
The Evolution of FreeBSD and Linux
Clemente Izurieta

Department of Computer Science
Colorado State University

Fort Collins, Colorado, USA
01-970-481-6172

cizuriet@colostate.edu

James Bieman
Department of Computer Science

Colorado State University
Fort Collins, Colorado, USA

01-970-491-7096

bieman@colostate.edu

ABSTRACT
Is the nature of Open Source Software (OSS) evolution
fundamentally different from that of the traditional and
commercially available software systems? Lehman and others
conducted a series of empirical studies that found that traditional
systems grow at a linear or sub-linear rate. A prior case study of
the Linux OSS system suggests that OSS may evolve in a unique
manner. Godfrey and Tu found that some aspects of Linux are
growing at a super-linear rate rather than a sub-linear rate.
Additional studies are necessary before drawing conclusions.
Thus, we examine the evolution of FreeBSD and re-analyze the
evolution of Linux, and find evidence that the growth of both
systems has a linear upper bound, and thus appear to grow at
similar rates to that of commercial systems. These results do not
support the hypothesis that OSS systems grow at rates that exceed
that of traditional systems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – software evolution.

General Terms
Measurement, Design, Experimentation.

Keywords
Software Engineering, Evolution, Open Source Software,
FreeBSD, Linux, Replication Study.

1. INTRODUCTION
Open source software (OSS) development processes appear to be
strikingly different from that of traditional systems. Studies of
OSS products and processes can identify these differences, if they
exist. Data and source code are readily available. Examples of
successful OSS products include Linux, FreeBSD, gcc, Mozilla,
Apache, etc.

Although there is controversy concerning the testability of
Lehman’s laws [8] of software evolution [16], Lehman and his
collaborators identified common trends in the growth of
commercial systems. Lehman’s empirical studies were carried out

on numerous E-type commercial systems of different sizes and
developed by different organizations. An E-type system is
described by Scacchi [16] as “An application embedded in its
setting of use”. In other words, there is feedback provided by the
continuing evolution of the software.

In some of his earliest empirical work [10], Lehman and Ramil
showed clear linear growth of the OS/360 operating system from
IBM over a number of releases. Further, Lehman and Ramil
established clear commonalities in the evolution of software
through a series of empirical studies in the Feedback, Evolution
And Software Technology (FEAST) [11] projects that showed sub
linear growth and inverse squared trends among these commercial
systems. Lehman and Ramil state “An example of such
similarities is provided by the fact that five of the six FEAST
systems display a positive, but predominantly declining, long
term, growth rate over releases.” The FEAST project analyzed
empirical data from six commercial systems from very different
industries, namely, a financial transaction system, an information
system, an OS kernel, two real time systems, and a military
system.

Even thought the newer studies by Lehman and Ramil are
exploratory in nature, they do suggest that feedback driven
mechanisms are in place that force an initial linear and long term
sub-linear trend in software evolution of commercial systems. We
further claim these studies carry over to that of Open Source
Software systems.

Lawrence also carried out empirical studies of the software
evolution of seven commercial systems [7]. Four are operating
systems� IBM’s DOS and OS/360, ICL’s VME, and UNIVAC’s
Omega, one system was a financial application, and the final two
were batch systems for inventory control. Lawrence found that
both of IBM’s operating systems exhibited higher growth rates
than the other systems, but the growth rate was linear. The other
five systems showed declining growth as the number of releases
increased.

Godfrey and Tu [4] studied the evolution of Linux, a well known
OSS system. In their study, they “expected to find that Linux was
growing more slowly as it got bigger and more complex.” They
expected OSS systems to exhibit a growth rate similar to their
industrial counterparts, namely, one approximating an inverse
square function [3]. They found evidence suggesting that Linux
is growing at a super-linear rate, which contradicts the empirical
studies of commercial systems.

The case study carried out by Godfrey and Tu is just one data
point, but one that was carried out on a well known OSS system.
Although Godfrey and Tu found evidence to suggest super-linear
growth in the driver sub-system of the Linux OS, they have also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISESE’06, September 21–22, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-218-6/06/0009…$5.00.

found evidence of linear growth in systems such as FetchMail, X-
Windows, and gcc, and report on evidence of sub-linear growth in
Pine (e-mail client) [5, 6].

The Linux project is a pure OSS project. The term “pure” is used
by Mockus et al. [14] to describe projects without any significant
commercial involvement. We thus carried out a case study of
FreeBSD [2], another OSS system in the same application domain
as Linux. We also re-examined the evolution of Linux, focusing
on the growth rates of stable releases. Additionally, we break up
the system into its sub-systems and study their growth rates
individually as suggested by Gall et al. [3].

Because FreeBSD does not support as many devices as Linux,
where devices constitute as much as 60% of the total system size,
and because FreeBSD goes through a more demanding testing and
acceptance process [1], we expected that this OSS system will
more closely adhere to showing evidence of sub-linear growth.
We also expected that Linux and its extensive driver subsystem
will show a steeper growth rate.

To evaluate our data we will carefully analyze the measures that
we obtain from the FreeBSD and Linux project repositories and
databases over a period of time and across various releases of
stable source trees.

Gall et al. [3] suggests dividing the system into subsystems in
order to understand the evolution of the sub-parts, otherwise
valuable information may be lost. Godfrey and Tu [6] did this by
using the file system of Linux to inherently divide the system
architecture. This process suppresses any biases imposed by the
authors on the subdivision of systems. We also allow the file
system structure of both operating systems to serve as this natural
sub-division heuristic.

In this paper, we examine the Godfrey and Tu [4] result that
Linux has grown at a super-linear rate and see if FreeBSD,
another similar OSS system, grows in a consistent manner. Since
prior studies found that traditional systems grow at sub-linear
rates, we are essentially examining the hypothesis that OSS
systems, or at least OSS operating systems, grow at a greater rate
than that of traditional systems. Thus, our working null hypothesis
is that the growth rates of OSS systems do not differ from the sub-
linear rates found in traditional software development. We see if
these case studies provide evidence to refute the null hypothesis.

2. THE LINUX AND FREEBSD
OPERATING SYSTEMS
The FreeBSD project web site [2] describes this OSS system as an
operating system for x86 compatible (including Pentium® and
Athlon™), amd64 compatible (including Opteron™, Athlon 64,
and EM64T), Alpha/AXP, IA-64, PC-98 and UltraSPARC®
architectures. It is derived from BSD, the version of UNIX®
developed at the University of California, Berkeley. Similarly,
Linux is supported on various platforms including PowerPC,
UltraSPARC® architectures, IA-64, etc. Linux was originally
developed by Linus Torvalds, but has grown in size considerably
thanks to the support of hundreds of contributors.

FreeBSD and Linux are large and successful OSS system projects
that depend on the contributions of its developer/user community
to continue to evolve. The community of the FreeBSD project is
made up of a group of core developers (7-9), a group of

committers; which is a trusted developer community, and where
committers may be nominated to become part of the core team
[1]. Linux follows a similar setup where the vast majority of
contributors are volunteers. These communities are distributed
geographically and culturally.

FreeBSD uses a CVS (Concurrent Version Control) repository to
store information about the code and its history. It is common for
OSS projects to use CVS for source code management. FreeBSD
and Linux maintain stable branches of their source code. Stable
code is tested and not experimental. Both operating systems also
maintain branches that house the latest developments and are
experimental in nature. Linux refers to these experimental
branches as development branches, whereas FreeBSD calls them
current branches. We concentrate our efforts on measuring stable
releases for both operating systems, as these tend to exhibit more
analogous properties to commercial releases; which are what
Lehman’s empirical studies are based on.

Similar to Godfrey and Tu, we maintain the inherent sub-directory
structure of the operating systems as the natural sub-division of
the sub-systems. Additional information regarding the various
directories and their corresponding descriptions can be found in
the OSS systems websites [2, 13].

3. METHODOLOGY
We measure the various stable FreeBSD and Linux releases from
their inception. Each release is subdivided further into their file
system structure. We capture various metrics, including LOCs
(Lines of Code), number of directories, total size in Kbytes,
average and median LOC for header (dot-h) and source (dot-c)
files, and number of modules (files) for each sub-system and for
the system as a whole.

Before each release, commercial systems are thoroughly tested in
order to satisfy customers, and are by no means experimental.
Stable releases are not part of just a single source code branch,
rather, as the software matures, new stable source code branches
fork and merge, thus discontinuing previous version trees. Figure
1 shows the evolution of FreeBSD [6] for example, and the Unix
web-site [18] has a similar picture for Linux. Missing releases are
not an indication of discontinuities in the source branches; rather
the data necessary for our study was not readily available. All
FreeBSD releases prior to and including 3.3 were only supported
on Intel’s 386 architecture. Starting with release 3.4 and the
entire 4.x stable branch, FreeBSD was also supported on Alpha,
and finally, the 5.x branch of the tree is currently supporting a
number of different architectures as shown in the text box next to
the source tree. Releases are shown in chronological order from
top to bottom. Our study focuses on the releases that are shaded
in grey. In total, we study 34 stable releases of FreeBSD and 127
stable releases of Linux. Although this paper does not analyze
evolution across systems (various branches), Nakakoji et al [15]
studied how code branches merge and split, giving a different
view of evolution across systems.

Like Godfrey and Tu’s study we use Unix “wc –l” to count the
LOC in every source file, where a source file is either a *.h or *.c
file. The entire system size will be counted as an aggregate of the
sub-systems in a specific release. We use a shell script to
compute and gather the statistics.

Godfrey and Tu measure size using uncommented LOC rather
than source files because “using number of source files would
mean losing some of the full story of the evolution of Linux,
especially at the subsystem level.” Our case study measures
system growth using various methods, but we include a count of
source files to see if any irregular correlation appears. Our results
show growth rates of the various sub-systems and system as a
whole by using various measures. We use release dates, release
numbers (RNs) as done by Lehman, and cumulative release
numbers. We also plot our range against cumulative growth as a
percentage of the size of the first release, and as the total size
measured in Kbytes. Finally, we provide additional graphs that
show the average and median LOC for dot-h and dot-c files.

Figure 1. FreeBSD Release Tree.

The case study was carried out as follows:

1. First we generate the source version tree of the various
releases of Linux and FreeBSD and the dates when they
were released. When plotting curves this would give us
additional insights where jumps are observed.

2. Download the entire FreeBSD CVS tree. The CVS
repository requires approximately 2.6GBytes.
Unfortunately the releases are only available starting

with version 2.0. For Linux, we downloaded each
release individually from the Linux web-site [13].

3. For FreeBSD, we use CVS commands to check out
entire releases based on the tagging mechanism. Once
the release is checked out, we use various UNIX
commands or scripts to generate the desired measures.
The same UNIX commands and scripts are used to
gather statistics from Linux.

4. Measurements are taken at the system and subsystem
levels. We maintain the inherent directory structures of
both operating systems to subdivide each system, akin
to the methodology that Godfrey and Tu use to
subdivide Linux in their case study [5].

5. We plot various data using Microsoft Excel
spreadsheets.

6. We analyze the collected information to determine if
either or both operating systems show evidence of linear
growth. We also determine if these systems are
consistent with the observations made by Turski [17]
that the development of software follows an inverse
square growth function.

4. OBSERVATIONS ON THE EVOLUTION
OF FREEBSD AND LINUX
We view and analyze our results from multiple perspectives. We
took measurements of the system as a whole, as well as of the
individual subsystems.

4.1 Observations at the System Level
Godfrey and Tu plotted growth rates against calendar dates rather
than release numbers. Further, Godfrey and Tu suggest that
plotting according to release numbers would have led to dips in
the function curves because development and stable releases
follow different behaviors.

Such dips will occur when plotting releases sequentially;
however, since we are only analyzing stable releases, it makes
sense to plot them against release numbers. For the sake of
completeness, we have also plotted growth rates against release
dates; however, due to space limitations, these plots are not
included. We have also plotted the cumulative release numbers
versus the corresponding cumulative growth of the system
measured as a percentage of the original (or first) release size. The
plot is similar to the graphs given by Scacchi [16] (page 9) where
he plots the evolution of OS/360, Logica FW, Lucent Sys1, and
the ICE VME Kernel systems described in various Lehman et al.
references.

Figure 2 shows two plots depicting the growth of FreeBSD, while
Figure 3 shows these plots for Linux. The sharp spikes in the
growth curves are attributed to the expected growth deltas
between sequential releases. This is most evident in the growth
plots of Linux on Figure 3. For example, we can clearly observe
sharp size release increases between source branches 2.0.x and
2.2.0, similarly between branches 2.2.x and 2.4.1, etc. This can
be attributed to the increasing popularity of the system and the
support for new modules and drivers.

1.0

2.1.7

2.1.6

2.1.5 2.1

3.0

2.2.8

2.2.5

2.2.1

2.2

2.2.7

3.5

3.4

3.3

3.2

3.1

4.0

4.1

4.1.1 4.2

4.6.2

4.6

4.5

4.4

4.3

4.7 4.8

5.0

5.2

5.2.1
4.10

5.3
4.11

386

386, Alpha 5.1

386, Alpha,
IA64, AMD64,
PC98, Sparc64

11/93

11/95

12/96

07/96

04/97

03/97
02/97

12/98

07/98

10/97

02/99

10/98

03/00
12/99

09/99

05/99

09/00

07/00
06/00

09/01

04/01

11/00

06/02

01/02

10/02

08/02

01/05

05/04
10/03

04/03

06/03

01/03

11/04

02/04

01/04
4.9

Clearly the curves show growth rates that are at most linear. We
also plot each of the different stable branches of evolution against
calendar times in parallel because various branches are really
developed and released concurrently. After further studying these
graphs, we see no evidence to suggest anything other than linear
growth for each individual branch. In fact FreeBSD release
branch 2.x has decreased in size, while FreeBSD release branches
3.x and 4.x and Linux branches 2.2.x and 2.4.x appear to show an
inverse growth property as suggested by Turski [17]. FreeBSD

branch 5.x and Linux branch 2.6.x are the only branches
displaying what appears to be linear growth. Figure 4 displays
graphs for FreeBSD and Linux.

We also studied the average and median sizes of dot-c and dot-h
files, as shown in Figure 5. We show that, as FreeBSD and Linux
continue to evolve, average and median file sizes remain constant
for both dot-c and dot-h files. This may indicate that both
operating systems are not growing in an uncontrolled manner.

Release Sizes

0

100000

200000

300000

400000

500000

600000

2.
2.0

2.
2.1

2.
2.2

2.
2.5

2.
2.6

2.
2.7

2.
2.8

3.
0.0

3.
1.0

3.
2.0

3.
3.0

3.
4.0

3.
5.0

4.
0.0

4.
1.0

4.
1.1

4.
2.0

4.
3.0

4.
4.0

4.
5.0

4.
6.0

4.
6.1

4.
6.2

4.
7.0

4.
8.0

4.
9.0

4.
10

.0

4.
11

.0
5.

0.0
5.

1.0
5.

2.0
5.

2.1
5.

3.0

Stable re lease s

K
B

Figure 2A. FreeBSD stable release growth by release number

FreeBSD Growth Rate

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Number of releases

P
er
ce

nt
ag

e

Percent of growth

Figure 2B. FreeBSD cumulative growth rate

We generated plots of the total number of C, H, C++, Makefile,
scripts, directories, and LOC measure. The results are all similar.
For the sake of brevity these graphs are not included, but they all
show clear linear growth and seem to agree with the empirical
findings of Lehman. Contrary to Godfrey and Tu, we do not find
significant evidence to suggest super linear growth at the system
level.

4.2 Observations at the Sub-System Level
Godfrey and Tu plotted growth of the individual sub-systems. We
have done the same in this study, and have separated the sub-
systems into categories of small, medium, large, and very large.
We separated the sub-systems so that we could show the plots
more clearly. Had we not done this, then much information could
be visually lost.

Most of the sub-systems show linear or constant growth. There
are some cases that show very steep spikes in growth or
shrinkage; however the spikes can be attributed to the addition or
removal of functionality. There were also various plots that
displayed a flat line followed by a sudden spike, indicating that
the system was suddenly introduced.

For FreeBSD we show two interesting and very large sub-systems
separately in figure 6a. The contrib sub-system is software
contributed by users, whereas sys is the actual kernel of the

system and probably goes through a much stricter validation
process than contrib. Regardless, we see linear growth in both
sub-systems. For Linux, we show the growth trends of the driver
sub-system, which mainly delineates growth caused by the
expanding popularity of the system.

Godfrey and Tu found their most significant evidence of super
linear growth in the driver sub-system. We attribute this to the
increasing popularity of the operating system rather than the
inherent growth properties of the software.

Release Sizes

0

50000

100000

150000

200000

250000

1.
0.

0

1.
2.

3

1.
2.

7

1.
2.

11

2.
0.

1

2.
0.

5

2.
0.

9

2.
0.

13

2.
0.

17

2.
0.

21

2.
0.

25

2.
0.

29

2.
0.

33

2.
0.

37

2.
2.

0

2.
2.

4

2.
2.

8

2.
2.

12

2.
2.

16

2.
2.

20

2.
2.

24

2.
4.

1

2.
4.

5

2.
4.

9

2.
4.

14

2.
4.

18

2.
4.

22

2.
4.

26

2.
4.

30

2.
6.

2

2.
6.

7

2.
6.

11

Stable re leases

K
B

Figure 3A. Linux stable release growth by release number

Linux Growth Rate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140

Number of releases

P
er

ce
nt

ag
e

Percent of growth

Figure 3B. Linux cumulative growth rate

Release Sizes by Branch

0

100000

200000

300000

400000

500000

600000

Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05

Release dates

K
B

2.x

3.x

4.x

5.x

Figure 4A. FreeBSD Release sizes by development branch.

Release Sizes by Branch

0

50000

100000

150000

200000

250000

Jan-93 Jun-94 Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06

Release dates

K
B

1.x

2.0.x

2.2.x

2.4.x

2.6.x

Figure 4B. Linux Release sizes by development branch.

Averages and Medians

0

100

200

300

400

500

600

2.
2.
0

2.
2.
1

2.
2.
2

2.
2.
5

2.
2.
6

2.
2.
7

2.
2.
8

3.
0.
0

3.
1.
0

3.
2.
0

3.
3.
0

3.
4.
0

3.
5.
0

4.
0.
0

4.
1.
0

4.
1.
1

4.
2.
0

4.
3.
0

4.
4.
0

4.
5.
0

4.
6.
0

4.
6.
1

4.
6.
2

4.
7.
0

4.
8.
0

4.
9.
0

4.
10

.0

4.
11

.0
5.
0.
0

5.
1.
0

5.
2.
0

5.
2.
1

5.
3.
0

Stable re leases

C
o
u
n
t

Avg LOC C files
Med LOC C files
Avg LOC H files
Med LOC H files

Figure 5A. FreeBSD average and median values of dot-c and dot-h files.

Averages and Medians

0

100

200

300

400

500

600

700

800

900

1.
0.

0

1.
2.

3

1.
2.

7

1.
2.

11

2.
0.

1

2.
0.

5

2.
0.

9

2.
0.

13

2.
0.

17

2.
0.

21

2.
0.

25

2.
0.

29

2.
0.

33

2.
0.

37

2.
2.

0

2.
2.

4

2.
2.

8

2.
2.

12

2.
2.

16

2.
2.

20

2.
2.

24

2.
4.

1

2.
4.

5

2.
4.

9

2.
4.

14

2.
4.

18

2.
4.

22

2.
4.

26

2.
4.

30

2.
6.

2

2.
6.

7

2.
6.

11

Stable re leases

C
o
u
n
t

Avg LOC C files
Med LOC C files
Avg LOC H files
Med LOC H files

Figure 5B. Linux average and median values of dot-c and dot-h files.

Very Large Subsystem Sizes

0

50000

100000

150000

200000

250000

2.2
.0

2.2
.1

2.2
.2

2.2
.5

2.2
.6

2.2
.7

2.2
.8

3.0
.0

3.1
.0

3.2
.0

3.3
.0

3.4
.0

3.5
.0

4.0
.0

4.1
.0

4.1
.1

4.2
.0

4.3
.0

4.4
.0

4.5
.0

4.6
.0

4.6
.1

4.6
.2

4.7
.0

4.8
.0

4.9
.0

4.1
0.0

4.1
1.0

5.0
.0

5.1
.0

5.2
.0

5.2
.1

5.3
.0

Stable releases

K
B contrib

sys

Figure 6A. FreeBSD contrib and sys sub-systems.

 Driver growth

0

20000

40000

60000

80000

100000

120000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125

Stable releases

K
B drivers

Figure 6B. Linux kernel sub-system.

5. DO OSS SYSTEMS EVOLVE AT
GREATER RATES THAN TRADITIONAL
SOFTWARE?
Clearly, the studies of Linux and FreeBSD do not provide
evidence to refute our working null hypothesis that the growth
rates of OSS and traditional systems are similar. Certainly the
growth rate of FreeBSD is (approximately) linear. We find linear
growth when we examine the system as a whole, or individual
subsystems.

Our reexamination of Linux, using stable releases only, also
shows (approximately) linear growth. One might argue that the
Linux may be trending towards a super-linear curve. However, if
that is the trend, the trend appears to be only slightly super-linear.
The data is not strong enough to refute the null hypothesis.

An implication of this analysis is that we cannot say that OSS
development produces software at a faster rate than traditional
development. The evidence does not support claims that OSS
systems grow faster. OSS development may offer advantages over
traditional development, but we did not find support for claims
concerning system growth.

6. THREATS TO VALIDITY
There are threats to validity in all case studies. We assess
construct validity, content validity, internal validity, and external
validity.

A study with construct validity uses meaningful measures. To
have construct validity we need to know that our measures of
system size and releases, actually quantify the notion of size and
releases. To have content validity, the measures must completely
represent the notions of size and release. There are various
notions of size. We use several size measures: number of source
code lines, source files, and Kbytes of source. These measures
should capture the notion of system size. They expand on the
notion of size used in the studies of traditional software, which
used only the number of modules to indicate size. Thus we
increase the content validity over prior studies. There are other
notions of size, such as functionality. However, there are not
adequate methods for collecting functionality data from source
code.

Our use of stable releases, rather than "current" releases used by
Godfrey and Tu, improves the content validity, since stable
releases correspond to the releases used in traditional software.
The stable releases are the ones actually "delivered" to system
users.

Internal validity refers to the causal connection between the
independent variables and dependent variables. In this study,
there is really one independent variable, the type of development:
traditional versus OSS. The dependent variable is the growth rate.
There is a rationale for a dependency on development method.
Traditional and OSS development use different processes and
different developer motivations. However, we did not find
fundamental differences in the growth rates of the two systems.
Because we studied only two OSS systems, we cannot apply
statistical analyses to our results.

External validity indicates that the study results can generalize to
other systems. Our results on two systems from the same domain
(operating systems) may generalize to other OSS operating
systems. However, we cannot determine if other OSS systems will
show similar results. This is a common problem with case studies.
Each case study provides a new piece of evidence, and thus
reduces the threats to external validity.

This study does have some specific validity threats. The data on
traditional systems depends on published studies from long ago.
We did not reexamine the raw data on these studies. Also, we did
not examine data from more recent traditional systems.
Traditional systems built over the last decade (the same time
period as FreeBSD and Linux) may grow at different rates than
those from before. Unfortunately, data from traditional
development is difficult to obtain due to proprietary concerns.

Additional research can reduce threats to validity, especially
threats to external validity. We would like to see additional
studies of other OSS operating systems as well as OSS systems in
other domains.

7. CONCLUSIONS
This study examined the evolution of FreeBSD and Linux to see if
they show evidence of linear growth. We studied growth rate
measures and plotted them against release numbers, release
calendar dates, and by code branches. We tracked evolution at the
system and sub-system level. In all cases we found no evidence of
super-linear growth as suggested by Godfrey and Tu, and found
instead that the growth rates appear to be linear or sub-linear.

Our results suggest that both FreeBSD and Linux do not exhibit
growth rates that differ notably from the commercial systems
studied by Lehman and others. Thus, we cannot say the OSS
systems grow at a different rate than traditional systems.

This study is another data point in creating a body of evidence to
continue our understanding of software evolution. Further
behavioral and structural case studies are needed to further
increase the body of evidence to better understand evolution.

8. REFERENCES
[1] Dinh-Trong, T., and Bieman, J. The FreeBSD Project: A

Replication Case Study of Open Source Development. IEEE
Trans. Software Engineering, 31(6):481-494, June 2005.

[2] The FreeBSD website. http://www.freebsd.org

[3] Gall, H., Jazayeri, M., Kloesch, R., and Trausmuth, G.
Software evolution observations based on product release
history. Proc. of the 1997 Intl. Conference on Software
Maintenance (ICSM 1997), Bari, Italy, Oct 1997

[4] Godfrey, M., and Tu., Q. Evolution in Open Source
Software: A Case Study. Proc. of the 2000 Intl. Conference
on Software Maintenance (ICSM-00), San Jose, California,
October 2000.

[5] Godfrey, M., and Tu., Q.
http://plg.uwaterloo.ca/~migod/papers/icsm00-slides.pdf.
Presentation at the 2000 Intl. Conference on Software
Maintenance (ICSM-00), San Jose, California, October
2000.

[6] Godfrey, M., and Tu., Q. Growth, Evolution, and Structural
Change in Open Source Software. Proc. 2001 Intl.
Workshop on Principles of Software Evolution (IWPSE-01),
Vienna, September 2001.

[7] Lawrence, M.J., An Examination of Evolution Dynamics.
Proc of the 6th International Conference on Software
Engineering. IEEE Computer Society Press. Sept. 1982.

[8] Lehman, M.M., Laws of Software Evolution Revisited. Proc
of the 1996 European Workshop on Software Process
Technology (EWSPT). Nancy, France, 1996 Lecture Notes
in Computer Science 1149, pp. 108-124, 1997.

[9] Lehman, M.M., Ramil, J.F., and Wernick, P.D. Metrics and
Laws of Software Evolution. IEEE Int. Software Metrics
Symp., 1997.

[10] Lehman, M.M., Ramil, J.F., Evolution in Software and
Related Areas. Proceedings of the 4th International
Workshop on Principles of Software Evolution. Sept. 2001.�

[11] Evolution And Software Technology (FEAST) web site.
http://www.doc.ic.ac.uk/~mml/feast

[12] Lehman, M.M., Uncertainty in Computer Application and its
Control through the Engineering of Software. J. of Software
Maintenance: Research and Practice, v.1, n.1, Sept. 1989, pp.
3-27.

[13] The Linux website. http://www.kernel.org

[14] Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies
of Open Source Software Development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology, Vol. 11, No 3, July 2002. Pages 309-346.

[15] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and
Ye, Y. Evolution Patterns of Open-Source Software Systems
and Communities, Proc. 2002 Int. Workshop Principles of
Software Evolution, 76-85, 2002.

[16] Scacchi, W. Understanding Open Source Software
Evolution: Applying, Breaking, and Rethinking the Laws of
Software Evolution. Tech. Report. Institute for Software
Research. University of California, Irvine, April 2003.

[17] Turski, W.M., Reference Model for Smooth Growth of
Software System. IEEE Transactions on Software
Engineering, 22(8), Aug 1996.

[18] The Unix History website. http://www.levenez.com/unix ,
maintained by Eric Levenez.

