
Monitoring the Correctness of Software

(invited paper)

James M. Bieman Hwei Yin

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523 USA

(303) 491-7096

bieman@cs.colostate.edu, yin@cs.colostate.edu

To appear in

Proceedings ISMM International Symposium on

Engineering and Industrial Applications

Long Beach, California, December 1991

Technical Report CS{91{121

Copyright c
1991 by James M. Bieman and Hwei Yin

September 1991

Abstract

Software must perform its intended functions without fail-
ures when used in applications that require extremely high
reliability. This paper explores one technique for achieving
\ultra" reliable software. We have developed a notation for

specifying runtime data invariants, and have implemented
a system that monitors software to insure that speci�ed in-
variants are satis�ed.

1 Introduction

Many engineering and industrial applications require ultra-
reliable software | software that will not fail. Such safety
critical applications include medical software, space-
ight
software, software that controls hazardous industrial pro-
cesses, systems that monitor expensive scienti�c experi-
ments, etc. In many such safety critical applications the

need for reliability justi�es extra e�ort and expense to in-
sure that the software performs correctly. Our research is
directed towards creating automated support for the devel-
opment of ultra-reliable software.

As Fred Brooks states, there is no silver bullet that will
magically provide us with reliable software produced quickly
and at low cost [1]. Developing reliable software is di�cult
and requires discipline in both specifying system function-

ality and implementing systems correctly. Approaches for
developing highly reliable software includes the use of for-
mal methods [7, 9, 6], and rigorous testing methods [2, 8, 5].
Testing cannot guarantee that software is correct [14], and
veri�cation requires enormous human e�ort and is subject
to errors [4]. Automated support is necessary to help us

insure software correctness.
In this paper, we describe the Prosper experimental sys-

tem which supports run time correctness monitoring of soft-
ware. Section 2 describes what we mean by correctness mon-

itoring and introduces the Prosper system for specifying and
monitoring correctness properties. Section 3 shows how our
system works on a small example program, a sort routine.
Section 4 provides additional details concerning the founda-
tions and unique features of our system. Possible applica-
tions of our techniques are described in Section 5. Section 6

summarizes our results and describes our research plans.

2 Correctness Monitoring in Prosper

Our system is designed to monitor the behavior of a software
system and indicate when system behavior does not meet
its speci�cation. Software can be speci�ed in terms of data
invariants. As an example, consider a data type intlist

which consists of all sequences of integer values. We can
de�ne an invariant assertion that speci�es that a particular
intlist object L is ordered:

8i[i > 0 ^ i < length(L) ) Li < Li+1]

where Li is the i'th element of intlist L. Assertions of
this sort can be inserted as comments at particular points
in a program to document that the assertion should hold

whenever execution reaches this point. Pre and post condi-
tions of software functions are also examples of invariants.
Veri�cation (proof of correctness techniques) must be used
to demonstrate that an invariant cannot be violated during
any program execution. In general, veri�cation cannot be
automated and thus requires signi�cant human labor.

1



Rather than use veri�cation to check correctness, Prosper
uses its type system to monitor correctness at runtime. As-
sume that a software system makes use of integer lists. We
can use a Prosper type, intlist, to represent integer lists.
We can write assertions concerning integer lists as Prosper
Boolean functions. For example, an assertion can determine

whether a particular intlist is sorted:

IsOrdered: intlist ) boolean

In Prosper, the IsOrdered function is de�ned as follows
(note that (xt (intlist.L)) is used to specify formal pa-
rameters):

(define IsOrdered

(fun (xt (intlist.L)) boolean

(cond ((< (length L) 2) true)

((<= (first L) (first (tail L)))

(IsOrdered (tail L)))

(true false))))

Our current Prosper implementation uses a Lisp-like syn-
tax, while the original Prosper design uses an ML-like syn-
tax [10]. The second line in the above de�nition speci�es
the type of the function IsOrdered; the function inputs an
intlist value which is bound to the parameter L and out-

puts a Boolean value. The body of the function is essentially
Lisp code.

If we want a particular intlist variable to be main-
tained as an ordered list, we can de�ne a new Prosper type
SortedList which uses IsOrdered as a characteristic func-
tion:

(define SortedList (SELECT IsOrdered))

The Prosper SELECT function generates a new type from
a characteristic function. In our example, SELECT uses
IsOrdered as a characteristic function to de�ne SortedList.

Whenever an intlist value is bound to a parameter or
identi�er speci�ed as of type SortedList, the Prosper type
checker will determine whether the list is ordered using the
IsOrdered function. An attempt to bind an unordered list
to a SortedList parameter will cause a run time type error.

3 Monitoring a Sort Function

We can use the Prosper type system to ensure that impor-
tant assertions such as function pre and post conditions are
satis�ed. A Post condition speci�es the relation between
the inputs and outputs of a function and can be a function's

primary speci�cation. In the following discussion, we show
how the Prosper type system can be used to monitor the
correctness of a program that sorts integer lists.

A function sort that sorts intlist values might have the
post condition:

Ordered(sort(L)) ^ Permutation( L,

sort(L))

which states that the output of sort is an ordered permu-
tation of its input.

We can write a Prosper function SortPost which is equiv-
alent to the above post condition. The input to SortPost

is two intlist values. SortPost outputs true if the second
list is ordered and a permutation of the �rst list. SortPost

has the following type signature:

SortPost: intlist � intlist) boolean

We can also write a curried version of SortPost which

processes its arguments one at a time. The �rst input to
the curried function is an intlist, say L, and the output is
a new function. This new function takes a second intlist

as input and returns true only when the second argument
is a sorted permutation of the �rst argument L. The curried
version of SortPost has the following signature:

SortPost: intlist) (intlist) boolean)

The Prosper function to sort an intlist can have the
following form:

(define Sort

(fun (xt (intlist.L)) (SELECT (SortPost L))

(SortBody L)))

where SortBody is a sorting function of type intlist )

intlist. Correctness monitoring is speci�ed in the second

line of the above function. We specify that the input to Sort

is an intlist object L. We also specify that the output
type must satisfy the characteristic function produced by
SortPost when the input list is L. That is, (SortPost L)

produces a new function, that evaluates as true only when
the input to this new function is a permutation of L and

ordered. The output of Sort must satisfy this characteristic
function.

The execution and monitoring of Sort can be demon-
strated with an example:

1. Assume Sort is invoked with list M as input: (Sort M)

2. The input list M is bound to formal parameter L.

3. The function body, SortBody is invoked with list M.
SortBody produces a new (hopefully) sorted list as out-
put.

4. SortPost is invoked with list M as input. SortPost pro-

duces a characteristic function as output. This charac-
teristic function accepts a list as input and outputs true
if and only if the input is ordered and a permutation of
M.

5. SELECT de�nes a new type, a lists that satisfy the char-
acteristic function produced in 4. This data type in-
cludes only one value, an integer list that is the legal
output when Sort is invoked on input list M.

6. The output of SortBody is checked to see if it is of the
output type de�ned in 5 above.

Thus, incorrect output is 
agged immediately. Note that

step 3 can be performed concurrently with steps 4 and 5.
The foregoing Prosper sort function is a simple example

that demonstrates our technique for correctness monitor-
ing. If the function SortBody produces incorrect results, the
Prosper system will identify the error at a point close to the
source.

2



4 Unique Features of Prosper

Our system is based on a functional language for specifying

correctness properties; these properties are monitored dur-
ing execution. The language uses higher-order functions,
types as values, dynamic type checking, and parameterized
type expressions. This combination of features for the pur-
pose of correctness monitoring is unique.

Correctness properties are speci�ed as (possibly) higher
order Boolean functions, and correctness monitoring is per-

formed by the type checking system. Higher order func-
tions in Prosper may generate new functions, which can be
used later for monitoring or other purposes. The SortPost

function in Section 3 is an example higher order function.
SortPost generates a new function as its output. The built
in Prosper function SELECT is also higher order; its input is

a function.

Types in Prosper are treated (almost) as normal data val-
ues in that types may be passed as arguments to functions
and produced by Prosper progams. To avoid logical para-
doxes that may result from the use of \type type" [11], types
and normal values are kept in a hierarchy. Because types are
treated as values and may be included in run time computa-

tion, much type checking, and correctness monitoring, must
be performed at run time.

The enforcement mechanism encorporates speci�cation
assertions, expressed as Boolean functions, into type expres-
sions. This approach was inspired by Nordstr�om and Peters-
son [12] who suggest that types can completely specify pro-
grams. However the technique suggested by Nordstr�om and

Petersson is undecidable in general and relies on correctness
proofs. We limit ourselves to executable type expressions so
that correctness monitoring can be automated.

Prosper correctness monitoring makes use of two mecha-
nisms for introducing parameters into type expressions al-
lowing the creation of dependent types [3, 13]. The mech-
anism used in the sort example, element parameters, allows

us to bind an identi�er to a run time data value. We can
use this binding in another part of the type expression or
in the function body. We are thus able to specify that the
output type of a function depends on the input value as in
the example sorting program in Section 3. The other mech-
anism for parameterizing type expressions, type parameters,

binds a name to the type of a run time data value. Type
parameters can be used to specify generic functions.

The function IsIntOrBool uses a type parameter:

(define IsIntOrBool

(fun (xt (T:TYPE)) boolean

(cond ((= T integer) true)

((= T boolean) true))

(true false))))

IsIntOrBool can be applied to values of any type and
produces a Boolean result. The type parameter T is bound

to the type of the data input to IsIntOrBool. For ex-
ample, if the input to IsIntOrBool is the integer 7, T is
bound to the type integer, not the value 7. If the input
is the character string \silly", T is bound to type string.
Thus (IsIntOrBool 7) evaluates to true and (IsIntOrBool

"silly") evaluates to false.

We can use the IsIntOrBool function with the SELECT

function to create a new type IntBool which consists of all
possible integer and boolean values:

(define IntBool (SELECT IsIntOrBool))

As in the type SortedList, IsIntOrBool is used as the char-

acteristic function to de�ne a new type.

The combination of higer ordered functions, parameter-
ized type expressions, and our treatment of types as values
provides great 
exibility for the monitoring of sofware cor-
rectness. Now we describe potential applications.

5 Potential Applications

Although our research into correctness monitoring is at an
initial stage, we forsee a number of potential applications.

The Prosper system can be used to monitor a program to in-
sure that speci�ed data invariants are satis�ed. The sorting
example in Section 3 is one demonstration of Prosper's cor-
rectness monitoring capabilities. The system can be used to
help develop speci�cations, software prototypes, and should
prove especially useful as a software testing tool.

We are currently testing Prosper for the development of

exible, highly parameterized executable speci�cations. We
can specify complex data relationships in a very expressive
manner using Prosper type and element parameters. Since
Prosper speci�cations can execute, they are essentially sys-
tem prototypes. We can view Prosper as the kernel of

a speci�cation system. Starting with primitive executable
constructs we build towards higher level executable speci�-
cation structures. When a Prosper speci�cation is complete,
a system prototype is automatically generated.

Because of the runtime nature of Prosper type checking

and monitoring, a signi�cant amount of computation is re-
quired. In the Sort example, the Prosper SortPost function
is O(n2), while sorting SortBody is O(n log n). Although
such overhead is often unacceptable in a �nal system, auto-
mated assertion enforcement is valuable in a prototype. A
developer will get an early warning when system invariants

are violated.

Our techniques have the potential to be combined in a
software development environment with other languages.
For example, correctness properties may be speci�ed and
monitored with a Prosper-like system, while the main sys-

tem functionality is performed by a more traditional lan-
guage such as C or Ada.

During testing, post condition checking is a critical ac-
tivity. Often this checking is done by human analysts who
read program output to determine correctness. An auto-
mated system, like Prosper, can dramatically speed up and

improve the reliability of post condition checking.

6 Conclusions

We have implemented a system that can monitor the correct-
ness of software. The system uses dynamic type checking,
parameterized type expressions, and higher-order functions.
These mechanisms allow us to include arbitrary data invari-
ants as restrictions on legal values of complex data types.
At runtime, the system can determine whether assertions

3



are satis�ed, as long as the assertions concern data values
and can be expressed as an executable function. The system
is 
exible enough to enforce both the pre and post conditions
of programs.

Our system demonstrates one technique, runtime correct-
ness monitoring, as a tool to aid in the development of ultra-

reliable software. Prosper can serve as a language for proto-
type development, as a speci�cation language, or as a sup-
port tool for development in other languages. Correctness
monitoring is especially appropriate during software testing.

The current Prosper system is implemented in Kyoto
Common Lisp and runs on Sun SPARCS workstations. We

have made a few minor syntax simpli�cations in the forgo-
ing examples to ease the explanation. Because of the per-
formance overhead of our system, Prosper correctness mon-
itoring is currently appropriate only for systems processing
limited sized data sets. However, we are working on im-

proving system performance. See, [15] for additional details
concerning the implemented Prosper system, and see [10]
for the underlying foundation and design of Prosper.

References

[1] F. Brooks. No silver bullet { essence and accidents
of software engineering. Computer, 20(4):10{19, April
1987.

[2] T. A. Budd. Mutation analysis: Ideas, examples,

problems and prospects. In B. Chandrasekaran and
S. Radicchi, editors, Computer Program Testing, pages
129{148. North-Holland, 1981.

[3] A. Demers and J. Donahue. Datatypes, parameters,
and typechecking. Proc. 7th ACM Symposium on Prin-

ciples of Programming Languages, pages 12{23, 1980.

[4] R. DeMillo, R. Lipton, and A. Perlis. Social processes
and proofs of theorems and programs. Communications
of the ACM, 22(5):803{820, May 1979.

[5] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J.
O�ut, and K. N. King. An extended overview of the
mothra sofware testing environment. Proc. ACM SIG-
SOFT/IEEE Second Workshop on Software Testing,
Veri�cation, and Analysis, pages 142{151, July 1988.

[6] S.J. Garland, J.V. Guttag, and J.J. Horning. Debug-
ging larch shared language speci�cations. IEEE Trans.
Software Engineering, 16(9):1044{1057, September
1990.

[7] A. Hall. Seven myths of formal methods. IEEE Soft-

ware, 7(5):11{19, September 1990.

[8] W. E. Howden. A functional approach to program test-
ing and analysis. IEEE Trans. Software Engineering,
SE-12(10):997{1005, October 1986.

[9] C.B. Jones. Systematic Software Development Using
VDM. Prentice-Hall International, London, 1986.

[10] J. Leszczy lowski and J.M. Bieman. PROSPER: A lan-
guage for speci�cation by prototyping. Computer Lan-
guages, 14(3):165{180, 1989.

[11] A. R. Meyer and M. B. Reinhold. Type is not a type.
Proc. 13th ACM Symposium on Principles of Program-
ming Languages, pages 287{288, January 1986.

[12] B. Nordstrom and K. Petersson. Types and speci�ca-
tions. Information Processing 83, 9:915{920, 1983.

[13] J. Reynolds. Towards a theory of type structure. Lec-
ture Notes in Computer Science, 19:408{425, 1974.

[14] L. J. White. Basic mathematical de�nitions and re-
sults in testing. In B. Chandrasekaran and S. Radic-
chi, editors, Computer Program Testing, pages 13{24.

North-Holland, 1981.

[15] Hwei Yin. Implementation of a Dynamically Typed
Functional Language. Master's thesis, Department of

Computer Science, Colorado State University, 1991.

4


