was compiled for one type of CPU, it will 
need an emulator or a code converter in order to run it on another 
CPU. 
Component-hardware interactions. A component can interact 
directly with hardware writing-reading from ports. If the port’s 
numbers are different from what is expected by the component, 
the component must undergo some modification. 
Component-user interactions. A component’s user interface 
requirements may also change. For example, a component can 
have its messages in one language, when the system requires 
another language. 
Component-software interactions. A component almost always 
interacts with other software components, and there can be 
mismatches between the components. A set of possible 
mismatches between components [9]: representation, 
communication, packaging, synchronization, semantics, control, 
etc. 

Although all four types of interactions can cause problems for a 
component reuse and must be overcome, the main concern of this 
study is component-software interactions. 

3. ASSUMPTJONS ABOUT 
INTERACTIONS BETWEEN SOFTWARE 
COMPONENTS. 
Consider the integration of COTS components on the architecture 
level and their interactions with other components of the system. 
Every component is designed with assumptions concerning its 
interactions, and the assumptions strongly depend on the 
particular architecture. For example, some architectures have only 
one control thread, e.g., main program and subroutines, and their 
components depend on the control structure. In contrast, 
distributed architectures such as client-servers have components 
that are independent processes. When a component to be 
integrated has different control assumptions from the system’s, 
development effort is required to overcome the differences in the 
interaction protocols. 

The following classification of architectural assumptions that can 
cause mismatches in inter-component interactions is given in [6]: 

I. 

I.1 
1.2 

1.3 

2. 
2.1 

2.2 

3. 

4. 

Assumptions about the nature of the components 

infrastructure - the substrate on which the component is built; 
control model - assumptions about which component 
controls the sequencing of computations; 
data model - assumptions about the way the environment will 
manipulate data managed by a component. 

Assumptions about the nature of the connectors 
protocols - assumptions about the patterns of interaction 
characterized by a connector; 
data model - assumptions about the kind of the data that is 
communicated. 

Assumptions about the global architectural structure. 
These include the particular topology of a system. 
Assumptions about the construction process, in what 

order pieces are instantiated and put together. 

We use the following variables to represent assumptions about 
inter-component interactions: component packaging, type of 
control, type of information flow, synchronization and binding. 
Other issues that are difficult to measure but can have a 
considerable impact on integration are syntax and semantic of 
interaction protocols, the topology of the system, and whether 
COTS products and the system can be modified or not. We also 
have to compare different values of these variables with respect to 
compatibility of the assumptions. 

Trivially, if two components have the same assumptions on an 
aspect of interaction, the values of the respective variables are 
equal. When the assumptions are different, two situations are 
possible. First, one assumption may still be compatible with 
another. For example, with respect to packaging, a component can 
be implemented in ANSI C, and another component can be 
implemented in Borland C, which is an extension of ANSI C [2]. 
In this case, the first type of packaging is compatible with the 
second one, because all Borland C compatible compilers will 
compile programs written in ANSI C. Thus, if a system is 
developed in Borland C, and a procedure is written in ANSI C, it 
is safe to use this procedure. If the system is developed in ANSI 
C, and the procedure uses some Borland C specific functions, then 
the whole system must be recompiled with a Borland C compiler. 
In this case, the value of the packaging variable of the Borland C 
component is greater than the value of the ANSI C component’s 
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packaging variable. We treat all assumptions in this way: if 
assumption A is compatible with assumption B, then the 
respective variables are comparable, and A I B. Some 
assumptions are incompatible, for example data flow interactions 
and control flow interactions. In this case the values representing 
these assumptions are incomparable. So the values of the variable 
have partial orders. Figures I through 5 depict orderings of the 
variables with arrows going from greater values to lesser ones. 

Component Packaging: how a component is packaged for 
integrating into a system. Two big classes of packaging types can 
be defined: hnkable and independent components. These 
classifications represent the values of the component packaging 
variable: 

Linkable components, e.g., object modules, class libraries,’ 
function libraries, etc. These components must be linked together 
with other system components in one executable program. They 
can be represented either in source code or as object files. 
Independent components, e.g., overlays, dynamic linkage 
libraries, independent programs, etc., that need not to be linked 
with other components. The exact ordering of the values mainly 
depend on the compatibility between different language dialects 
and object file formats. The values for independent components 
are greater than values of linkable components, because it is easier 
to convert a linkable component into an independent one. For 
example, it is possible to create an independent component from a 
library component by just putting it into a wrapper program, or it 
is possible to convert an object module into a dynamic linkage 
library. 
The values for independent stand-alone programs are greater than 
values for other independent components such as overlays and 
dynamic linkage libraries because the latter can be put into 
wrapper programs and thus converted into independent programs 
(Fig. 1). 

independent programs 

overlays * yY\>T libraries 

source code modules e object modules 
Figure 1: Ordering of types of packaging 

Type of Control: how a system provides control flow to its 
components. 
Centralized control. Components in systems such as single 
programs written in programming languages without concurrency 
must assume the existence of only one control thread, which is 
passed from one component to another. 
Decentralized control. Components in systems with concurrent 
processes or/and multiple threads inside of one program can have 
their own control. 
No conrrol assumption. Some components, such as libraries, do 
not make any assumptions on the control and can be used in 
systems with any type of control. 
Decentralized control is more general than centralized control. A 
component from a centralized control system may be wrapped 
inside of an independent process and used in a system with 
decentralized control. But it is difficult, if possible, to deprive an 
independent process of its control structure putting it into a 
system with centralized control (Fig. 2). 

multiple processes 

no control assumption 

Figure 2: Ordering of types of control 

Information Flow: what type of information flows between 
components: data, control, or mixed. 
Control flow interactions that invoke some routines of 
components such as procedure calling, remote procedure calling, 
etc. 
Data flow interactions that use exchange data between 
components (shared memory, message passing, etc). 
Mixed data-control interactions that can accept data from one 
component and convert it into control for another component, and 
vise versa. 

mixed data-control flow 

data flow control flow 

Figure 3: Ordering of types of information flow 

Synchronization: whether or not a component blocks when 
waiting for a response during an interaction with another one. 
Synchronous, a component suspends its execution after sending a 
request until receiving response. 
Asynchronous, a component proceeds further after sending a 
request without blocking itself. 
Asynchronous calling can easily simulate synchronous by using a 
loop which waits for a response, but it is much more difficult to 
do the opposite. So, asynchronous interactions are compatible 
with synchronous ones (Fig. 4). 

asynchronous 

synchronous 

Figure 4: Ordering of the types of synchronization 

Component Binding: how components are attached to 
connectors, and how the participants of an interaction are 
determined. 
Static binding. When a component initiates an interaction it will 
interact with the same component every time. Programs written in 
procedural languages use this type of binding between the 
components. 
Dynamic or lute binding. The target component of an interaction 
does not depend on the component that initiates the interaction. 
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During compile-time it can depend on other factors, such as 
parameters of the procedure call (object-oriented systems), or the 
current system’s topology (pipes-and-filters systems). In some 
architectures such as CORBA and SOM, a component itself can 
find during execution time, a specific component to interact with. 
Ordering of the values depends on compatibility between 
particular types of bindings (e.g., between CORBA and SOM), 
but generally dynamic binding is compatible with static binding. 
It is possible to have several types of binding (mixed binding) and 
be compatible, e.g., a component can support static binding, 
dynamic binding C++, and binding of CORBA (Fig. 5). 

mixed types of binding 

run-time dynamic binding 

static binding 

Figure 5: Ordering of the types of binding 

There are other issues, such as syntax, semantic, system topology 
and permissible changes of components, which are not measured 
in our approach, although they can affect component integration. 

4. A SOFTWARE SYSTEM 
CLASSIFICATION. 
In the previous section we established a set of variables to 
characterize component interactions. Architectural styles and 
COTS products that have some common assumptions for their 
components, thus these variables can describe them, but not only 
single components. Here are some of common architectural styles 
[IO] with their characteristics according to the set of variables. 
Often the exact value of a variable is not relevant for an 
architectural style, because it depends on a particular 
implementation. For example, depending on the programming 
language, operating system, and compiler, a call-and-return 
system can have only linkable components (a single executable 
program), or it may have independent components such as 
overlays or dynamic linkage libraries (DLL). 

Pipes and Filters. The components (filters) have inputs and 
outputs, they read data from their inputs, transform it and send 
through the outputs to other filters. The connectors (pipes) 
connect outputs and inputs of filters. 
Packaging: not relevant, independent UNIX processes that can be 
pipelined together, although modules in one program can use data 
flows. 
Control: not relevant (e.g., UNIX pipeline work sequentially, but 
generally the filters can be concurrent). 
Informationflow: data. 
Synchronization: not relevant. 
Binding: dynamic (determined by the particular system’s 
topology). 

Main Program and Subroutine. The components are procedures 
and functions, and the connectors are calls between them. Most 
programs written in procedural programming languages fall into 
this category. 
Packaging: not relevant, usually all routines are linked together in 
one executable program, but overlays and dynamic linkage 
libraries are stored separately. 
Control: centralized. 
Informationflow: control. 
Synchronization: synchronous. 
Binding: static. 

00 Systems. The components are objects. The connectors are 
invocations of methods or member functions of the objects. 
Packaging: not relevant, usually all routines are linked together in 
one executable program, but overlays and dynamic linkage 
libraries are stored separately. 
Control: usually centralized. 
Information flow: control. 
Synchronization: synchronous. 
Binding: dynamic, depending on the exact type of objects, which 
is usually resolved using virtual function tables. 

Communicating Processes. The components are independent 
processes, the connectors are either messages they exchange or 
other means of process communication (shared memory, remote 
procedure calls, etc.) 
Packaging: not relevant, a single program can have several 
threads of control, or several independent programs can be 
executed as concurrent processes. 
Control: decentralized. 
Information flow: not relevant, remote procedure calling can be 
used for control flow, and message passing can serve for data 
exchange. 
Synchronization: not relevant. 
Binding: not relevant. 

Event Systems. Unlike the conventional communicating 
processes, in event systems the components interact via implicit 
invocations. A component can register for an event and assign a 
procedure to be called in case of its announcement, and when the 
event is actually announced in the system, all assigned procedures 
are called for all components registered for this event. 
Packaging: not relevant. 
Control: decentralized. 
Informationflow: control (implicitly invoked routines). 
Synchronization: not relevant. 
Binding: dynamic. 

Blackboards. The components are the blackboard that stores the 
current state of the system and other components that have access 
to it. Actions of these components are triggered by specific states 
of the blackboard. 
Puckaging: not relevant. 

Control: not relevant. 
Informationflow: data. 
Synchronization: not relevant. 
Binding: static, everything is attached to the blackboard. 

Besides these common architectural styles, there are some specific 
architectures, specially designed for integrating components, 
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Component Object Model (COM), Common Object Request 
Broker’ Architecture (CORBA), Chiron-2 (C2), etc. Below we 
characterize some of them. 

C2 Architectural Style [7]. C2 is actually an 00 framework, but 
unlike many frameworks it depends on fewer assumptions due to 
its system of wrappers and domain translators. It does not assume 
component homogeneity (some of frameworks can integrate 
components written on a certain programming language), message 
synchronization (many frameworks support only synchronous 
message passing, with waiting for the reply), shared address space 
(no global variables needed), single thread control (the 
components can have their own control thread, that differentiates 
C2 from, maybe, all other frameworks). So the C2-style 
architecture has fewer limitations than typical 00 frameworks. 
Still, C2 requires message-based communication (which is 
semantically rich) for its components, and also provides a wrapper 
when a component does not support this style of interactions. The 
C2 architectural style was specially designed for reusing COTS 
products, which is why it makes so few assumptions about 
component interactions. A limitation of C2 is its layered structure, 
and although a component in C2 is not aware of components 
below it, it sends requests to the components above it, and all 
components must fit into the overall layered structure. C2 can be 
considered a layered data-flow architecture. 
Packaging: depends on whether the language is supported by C2. 
Co/ttrol: all types. 
Informationflow: data (message passing) 
Synchronization: all types. 
Binding: dynamic, defined by the system’s topology 

Common Object Request Broker Architecture (CORBA) of 
Object Management Group [I] is an industrial standard for 
distributed object-oriented architectures. CORBA allows objects 
created in different languages and platforms to send messages 
each other, and it has some additional capabilities. 
Packaging: depends on whether the language is supported by 
CORBA. 
Control: decentralized. 
Informationflow: control (remote procedure call). 
Synchronization: all types. 
Binding: run-time dynamic, the Naming Service of CORBA 
allows clients to find objects based on their names, the Trading 
Service allows clients to find objects based on their properties. 

Component Object Model (COM) of Microsoft Corporation [3] 
is a binary and network standard and a supporting system allows 
objects to make remote procedure calls. Objects using COM can 
be implemented in any language and they can have multiple 
interfaces. COM helps an object-client to establish connections 
with an interface of object-server. 
Packaging: depends on whether the language is supported by 
COM. 
Control: decentralized. 
Informutiott~ow: control. 
Synchronization: all types. 
Binding: run-time dynamic, COM function QueryInterface asks 
an object whether it has a specific interface, after that a decision 
on interaction can be based on the result of QueryInterface. This 
allows it to establish interaction only with a component that has a 
desired interface. 

5. ESTIMATING INTEGRATION COST. 
Interaction assumptions of single components and software 
architectures can be represented by an interaction vector V = 
(P,C,I,S,B) where the variables P,C,I,S,B are respectively 
packaging, control, information flow, synchronization and 
binding. The values of these variables and their orderings are as 
discussed above. Now we compare two interaction vectors V 1 and 
V2; this comparison reflects mismatches between the architectural 
assumptions with these vectors: 

If some components of VI are incomparable with Ithe respective 
components of V2 then Vl and V2 are incomparable (VI-V2). 
If all components of V 1 are equal to the respective components ot 
V2 then the two vectors are equal (V 1 =V2). 
If all components of VI are greater than or equal to then the 
respective components of V2 then VI is greater than or equal to 
v2 (vlrvz). 
If all components of V2 are greater than or equal to the respective 
components of VI then V2 is greater than or equal to V 1 
(V2>V I ), or V 1 is less than or equal to V2 (VI IV2). 
If some components of V 1 are greater than those of V2 and some 
components of VI are less than those of V2 then Vl and V2 are 
incomparable (V 1 -V2). 

To estimate the integration costs of a system and a COTS product 
we suggest the following procedure. First, the interaction vector 
Vs of the system architecture and the interaction vector Vp of the 
COTS product are found using the above classification. Then we 
compare Vs and Vp. Several outcomes of the comparison are 
possible: 

Vs=Vp. The architectural assumptions of the system and the 
product match, so integration must consider only syntax and 
semantic of their interactions. Therefore integration is 
respectively cheap. 
Vs2Vp. Some assumptions are different, but those of the COTS 
product are still compatible with the assumptions of the system. 
Like in the previous case not much integration is needed. Since 
the COTS product will work under architectural assumptions of 
the system after being integrated in it, this direction of 
compatibility is acceptable. 
Vs<Vp or Vs-Vp. Some assumptions of the COTS product are 
not compatible with the assumptions of the system. For example a 
COTS Borland C procedure may be used in a program written and 
compiled for ANSI C. In this situation integration work must be 
done to overcome the architectural mismatches. Here, much will 
depend on whether changes are permitted for the COTS products. 
If yes, then it might be possible to modify the.COTS product so 
that it becomes fully compatible with the system. In this case the 
cost of the COTS product modification must be estirnated. If no 
changes are allowed, then either the architecture of the system 
must changed, or some glueware for the COTS product 
integration must be written. To estimate the integration cost find 
an architecture such that both the system and the product are 
compatible with it. To achieve this find a vector Vc such that 
VcZVs and VcZVp. The vector Vc is a common upper element of 
the vectors Vs and Vp. Apparently, if Vs<Vp then it is possible 
that Vc=Vp. This will guarantee that a11 components of the system 
and the product can interact inside of the architecture with the 
interaction vector Vc. If the whole system architecture is 
modified, then we must estimate the cost of the modification 
according to the distance between Vc and Vs and the distance 
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between Vc and Vp. However, it can be sufficient to write 
gluewarerather than changing the whole architecture. Again, the 
glueware must have properties defined by Vc and the costs 
depend on the distance between Vc and Vs and the distance 
between Vc and Vp. To minimize the integration cost, it might be 
necessary to find the minimal common upper element Vc’ for VS 
and Vp in the space of interaction vectors. This means that no 
Vc” exists such that Vc”ZVs and Vc”ZVp and Vc’>Vc”, except 
for Vc”=Vc’. 

message and execute the proper method invocation. It will 
then send back the result again in the data format. 

l Synchronization. The interactions in the system are 
generally asynchronous, meanwhile the library assumes that 
calls to its objects are synchronous. This conflict is not a 
problem, because asynchronous interactions of the system 
are more genera1 than the synchronous ones of the library. 

l Binding. Although the processes know each other by their 
names, the objects of the library still require dynamic 
binding. Consider a process that creates several windows for 

We demonstrate our approach using an example. Consider a real- its output using the library. Whenever the process wants to 
time software system consisting of independent processes, and the use one of these windows it must send a message to the 
processes are programs implemented in Ada which interact with library driver, which still must contain a descriptor of the 
themselves by sending asynchronous messages. The processes particular window. The descriptor can be a pointer to the 
know each other by fixed names, so their binding is static. So, the window object or another label through which the library 
system has the communicating processes architecture. The driver can find the object. Dynamic binding can complicate 
problem is to attach a 3-D graphics engine to this system. A the messages sent to the library driver and can be a special 
COTS object-oriented library, such as QuickDraw 3D (QD3D) concern for the system developers. 
[l I] has been selected for the engine. Its functions can be called Thus the main problems the developers have to overcome in this 
from C/C++ only and it can not be used directly in the processes example are making a wrapper for the library (the library driver) 
(different packaging assumptions of the processes and the library). and implementing a special protocol to interact with it. The 
The integration cost of the library is estimated here using the protocol must allow the processes to reference particular objects 
proposed approach. The interaction vectors of the system, the of the library. These issues can be evaluated further in order 
library and their minimal common upper element are given in the to obtain more precise effort estimation, for example a number of 
table below (Table I). different types of messages to the driver according to the types of 

Table 1: The interaction vectors of a real-time Ada system, QuickDraw3D and their minimal common upper element. 

Table 2: The interaction vectors of Ada programs, OpenGL, and their minimal common upper element. 

library functions, etc. 
We define as follows the minimal common upper element: 

Packaging. Since it is impossible to link the library to the 
processes; it must be put into a separate wrapper-program 
that will work essentially as a driver of the library. 
Control. The library driver can work as an independent 
process in the system, it can have a closed loop of control, in 
which it reads messages from processes-clients, translates 
them into calls for the library objects and sends the results 
back. 
Information flow. The information flow type in the resulting 
system must support both message passing for the processes 
and method invocation for the library. The processes can 
send messages to the driver in some data form with the 
object name, method name and parameters of the invocation 
encoded in a predefined format. The driver will translate this 

Another option for the developers is to take OpenGL [ 1 l] instead 
of QD3D. OpenGL is a function library, it has no object 
orientation but it can be called directly from Ada. That is why it is 
possible to integrate OpenGL not on the level of the whole 
system, like QD3D, but on the lower level of Ada programs, that 
has the main program and subroutines architecture. In this case we 
take the interaction vector of programs, and compare it with the 
interaction vector of OpenGL. (Table 2). The minimal common 
upper element of them coincides with the interaction vector 01 
programs. That means that there is no architectural mismatch 
between the programs and OpenGL, and it can be easily 
integrated into the system. 
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Although the proposed approach does not directly give the 
amount of effort in units, such as staff hours, this example shows 
how it can point out major problems for the component 
integration and suggest solutions. Moreover, the information used 
in this approach can be easily obtained, making the approach 
relatively easy to apply. 

6. CONCLUSIONS. 
Although there is prior work on classifications of software 
architecture styles and architectural mismatches [6], [9], [IO], we 
do not know of any scheme that connects particular architectures 
to particular problems with software component integration. In 
this work we tried to fill this gap and to create a method that 
would support estimation of the cost of integration of COTS 
products in various architectures. 

Five variables were used for describing assumptions of 
component interactions. Their possible values were compared 
with respect to ease of mutual integration of components with 
these assumptions. A number of software architectures were 
characterized using these variables. The obtained partially ordered 
set can serve as a basis for estimating integration costs in different 
architectures by the relations of the set. Architectures that can 
easily integrate more types of components are higher in this order 
set. Architectures that can integrate fewer types of components 
because of their strict assumptions are lower. Moreover, these 
variables can help to estimate. cost of integration of particular 
components into a software system by comparing their 
assumptions about interaction with those of the system’s 
architecture. In turn, knowledge of the differences between the 
component and the system would allow the system developers to 
figure out what wrapper must be created for successful integration 
of the component. However, we do not claim that the suggested 
set of variables or their values used in this paper are exhaustive, 
they can be refined in the future. 

Future research will attempt to validate this classification scheme 
and the estimation method empirically, using data from real 
projects with COTS product integration. The empirical data also 
will help to improve the method. Another direction of study might 
be adding other architectural styles to this classification. Finally, 
this classification scheme might serve as the foundation for a 
COTS integration methodology, which wotild be useful for 
software developers. 
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