
Software architecture classification for estimating the
cost of COTS integration.

Daniil Yakimovich James M. Bieman
University of Maryland Colorado State University

Computer Science Department Computer Science Department
University of Maryland Colorado State University

College Park, MD 20742, USA Fort Collins, CO 80523, USA
l-(301)-405-2721 l-(970)-491 -7096

dyak@cs.umd.edu bieman @ cs.colostate.edu

Victor R. Basili
University of Maryland

Computer Science Department
University of Maryland

College Park, MD 213742, USA
l-(301)-405-2668

basili@cs.umd.edu

ABSTRACT’
The use of commercial-off-the-shelf (COTS) products creates a
software integration problem. whether a single COTS software
component is being integrated into a software system, or the
whole system is being built primarily from COTS products. This
integration may require considerable effort and affect system
quality. A good estimate of integration cost can help in the
decision of whether or not to use a COTS solution, the selection
of the best COTS products, and determine the amount and type of
glueware that needs to be built. In this paper, we introduce a set of
variables that have the potential to estimate the integration cost.
We present a classification scheme of software architectures with
respect to the integration of COTS products. The scheme is based
on inter-component interactions within software architectures.
The classification scheme allows the comparison of integration
costs of different COTS products relative to different software
architectures.

Keywords
COTS integration, software architectures, cost estimation.

Permission IO make digital or hard topics ol‘all or part ot‘this work ti>r
Personal or classroom USC is granted without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fbll citation on the tirst page. To copy
otkr~kise, Lo republish, to post on servers or IO redistrihutc IO lists.
rcquircs prior specific permission and/or a fee.
LCsE ‘99 Los Angeles CA
Copyright ACM 1999 l-581 13-074-0/99/05...$5.00

1. INTRODUCTION.
Commercial-off-the-shelf (COTS) software products are widely
used now in software development [9], and their usage should
increase quality of the product and reduce the time of its
development. However, COTS products often require significant
effort for their integration into a system [4]. Software system
architecture is one factor that affects integration cost [5]

The architecture of a software system is defined by its
components and interactions between them, where components
are things such as servers, databases, filters, etc. [1 O]. We can also
consider computational units at a lower level such as procedures,
objects, modules to be components. A COTS product can consist
of one or many components. Interactions between the components
can be simple, such as calling procedures or shared variables, ot
complicated, such as data-base protocols [IO]. Besides
conventional architectural styles such as main program and
subroutines, 00 systems, interpreters, etc. [lo], a number of
architectures have appeared recently to facilitate the integration of
externally created components. Example architectures include
industrial standards such as the Component Object Request
Broker Architecture (CORBA) [l], Common Object Model
(COM) [3], and experimental architectures such C2 [7].

When a software component is integrated into a system, it must
support the style of the interactions of the system’s architecture in
order to work together with other components. If a COTS product
has another style of interactions, programmers must write
integration software to allow this product to interact with other
components of the system. An overview of integration techniques
can be found in [9]. Most of the techniques either change the
component being integrated, or create wrappers or adapters,
which are special software that support interactions between the
component and its environment. Since most COTS products can
not be changed by users because of absence of source code and
other reasons, the integration of COTS products is usually

296

performed by glueware. Glueware is integration software; it
provides the proper interface for a component being integrated
and serves as a mediator for its interactions with other
components.

Integration work increases the cost and development time of the
system. Moreover, changing the COTS components, or adding
glueware can lower system quality. An architectural style and
COTS products with a close match can minimize integration
work. In this study we use a set of variables to estimate the
distance between architectures and components. These distance
variables are ordinals; they provide relative distances between a
COTS product and system requirements. Distance variables may
be independent with independent and possibly conflicting
orderings. This distance can be used to estimate integration effort
from an architecture description and a COTS product
specification.

In section 2 we discuss the problem of interactions between
components and their environment and the scope of our study.
Section 3 gives the dimensions of interaction assumptions.
Section 4 discusses types of interactions for different architectural
styles and their classification. Section 5 describes the approach for
estimating the integration cost based on the architecture
classification. Section 6 contains the conclusions.

2. INTERACTIONS AS THE ORIGIN OF
THE INTEGRATION PROBLEM.
Integration problems arise when a component depends on certain
assumptions concerning its interactions with its environment, but
is to be placed into a system that is based on different
assumptions. The result is interaction protocol mismatches. We
define four types of interactions:

Component-platform interactions. A component must be
executed somewhere. It can be either a real processor and an
operating system for binary executables, or a virtual one. If an
executable program was compiled for one type of CPU, it will
need an emulator or a code converter in order to run it on another
CPU.
Component-hardware interactions. A component can interact
directly with hardware writing-reading from ports. If the port’s
numbers are different from what is expected by the component,
the component must undergo some modification.
Component-user interactions. A component’s user interface
requirements may also change. For example, a component can
have its messages in one language, when the system requires
another language.
Component-software interactions. A component almost always
interacts with other software components, and there can be
mismatches between the components. A set of possible
mismatches between components [9]: representation,
communication, packaging, synchronization, semantics, control,
etc.

Although all four types of interactions can cause problems for a
component reuse and must be overcome, the main concern of this
study is component-software interactions.

3. ASSUMPTJONS ABOUT
INTERACTIONS BETWEEN SOFTWARE
COMPONENTS.
Consider the integration of COTS components on the architecture
level and their interactions with other components of the system.
Every component is designed with assumptions concerning its
interactions, and the assumptions strongly depend on the
particular architecture. For example, some architectures have only
one control thread, e.g., main program and subroutines, and their
components depend on the control structure. In contrast,
distributed architectures such as client-servers have components
that are independent processes. When a component to be
integrated has different control assumptions from the system’s,
development effort is required to overcome the differences in the
interaction protocols.

The following classification of architectural assumptions that can
cause mismatches in inter-component interactions is given in [6]:

I.

I.1
1.2

1.3

2.
2.1

2.2

3.

4.

Assumptions about the nature of the components

infrastructure - the substrate on which the component is built;
control model - assumptions about which component
controls the sequencing of computations;
data model - assumptions about the way the environment will
manipulate data managed by a component.

Assumptions about the nature of the connectors
protocols - assumptions about the patterns of interaction
characterized by a connector;
data model - assumptions about the kind of the data that is
communicated.

Assumptions about the global architectural structure.
These include the particular topology of a system.
Assumptions about the construction process, in what

order pieces are instantiated and put together.

We use the following variables to represent assumptions about
inter-component interactions: component packaging, type of
control, type of information flow, synchronization and binding.
Other issues that are difficult to measure but can have a
considerable impact on integration are syntax and semantic of
interaction protocols, the topology of the system, and whether
COTS products and the system can be modified or not. We also
have to compare different values of these variables with respect to
compatibility of the assumptions.

Trivially, if two components have the same assumptions on an
aspect of interaction, the values of the respective variables are
equal. When the assumptions are different, two situations are
possible. First, one assumption may still be compatible with
another. For example, with respect to packaging, a component can
be implemented in ANSI C, and another component can be
implemented in Borland C, which is an extension of ANSI C [2].
In this case, the first type of packaging is compatible with the
second one, because all Borland C compatible compilers will
compile programs written in ANSI C. Thus, if a system is
developed in Borland C, and a procedure is written in ANSI C, it
is safe to use this procedure. If the system is developed in ANSI
C, and the procedure uses some Borland C specific functions, then
the whole system must be recompiled with a Borland C compiler.
In this case, the value of the packaging variable of the Borland C
component is greater than the value of the ANSI C component’s

297

packaging variable. We treat all assumptions in this way: if
assumption A is compatible with assumption B, then the
respective variables are comparable, and A I B. Some
assumptions are incompatible, for example data flow interactions
and control flow interactions. In this case the values representing
these assumptions are incomparable. So the values of the variable
have partial orders. Figures I through 5 depict orderings of the
variables with arrows going from greater values to lesser ones.

Component Packaging: how a component is packaged for
integrating into a system. Two big classes of packaging types can
be defined: hnkable and independent components. These
classifications represent the values of the component packaging
variable:

Linkable components, e.g., object modules, class libraries,’
function libraries, etc. These components must be linked together
with other system components in one executable program. They
can be represented either in source code or as object files.
Independent components, e.g., overlays, dynamic linkage
libraries, independent programs, etc., that need not to be linked
with other components. The exact ordering of the values mainly
depend on the compatibility between different language dialects
and object file formats. The values for independent components
are greater than values of linkable components, because it is easier
to convert a linkable component into an independent one. For
example, it is possible to create an independent component from a
library component by just putting it into a wrapper program, or it
is possible to convert an object module into a dynamic linkage
library.
The values for independent stand-alone programs are greater than
values for other independent components such as overlays and
dynamic linkage libraries because the latter can be put into
wrapper programs and thus converted into independent programs
(Fig. 1).

independent programs

overlays * yY\>T libraries

source code modules e object modules
Figure 1: Ordering of types of packaging

Type of Control: how a system provides control flow to its
components.
Centralized control. Components in systems such as single
programs written in programming languages without concurrency
must assume the existence of only one control thread, which is
passed from one component to another.
Decentralized control. Components in systems with concurrent
processes or/and multiple threads inside of one program can have
their own control.
No conrrol assumption. Some components, such as libraries, do
not make any assumptions on the control and can be used in
systems with any type of control.
Decentralized control is more general than centralized control. A
component from a centralized control system may be wrapped
inside of an independent process and used in a system with
decentralized control. But it is difficult, if possible, to deprive an
independent process of its control structure putting it into a
system with centralized control (Fig. 2).

multiple processes

no control assumption

Figure 2: Ordering of types of control

Information Flow: what type of information flows between
components: data, control, or mixed.
Control flow interactions that invoke some routines of
components such as procedure calling, remote procedure calling,
etc.
Data flow interactions that use exchange data between
components (shared memory, message passing, etc).
Mixed data-control interactions that can accept data from one
component and convert it into control for another component, and
vise versa.

mixed data-control flow

data flow control flow

Figure 3: Ordering of types of information flow

Synchronization: whether or not a component blocks when
waiting for a response during an interaction with another one.
Synchronous, a component suspends its execution after sending a
request until receiving response.
Asynchronous, a component proceeds further after sending a
request without blocking itself.
Asynchronous calling can easily simulate synchronous by using a
loop which waits for a response, but it is much more difficult to
do the opposite. So, asynchronous interactions are compatible
with synchronous ones (Fig. 4).

asynchronous

synchronous

Figure 4: Ordering of the types of synchronization

Component Binding: how components are attached to
connectors, and how the participants of an interaction are
determined.
Static binding. When a component initiates an interaction it will
interact with the same component every time. Programs written in
procedural languages use this type of binding between the
components.
Dynamic or lute binding. The target component of an interaction
does not depend on the component that initiates the interaction.

298

During compile-time it can depend on other factors, such as
parameters of the procedure call (object-oriented systems), or the
current system’s topology (pipes-and-filters systems). In some
architectures such as CORBA and SOM, a component itself can
find during execution time, a specific component to interact with.
Ordering of the values depends on compatibility between
particular types of bindings (e.g., between CORBA and SOM),
but generally dynamic binding is compatible with static binding.
It is possible to have several types of binding (mixed binding) and
be compatible, e.g., a component can support static binding,
dynamic binding C++, and binding of CORBA (Fig. 5).

mixed types of binding

run-time dynamic binding

static binding

Figure 5: Ordering of the types of binding

There are other issues, such as syntax, semantic, system topology
and permissible changes of components, which are not measured
in our approach, although they can affect component integration.

4. A SOFTWARE SYSTEM
CLASSIFICATION.
In the previous section we established a set of variables to
characterize component interactions. Architectural styles and
COTS products that have some common assumptions for their
components, thus these variables can describe them, but not only
single components. Here are some of common architectural styles
[IO] with their characteristics according to the set of variables.
Often the exact value of a variable is not relevant for an
architectural style, because it depends on a particular
implementation. For example, depending on the programming
language, operating system, and compiler, a call-and-return
system can have only linkable components (a single executable
program), or it may have independent components such as
overlays or dynamic linkage libraries (DLL).

Pipes and Filters. The components (filters) have inputs and
outputs, they read data from their inputs, transform it and send
through the outputs to other filters. The connectors (pipes)
connect outputs and inputs of filters.
Packaging: not relevant, independent UNIX processes that can be
pipelined together, although modules in one program can use data
flows.
Control: not relevant (e.g., UNIX pipeline work sequentially, but
generally the filters can be concurrent).
Informationflow: data.
Synchronization: not relevant.
Binding: dynamic (determined by the particular system’s
topology).

Main Program and Subroutine. The components are procedures
and functions, and the connectors are calls between them. Most
programs written in procedural programming languages fall into
this category.
Packaging: not relevant, usually all routines are linked together in
one executable program, but overlays and dynamic linkage
libraries are stored separately.
Control: centralized.
Informationflow: control.
Synchronization: synchronous.
Binding: static.

00 Systems. The components are objects. The connectors are
invocations of methods or member functions of the objects.
Packaging: not relevant, usually all routines are linked together in
one executable program, but overlays and dynamic linkage
libraries are stored separately.
Control: usually centralized.
Information flow: control.
Synchronization: synchronous.
Binding: dynamic, depending on the exact type of objects, which
is usually resolved using virtual function tables.

Communicating Processes. The components are independent
processes, the connectors are either messages they exchange or
other means of process communication (shared memory, remote
procedure calls, etc.)
Packaging: not relevant, a single program can have several
threads of control, or several independent programs can be
executed as concurrent processes.
Control: decentralized.
Information flow: not relevant, remote procedure calling can be
used for control flow, and message passing can serve for data
exchange.
Synchronization: not relevant.
Binding: not relevant.

Event Systems. Unlike the conventional communicating
processes, in event systems the components interact via implicit
invocations. A component can register for an event and assign a
procedure to be called in case of its announcement, and when the
event is actually announced in the system, all assigned procedures
are called for all components registered for this event.
Packaging: not relevant.
Control: decentralized.
Informationflow: control (implicitly invoked routines).
Synchronization: not relevant.
Binding: dynamic.

Blackboards. The components are the blackboard that stores the
current state of the system and other components that have access
to it. Actions of these components are triggered by specific states
of the blackboard.
Puckaging: not relevant.

Control: not relevant.
Informationflow: data.
Synchronization: not relevant.
Binding: static, everything is attached to the blackboard.

Besides these common architectural styles, there are some specific
architectures, specially designed for integrating components,

299

Component Object Model (COM), Common Object Request
Broker’ Architecture (CORBA), Chiron-2 (C2), etc. Below we
characterize some of them.

C2 Architectural Style [7]. C2 is actually an 00 framework, but
unlike many frameworks it depends on fewer assumptions due to
its system of wrappers and domain translators. It does not assume
component homogeneity (some of frameworks can integrate
components written on a certain programming language), message
synchronization (many frameworks support only synchronous
message passing, with waiting for the reply), shared address space
(no global variables needed), single thread control (the
components can have their own control thread, that differentiates
C2 from, maybe, all other frameworks). So the C2-style
architecture has fewer limitations than typical 00 frameworks.
Still, C2 requires message-based communication (which is
semantically rich) for its components, and also provides a wrapper
when a component does not support this style of interactions. The
C2 architectural style was specially designed for reusing COTS
products, which is why it makes so few assumptions about
component interactions. A limitation of C2 is its layered structure,
and although a component in C2 is not aware of components
below it, it sends requests to the components above it, and all
components must fit into the overall layered structure. C2 can be
considered a layered data-flow architecture.
Packaging: depends on whether the language is supported by C2.
Co/ttrol: all types.
Informationflow: data (message passing)
Synchronization: all types.
Binding: dynamic, defined by the system’s topology

Common Object Request Broker Architecture (CORBA) of
Object Management Group [I] is an industrial standard for
distributed object-oriented architectures. CORBA allows objects
created in different languages and platforms to send messages
each other, and it has some additional capabilities.
Packaging: depends on whether the language is supported by
CORBA.
Control: decentralized.
Informationflow: control (remote procedure call).
Synchronization: all types.
Binding: run-time dynamic, the Naming Service of CORBA
allows clients to find objects based on their names, the Trading
Service allows clients to find objects based on their properties.

Component Object Model (COM) of Microsoft Corporation [3]
is a binary and network standard and a supporting system allows
objects to make remote procedure calls. Objects using COM can
be implemented in any language and they can have multiple
interfaces. COM helps an object-client to establish connections
with an interface of object-server.
Packaging: depends on whether the language is supported by
COM.
Control: decentralized.
Informutiott~ow: control.
Synchronization: all types.
Binding: run-time dynamic, COM function QueryInterface asks
an object whether it has a specific interface, after that a decision
on interaction can be based on the result of QueryInterface. This
allows it to establish interaction only with a component that has a
desired interface.

5. ESTIMATING INTEGRATION COST.
Interaction assumptions of single components and software
architectures can be represented by an interaction vector V =
(P,C,I,S,B) where the variables P,C,I,S,B are respectively
packaging, control, information flow, synchronization and
binding. The values of these variables and their orderings are as
discussed above. Now we compare two interaction vectors V 1 and
V2; this comparison reflects mismatches between the architectural
assumptions with these vectors:

If some components of VI are incomparable with Ithe respective
components of V2 then Vl and V2 are incomparable (VI-V2).
If all components of V 1 are equal to the respective components ot
V2 then the two vectors are equal (V 1 =V2).
If all components of VI are greater than or equal to then the
respective components of V2 then VI is greater than or equal to
v2 (vlrvz).
If all components of V2 are greater than or equal to the respective
components of VI then V2 is greater than or equal to V 1
(V2>V I), or V 1 is less than or equal to V2 (VI IV2).
If some components of V 1 are greater than those of V2 and some
components of VI are less than those of V2 then Vl and V2 are
incomparable (V 1 -V2).

To estimate the integration costs of a system and a COTS product
we suggest the following procedure. First, the interaction vector
Vs of the system architecture and the interaction vector Vp of the
COTS product are found using the above classification. Then we
compare Vs and Vp. Several outcomes of the comparison are
possible:

Vs=Vp. The architectural assumptions of the system and the
product match, so integration must consider only syntax and
semantic of their interactions. Therefore integration is
respectively cheap.
Vs2Vp. Some assumptions are different, but those of the COTS
product are still compatible with the assumptions of the system.
Like in the previous case not much integration is needed. Since
the COTS product will work under architectural assumptions of
the system after being integrated in it, this direction of
compatibility is acceptable.
Vs<Vp or Vs-Vp. Some assumptions of the COTS product are
not compatible with the assumptions of the system. For example a
COTS Borland C procedure may be used in a program written and
compiled for ANSI C. In this situation integration work must be
done to overcome the architectural mismatches. Here, much will
depend on whether changes are permitted for the COTS products.
If yes, then it might be possible to modify the.COTS product so
that it becomes fully compatible with the system. In this case the
cost of the COTS product modification must be estirnated. If no
changes are allowed, then either the architecture of the system
must changed, or some glueware for the COTS product
integration must be written. To estimate the integration cost find
an architecture such that both the system and the product are
compatible with it. To achieve this find a vector Vc such that
VcZVs and VcZVp. The vector Vc is a common upper element of
the vectors Vs and Vp. Apparently, if Vs<Vp then it is possible
that Vc=Vp. This will guarantee that a11 components of the system
and the product can interact inside of the architecture with the
interaction vector Vc. If the whole system architecture is
modified, then we must estimate the cost of the modification
according to the distance between Vc and Vs and the distance

300

between Vc and Vp. However, it can be sufficient to write
gluewarerather than changing the whole architecture. Again, the
glueware must have properties defined by Vc and the costs
depend on the distance between Vc and Vs and the distance
between Vc and Vp. To minimize the integration cost, it might be
necessary to find the minimal common upper element Vc’ for VS
and Vp in the space of interaction vectors. This means that no
Vc” exists such that Vc”ZVs and Vc”ZVp and Vc’>Vc”, except
for Vc”=Vc’.

message and execute the proper method invocation. It will
then send back the result again in the data format.

l Synchronization. The interactions in the system are
generally asynchronous, meanwhile the library assumes that
calls to its objects are synchronous. This conflict is not a
problem, because asynchronous interactions of the system
are more genera1 than the synchronous ones of the library.

l Binding. Although the processes know each other by their
names, the objects of the library still require dynamic
binding. Consider a process that creates several windows for

We demonstrate our approach using an example. Consider a real- its output using the library. Whenever the process wants to
time software system consisting of independent processes, and the use one of these windows it must send a message to the
processes are programs implemented in Ada which interact with library driver, which still must contain a descriptor of the
themselves by sending asynchronous messages. The processes particular window. The descriptor can be a pointer to the
know each other by fixed names, so their binding is static. So, the window object or another label through which the library
system has the communicating processes architecture. The driver can find the object. Dynamic binding can complicate
problem is to attach a 3-D graphics engine to this system. A the messages sent to the library driver and can be a special
COTS object-oriented library, such as QuickDraw 3D (QD3D) concern for the system developers.
[l I] has been selected for the engine. Its functions can be called Thus the main problems the developers have to overcome in this
from C/C++ only and it can not be used directly in the processes example are making a wrapper for the library (the library driver)
(different packaging assumptions of the processes and the library). and implementing a special protocol to interact with it. The
The integration cost of the library is estimated here using the protocol must allow the processes to reference particular objects
proposed approach. The interaction vectors of the system, the of the library. These issues can be evaluated further in order
library and their minimal common upper element are given in the to obtain more precise effort estimation, for example a number of
table below (Table I). different types of messages to the driver according to the types of

Table 1: The interaction vectors of a real-time Ada system, QuickDraw3D and their minimal common upper element.

Table 2: The interaction vectors of Ada programs, OpenGL, and their minimal common upper element.

library functions, etc.
We define as follows the minimal common upper element:

Packaging. Since it is impossible to link the library to the
processes; it must be put into a separate wrapper-program
that will work essentially as a driver of the library.
Control. The library driver can work as an independent
process in the system, it can have a closed loop of control, in
which it reads messages from processes-clients, translates
them into calls for the library objects and sends the results
back.
Information flow. The information flow type in the resulting
system must support both message passing for the processes
and method invocation for the library. The processes can
send messages to the driver in some data form with the
object name, method name and parameters of the invocation
encoded in a predefined format. The driver will translate this

Another option for the developers is to take OpenGL [1 l] instead
of QD3D. OpenGL is a function library, it has no object
orientation but it can be called directly from Ada. That is why it is
possible to integrate OpenGL not on the level of the whole
system, like QD3D, but on the lower level of Ada programs, that
has the main program and subroutines architecture. In this case we
take the interaction vector of programs, and compare it with the
interaction vector of OpenGL. (Table 2). The minimal common
upper element of them coincides with the interaction vector 01
programs. That means that there is no architectural mismatch
between the programs and OpenGL, and it can be easily
integrated into the system.

301

Although the proposed approach does not directly give the
amount of effort in units, such as staff hours, this example shows
how it can point out major problems for the component
integration and suggest solutions. Moreover, the information used
in this approach can be easily obtained, making the approach
relatively easy to apply.

6. CONCLUSIONS.
Although there is prior work on classifications of software
architecture styles and architectural mismatches [6], [9], [IO], we
do not know of any scheme that connects particular architectures
to particular problems with software component integration. In
this work we tried to fill this gap and to create a method that
would support estimation of the cost of integration of COTS
products in various architectures.

Five variables were used for describing assumptions of
component interactions. Their possible values were compared
with respect to ease of mutual integration of components with
these assumptions. A number of software architectures were
characterized using these variables. The obtained partially ordered
set can serve as a basis for estimating integration costs in different
architectures by the relations of the set. Architectures that can
easily integrate more types of components are higher in this order
set. Architectures that can integrate fewer types of components
because of their strict assumptions are lower. Moreover, these
variables can help to estimate. cost of integration of particular
components into a software system by comparing their
assumptions about interaction with those of the system’s
architecture. In turn, knowledge of the differences between the
component and the system would allow the system developers to
figure out what wrapper must be created for successful integration
of the component. However, we do not claim that the suggested
set of variables or their values used in this paper are exhaustive,
they can be refined in the future.

Future research will attempt to validate this classification scheme
and the estimation method empirically, using data from real
projects with COTS product integration. The empirical data also
will help to improve the method. Another direction of study might
be adding other architectural styles to this classification. Finally,
this classification scheme might serve as the foundation for a
COTS integration methodology, which wotild be useful for
software developers.

REFERENCES:

[I] Baker, S., “CORBA distributed objects using Orbix”, 1997,
Addison-Wesley.

[2] “Borland C++, Version 2.0 User’s Guide”, 1991, Borland
International Inc.

[3] Box, D., “Essential COM”, 1998, Addison-Wesley.

[4] Carney, D.J., Obemdorf, P.A., “The Commandments of
COTS: Still in Search of the Promised Land”, Crosstalk, May,
1997, pp. 25 - 30.

[5] Davis, M.J., Williams, R.B., Software Architecture
Characterization, Proceedings of the 1997 Sy.mposium on
Software Reusability (SSR’97), Boston, USA, May, 1997, pp. 30-
38.

[6] Garlan, D., Allen, R., Ockerbloom, J., “Architectural
Mismatch or Why it’s hard to build systems out of existing parts”,
Proceedings of International Conference on Software
Engineering, 1995, Seattle, WA, USA, pp. 179 - 185.

[7] Medvidovic, N., Oreizy, P., Taylor, R.N., Reuse of Off-the-
Shelf Components in C2-Style Architectures, Proceedings of the
1997 Symposium on Software Reusability (SSR’97), Boston,
USA, May, 1997, pp. 190-198.

[8] Parra, A., Seaman, C.B., Basili, V.R., Kraft, S., Condon, S.,
Burke, S., Yakimovich, D. The Package-Based Development
Process in the Flight Dynamic Division, The twenty-second
Software Engineering Workshop, NASA/Goddard Space Flight
Center Software Engineering Laboratory (SEL), Greenbelt, MD,
December 1997, pp. 21-56.

[9] Shaw, M., Architectural Issues in Software Reuse: It’s Not
Just the Functionality, It’s Packaging, Proceedings of the
Symposium on Software Reusability, 1995, Seattle, WA, USA,
pp. 3-6.

[IO] Shaw, M., Garlan, D., “Software Architecture. Perspectives
on an Emerging Discipline”, 1996, Prentice Hall, Upper Saddle
River, NJ.

[I I] Thompson, T., “Must-See 3-D Engines”, Byte, June 1996,
pp. 137 - 144.

i This work has been supported by NASA
grant NCC5 170.

302

