
Using Fault Injection to Increase Software Test Coverage�

James M. Bieman Daniel Dreilinger Lijun Lin
Computer Science Department

Colorado State University
Fort Collins, Colorado 80523

bieman@cs.colostate.edu
To appear in Proc. International Symposium on Software Reliability (ISSRE’96)

Abstract

During testing, it is nearly impossible to run all statments
or branches of a program. It is especially difficult to test
the code used to respond to exceptional conditions. This
untested code, often the error recovery code, will tend to be
an error prone part of a system. We show that test cover-
age can be increased through an “assertion violation” tech-
nique for injecting software faults during execution. Using
our prototype tool, Visual C-Patrol (VCP), we were able to
substantially increase test branch coverage in four software
systems studied.

Keywords: software testing, software test coverage, fault
injection, error recovery, software reliability, Visual C-
Patrol.

1. Introduction

Developing reliable and fault tolerant software is difficult
and requires discipline both in specifying system functional-
ity and in implementing systems correctly. Approaches for
developing highly reliable software include the use of for-
mal methods [11, 14, 9], and rigorous testing methods [2, 7,
13]. Testing cannot guarantee that software is correct [17],
and verification requires enormous human effort and is sub-
ject to errors [6]. Automated support is necessary to help
ensure software correctness and fault tolerance.

Fault injection has been proposed for use in mutation test-
ing primarily as a mechanism for evaluating the adequacy of
test data [3, 8]. Mutation testing injects faults by modifying
program text. As a result, the testing process can generate
enormous numbers of mutant programs, and each program

�Research partially supported by the Colorado Advanced Software In-
stitute (CASI) and Storage Technology Inc. CASI is sponsored in part by
the Colorado Advanced Technology Institute (CATI), an agency of the state
of Colorado. CATI promotes advanced technology teaching and research at
universities in Colorado for the purpose of economic development.

must be recompiled and then tested. This process can be too
labor and time intensive for practical use in the general test-
ing of commercial software.

Our hypothesis is that fault injection can be effective
when it is directed towards solving specific testing prob-
lems. In particular, we use fault injection to force the exe-
cution of difficult to reach program paths. To avoid the need
for recompilation, we mutate program state rather than pro-
gram text.

To be practical, any fault injection mechanism must be
inexpensive and be able to model a wide variety of fault
types. Much of the fault injection should be automated. Al-
though a practical approach requires a limited fault model,
we want to simulate as many faults as possible.

2. Fault Injection via “Assertion Violation”

Pre- and post-conditions contain logical assertions or in-
variants that specify the expected behavior of a program. A
pre-condition is an assertion about the nature of the system
state that must be true before a function is invoked to be sure
that the function will run correctly. A post-condition is an
assertion that describes the relationship between the input
state and output state of a correct function. These conditions
are usually not explicitly expressed in the program text, but
rather implicitly assumed.

We can create a fault by dynamically changing the state
of a running program so that a pre- or post-condition is not
satisfied. Such an artificial fault can be used to model ini-
tialization faults, assignment faults, condition check faults,
and even function faults.

The assertion violation scheme makes use of pre- and
post-condition assertions. The first step is to define and state
these using a new programming language construct. The
second step is to automatically make them false in different
ways and at different program locations while the program
is executing. To create a fault, one of these invariants is vi-
olated or made false in some fashion. We can automatically

generate a number of possible violations of a given assertion
using language processing tools, such as lex and yacc.

The pre- and post-conditions provided by the tester or
programmer are first order logic predicates about the func-
tion’s input and output parameters, and global variables.
They use a syntax similar to that used in the source language.

Example. Suppose the pre-condition for some function
f(float x, y) is fx > 0 ^ x 6= yg. We can derive several
possible faults to inject. The injection is a textual insertion
at the beginning of the function. For the example, the injec-
tion code might be the following (using C syntax):

switch (injection status)f
case 0: break;

case 1: x=0; break;

case 2: x=-1; break;

case 3: x=y; break;

case 4: y=x; break; g

The above block of code can be automatically generated
by a code pre-processing tool. When injection is off, the
injection status variable is set to zero. When injection is on,
the injection status variable is set randomly to a value be-
tween 1 and 4. The number of injections and the probability
of choosing a particular injection can be determined by the
user. Typically, an injection will cause a short chain reac-
tion of violated assertions. The invalid assertions should be
restored by error recovery code in fault tolerant software.

The code mutation aspect of this scheme can be per-
formed by a pre-processor, which transforms pre- and post-
conditions into case injection statements and inserts them
into a program.

An injector tool could accept statements from the propo-
sitional calculus. In our prototype system, we implemented
a subset which specifically includes statements using the al-
phabet:

fidentifier;<;<=;==; ! =; >=; >;

integer literal; f loat literal;^g.

Valid strings in the language are conjunctions of boolean
terms (equalities or inequalities). Ideally, the language will
be augmented with f:;_;8; 9g. An example of a recogniz-
able precondition in the system is:

(a < 3) ^ (b! = c) ^ (d > 1:5):

Many possible injections can be derived from this state-
ment. In our prototype system, we inject violations that are
near the boundary to simulate some common programming
errors. Thus, a < 3 is mapped to a = 3, b! = c gets mapped
to two possible faults: b = c and c = b, and finally, d > 1:5

is mapped to d = 1:5.

The timing impact of this scheme is quite small because
the injected values can be computed statically. An optimiz-
ing C-compiler can compute the values to be injected, even
if the source output of the injector is y = 4 + 0:01.

We can check the correctness of a system’s behavior
before and after injecting faults. A correct pre- or post-
condition can be injected as code and checked at run time
using a facility like C assert statements or C-Patrol insertion
directives.

3. Implementing Assertion Violation Fault In-
jection

To demonstrate the proposed fault injection method, we
extended the C-Patrol assertion insertion system [18] to sup-
port fault injection and built a visual X Window System in-
terface.

3.1. C-Patrol

C-Patrol is a code insertion tool that can assist developers
in the placement of software probes that are used in testing.
Such probes may be implementations of data invariants, pre-
and post-conditions, or other run time checks. An overall
view of the C-Patrol system is shown in Figure 1.

C-Patrol allows developers to define and place assertions
in logical locations in a C program. For example, a devel-
oper may prefer to place a data invariant along with an asso-
ciated data declaration. A preprocessor under program con-
trol inserts these assertions into the correct locations for run
time monitoring of a program. The data invariant is thus
checked at the locations where the data structure is actually
used, rather than where it is defined. Using C-Patrol, virtual
code is defined within comments, and is inserted into regular
code using possibly parameterized directives. A special la-
beling system matches directives to virtual code. When the
probes are not needed, they remain with the program as com-
ments that do not affect program execution.

Our initial intention was for C-Patrol software probes to
be used to check the correctness of program behavior. How-
ever, probes can also be used to modify the system state and
thus create any desired or undesired state. Probes can gen-
erate states that would result from software and hardware
faults. Thus, C-Patrol can be used to inject faults at chosen
points in a program.

C-Patrol is a pre-processor that inserts assertions, writ-
ten as comments in virtual C, into specified locations in C
programs. The user places virtual C code within special C-
Patrol comments that are delimited by “/*?” and “?*/”.
These comments are skipped by the C compiler and do not
affect the performance of the underlying system. Once the
user activates the comments by running the pre-processor,
the pre-processor translates virtual code into regular C and

2

typedef structure LIST{
 char *name;

 int value;

 sturct LIST *next;

}

assert(is_ordered(alist));

?*/

 build_list_in_order(list1);

/*?%%insert: %%calll

ordered(list1; ?*/

build_list_in_order(list2);

/*? %%insert: %%call

ordered(list2); ?*/

main() {

list3 = merge_lists(list1, list2);

/*? template ordered(alist):

C - Patroller

C Compiler

C source code with
special comments inserted

(C code w/ special comments)
C - Patrol C Code

Special comments not turned on

...

...

Special comments turned on

Figure 1. The C-Patrol System

inserts it based on a set of instructions called directives. The
pre-processed program may then be compiled and run as
normal C. Thus, a program with C-Patrol annotations can
run with or without the inserted assertions as shown in Fig-
ure 1.

The C-Patrol annotation language includes insertion di-
rectives, call directives, label directives, template direc-
tives and bind directives. Insertion directives include
%%insert, %%pre and %%post. The format for C-
Patrol pre- and post-conditions is
/*?

%%pre: <C Code and Call Statements>
%%post: <C Code and Call Statements>

?*/

The variable declarations in the block of code led by the
%%pre directive have scopes that extend up to the func-
tion exit. Therefore, input arguments can be captured by
assignments to temporary variables, which can be used to
make comparison at function exit. A post-condition block
is inserted before each exit and return statement. The post-
condition block is also inserted before the function exit.
Thus all function exits are guarded by the post-condition.

3.2. Visual C-Patrol (VCP)

To demonstrate the proposed fault injection method, we
extended the C-Patrol system to support three major tasks:

1. Editing programs to add C-Patrol style assertions.

2. A run time visual interface to help monitor the execu-
tion of instrumented programs.

3. Fault injection based on assertion violation.

A user interface, shown in Figure 2, supports editing pro-
grams with C-Patrol style assertions. All function names in
a file are displayed in a special window, along with their in-
strumentation status. The user can easily skip around and
add, view, or change assertions. There is a menu, buttons
for commonly used features, and an edit area in the inter-
face. A function area on the left side of the window displays
the names and instrumentation status of all functions of the
current file.

To add pre- and/or post-conditions to functions of inter-
est, a user first clicks on the displayed name of the desired
function. The indicated function is displayed in an editing
window. To add a pre- and post-condition pair, the user
places the cursor right above the function body and below
the function declaration and presses the /*? %%pre... but-
ton. A template for the pre- and post-condition is inserted
into the program text at the appropriate place, and the user
then inputs the pre- and post-condition body. The function
name in the function window will now show pre- and post-
condition indicators.

To inject faults into a function, the user presses the pre-
indicator of the function in the function window and then
presses the Instrument button. The program must then be
recompiled by pressing a button. The recompiled program
contains the code to generate and inject faults. Now when
the program is executed, the run time interface is display on

3

Figure 2. VCP user interface

the screen as shown in Figure 3.

The run time visual interface is automatically built for
an instrumented program. Each instrumented function ap-
pears in the run time monitor interface with pass/fail indi-
cators for each assertion. These show the programmer both
the assertion pass/fail status and program flow of control. A
pre- or post-condition indicator is green when the condition
successfully executes and turns red when it fails. Execution
can be slowed via a speed control bar and a step button.

Injecting a fault for a specific condition can be performed
by using a step button to stop before entering the desired
function. Then the user presses the inject toggle button and
select a fault in the bottom window, and presses step. The
fault will be injected. After fault injection, the pre-condition
indicator turns purple. The tester can then check whether the
results are as expected.

The third major VCP feature implements the assertion vi-
olation mechanism for fault injection. The state of an exe-
cuting program is dynamically modified to an incorrect one
with the goal of forcing recovery code to execute. The VCP
editor allows the user to select specific assertions to instru-
ment for fault injection, while the run time monitor allows
the user to instantiate the injections and subsequently ob-
serve their effect on control flow and assertion status. A pre-
condition indicator turns purple when a fault is injected.

Figure 3. Run time interface of VCP

4

4. Effectiveness

We evaluated the assertion violation fault injection tech-
nique as implemented in Visual C-Patrol (VCP) by using it
to test four systems or partial systems. We measured the
test coverage—the ratio of the number of branches that were
covered by a set of test cases to the total number of branches
in a program—before and while using VCP.

4.1. Evaluation Data

We examined the application of VCP to all or part of four
systems:

1. AUTOLAND, a fault tolerant software system devel-
oped at AT&T Bell laboratory. AUTOLAND consists
of 3524 lines of C code in 12 C source files and 12
header files. We obtained a regression test set consist-
ing of 5280 test cases.

2. C-Patrol, our software testing tool that we used to de-
velop VCP. We evaluated 9 of the 13 C-Patrol source
files consisting of 5834 lines of code and 677 branches.
We used a regression test set consisting of 93 test cases.

3. AC, a compiler for the language A, a subset of C used
in a compiler course. AC compiles source files written
in A into the MIPS processor assembly code. We eval-
uated 7 of the 27 source files using 19 test cases.

4. Minix, a UNIX-like operating system used in education
and research. We evaluated 5 Minix commands in early
tests of VCP.

4.2. Evaluation Process

First, we selected a sample of individual functions and
evaluated fault injection for these small code components.
Then, we evaluated fault injection applied to source files
which consist of many functions. For one system, Autoland,
we evaluated fault injection applied to all files in the system.

Each evaluation was conducted in two steps:

1. We tested the software without using VCP and col-
lected the test coverage, measured in terms of the num-
ber of control flow branches reached by the test data.
We used the Generic Coverage Tool (GCT), a public
domain testing tool, to collect test coverage informa-
tion.

2. We used VCP to insert C-Patrol pre-conditions into
the software, generate faults, and inject these faults
into the program when it is tested. The injected faults
change the run time state of the program and force new
branches to be covered. We used GCT to collect the
test coverage obtained with fault injection.

Table 1. Fault Injection Applied to Selected C
Functions
Fun. Test Init. Final
Name Lines Branches Cases Cover. Cover.

AC.1 37 18 2 66.7% 94.4%
AC.2 72 46 2 23.9% 100%
AC.3 12 2 2 100% 100%
Minix.1 26 4 6 75% 100%
Minix.2 20 4 1 25% 100%
Minix.3 30 5 12 41.7% 41.7%
Minix.4 19 10 5 50% 90%
Minix.5 11 10 4 75% 100%

Ave. 28.3 11.6 4.3 41.9% 94.6%

4.3. Function Level Evaluation

In our initial evaluation, we selected 8 functions from 3
files. Table 1 shows the original branch coverage achieved
during testing and the coverage achieved with fault injec-
tion. Our data included three functions from AC and five
functions (commands) from Minix.

As Table 1 shows, we were quite successful in increasing
test coverage of most of these functions. We were able to in-
crease coverage to 100% in four of the functions (one func-
tion had 100% coverage before fault injection). Coverage
ended up above 90% in all cases except for the one function
that we failed to induce any coverage increase.

4.4. File and System Level Evaluation

We evaluated complete source files to expand the evalu-
ation beyond individual functions. This evaluation included
27 files—9 files from AC, 9 files from C-Patrol, and all 12
files from Autoland. Tables 2, 3, and 4 show the evaluation
data for these files.

Except for the two files with the highest coverage, 96.3%
and 88.9%, we were able to increase the branch coverage
in all of the files in AC (see Table 2). The largest change
was in measure.c where coverage increased from 72.4%
to 100%.

Branch coverage increases were more modest in the eval-
uation of C-Patrol coverage (see Table 3). We were able to
increase coverage in only 4 of the 9 files. However, C-Patrol
already had 84.5% branch coverage before fault injection,
which is the highest initial test coverage of the 3 systems.
The higher the initial coverage, the more difficult it will be to
increase coverage. When there are fewer untested branches,
the untested branches seem to be hard to reach.

Autoland is the one fault tolerant system that we eval-
uated. We were able to increase the test coverage of Au-
toland from 78.9% to 87.3% (see Table 4). This is the largest

5

Table 2. Fault Injection Applied to AC C
Source Files

Test Orig. Final
File Lines Branches Cases Cover. Cover.

array.c 255 54 19 96.3% 96.3%
avasg.c 652 154 19 56.5% 63.0%
avexp.c 711 178 19 69.7% 71.3%
cfg.c 491 72 19 88.9% 88.9%
gcp.c 541 145 19 83.5% 89.0%
gcse.c 289 89 19 73.0% 77.5%
flat.c 877 204 19 86.3% 88.7%
meas.c 190 58 19 72.4% 100%
sem.c 637 213 19 82.6% 93.4%

Ave. 444.8 129.7 19 77.7% 83.6%

Table 3. Fault Injection Applied to C-Patrol
Source Files

Test Orig. Final
File Lines Branches Cases Cover. Cover.

bind.c 426 64 94 89.0% 89.0%
call.c 595 110 94 90.9% 90.9%
inprt.c 498 16 94 93.8% 100%
insert.c 153 38 94 84.2% 84.2%
prepst.c 343 46 94 97.8% 97.8%
main.c 183 14 94 78.6% 78.6%
patrol.c 669 114 94 87.7% 88.6%
supprt.c 816 148 94 81.7% 88.5%
tmplt.c 691 127 94 73.2% 75.6%

Ave. 486 75.2 94 84.8% 87.0%

increase that we obtained out of the three systems. Since
Autoland is fault tolerant, there are many branches that are
designed only to respond to exceptional situations. These
branches can be resistant to testing. This system came with
a set of regression test data consisting of 5280 test cases, yet
only 78.9% of the branches were reached. We were able to
test many of these previously untested branches using the
fault injection mechanism in VCP.

4.5. Potential Improvements

We were not able to increase coverage in several of the
source files. Thus, we would like to improve our ability to
force sections of code to run. We need to be able force the
violation of more expressive assertions than the simple ones
that we can now mutate. For example, now we cannot mu-
tate local variables of a function, and, as a result, many faults
cannot be modeled. The mutation of the state of local vari-
ables could be achieved by processing C-Patrol %%insert

Table 4. Fault Injection Applied to Autoland C
Source Files

Test Orig. Final
File Lines Branches Cases Cover. Cover.

alt hold.c 78 4 5280 100% 100%
autoland.c 296 24 5280 91.7% 91.7%
bae gscf.c 414 22 5280 100% 100%
cmdmnt.c 117 6 5280 50.0% 83.3%
display.c 310 40 5280 85.0% 92.5%
flare.c 162 12 5280 83.3% 91.7%
glideslp.c 170 8 5280 100% 100%
innerlp.c 184 12 5280 75.0% 91.7%
interface.c 678 64 5280 60.9% 75.0%
mathutil.c 92 8 5280 75.0% 75.0%
mode.c 245 2 5280 100% 100%
racf.c 109 2 5280 100% 100%

Ave. 238 17 5280 78.9% 87.3%

statements with the injector.
Even with the ability to mutate local variable state, there

are other faults that cannot be modeled. Consider the fol-
lowing code structure:

if(!do something()) then invoke recovery code

where the function do something() is a library routine.
If do something() is part of the program under test,

the recovery code can be tested by violating the postcon-
dition of do something() or possibly the precondition.
But, when the exception handling mechanism depends on
some unmodifiable function, a different approach must be
taken. For example,

if (p=malloc(sizeof(int))==NULL) recover();

is often found in C programs. It can be difficult to inject
faults into malloc, because it is a library routine and we
may have limited access to its source code. One possible
solution is to automatically transform the if condition into
something like:

if (!do something()
OR active injection==372)
then invoke recovery code.

Processing assertions with complicated mathematical ex-
pressions, rather than just simple inequalities, should be pos-
sible. For example, (b2 � 4ac) � 0 could be processed al-
gebraically to create invalid values of all three variables. An
example injection of this sort is: c = b2=4a + �. Our cur-
rent system uses assertions that are executable when com-
piled as ordinary C code. That is, the pre-conditions work

6

after processing only by C-Patrol, as well as after process-
ing with the injector and C-Patrol. If we relax this restric-
tion, then we can write more descriptive assertions if we do
not require that they match C syntax. For example, univer-
sal and existential quantifiers (8 and 9) might be added to
the recognized language.

5. Related Work

Fault injection can be used to modify either a program’s
source code text or the machine state of an executing pro-
gram. The most common static fault injection is mutation
testing. Much of the recent fault injection research is con-
cerned with dynamic injection.

5.1. Static Fault Injection—Mutation Testing

Mutation testing involves testing modified or mutated
program source text [8]. It is primarily applied to unit
testing—testing which involves small individual modules of
the program.

A mutant program is created by making a small syntactic
change, a mutation, to the original program. For example, a
greater-than operator, >, might be changed to greater-than-
or-equal, >=. To help test error recovery code, we could
mutate the operators in conditional statements to cause a
program to branch into recovery code.

The output of the original program is compared with the
output produced by the mutant. If the mutant and the orig-
inal program produce the same output, then either the set
of test cases is not adequate, or the mutant is a functionally
identical to original. No automatic procedure can determine
whether the original program and the mutant are equivalent
or the set of test cases is inadequate.

Mutation testing can require the creation of a vast number
of mutant programs. A program with N variable references
can haveN2 mutant versions. In one study of a 30-line trian-
gle program, 951 mutants were automatically created [16].
Massive computational resources can be required to repeat-
edly recompile and run all of the mutations.

Weak mutation testing is less rigorous but more efficient
than strong mutation testing [12]. Using weak mutation test-
ing, mutant and original program states are compared soon
after the mutation is executed, rather than after entire pro-
grams are run. States can be compared soon after executing
mutated expressions, statements, or basic blocks. Weak mu-
tation testing is much less expensive than strong mutation
testing, while almost as effective [16].

Weak mutation testing does not solve the problem of
identifying equivalent mutants. Also, invalid program states
in fault tolerant software should not propagate to the output.
Thus, weak mutation testing may be difficult to apply to ro-
bust fault tolerant software.

The TAMER fault injection tool mutates source code to
test fault-tolerant system [5]. TAMER injects possible faults
at module interfaces using a “fault manager.” The system
is designed so that all mutants can be created using only
one compilation, and iterates the execution of the mutants.
An experiment demonstrated that fault injection is needed to
test the fault tolerance of a program.

5.2. Dynamic Fault Injection

The dynamic or state changing forms of fault injection
do not require multiple compilation. Dynamic fault injec-
tion is most commonly used to simulate hardware errors by
modifying or injecting faults into memory bits and regis-
ters [15, 1, 4, 10]. The changed memory locations can con-
tain both program instructions and data.

A wide variety of faults can be emulated. However, dy-
namic fault injection has been commonly used to modeling
hardware faults such as bus errors or incorrect CPU instruc-
tions. Such hardware faults often have such a drastic effect
on the system that human operator intervention is necessary,
thus impacting an automated testing process. Testing only
for hardware faults ignores potential software faults.

Four dynamic fault injection case studies are relevant to
our work:

1. The DEF.Injector (‘Defined Errors Fast Injector’) in-
jects a set of hardware faults by toggling memory bits
or bytes, changing bus addresses, and changing ma-
chine instructions [10]. It is a hardware device that is
physically connected to specific target machines. Be-
cause of the dedicated hardware involved, intermit-
tent faults are easily modeled. The DEF.Injector can
achieve thorough coverage of all defined tests because
the address space of the target machines is quite small
(8-64K). Exhaustive hardware fault injections would
be infeasible on a machine with an address space of
several megabytes.

2. FIAT (‘Fault Injection-based Automated Testing’) uses
fault injection to evaluate the dependability of fault tol-
erant software [1]. FIAT, implemented entirely in soft-
ware, changes bits in both program text and data re-
gions of machine memory to simulate hardware faults.

3. Chillarege and Bowen manually injected 70 overlay
faults into a large commercial transaction processing
system [4]. Overlay faults occur when a program
writes into an incorrect location due to a faulty desti-
nation operand. To decrease fault and error latency and
increase the probability that a fault will cause an error,
a large region of memory was corrupted with a single
injection. Injection involved setting all bits in an en-
tire page of physical memory to one. About 16% of

7

the faults immediately crashed the system; about 14%
caused a partial loss of service; half of the faults did not
cause failures.

4. FINE (‘The Fault Injection and Monitoring Environ-
ment’) was used to study fault propagation in UNIX
operating system kernel [15]. This system modeled
hardware faults including memory faults, CPU faults,
bus faults, and I/O faults.

Unlike the other studies, software faults were studied
including initialization faults, assignment faults, con-
dition check faults, and invalid function faults. Initial-
ization faults can be detected by a compiler. Assign-
ment and condition check faults are clearly relevant to
the testing of error recovery code, since an incorrect as-
signment or condition can be a condition that should
force the execution of recovery code. Here, invalid
function faults are created by replacing function code
with manually rewritten alternatives. For our purposes,
invalid function code must be automatically generated,
since manual rewriting of code is prohibitive in a large
system.

These experiments show some seemingly inherent prob-
lems with dynamic fault injection. Some injected faults can
crash the computer requiring operator intervention, so spe-
cialized hardware is needed for a completely automated pro-
cess. Some injected faults will have a very high error la-
tency. A system that continues to operate correctly for a long
time after injection may or may not have recovered from the
fault. It is very difficult to determine whether a latent error
may still eventually occur.

5.3. Assertion Violation vs. Related Work

Our assertion violation technique generates faults by mu-
tating program state at run time. Thus it does not incur
the recompilation overhead of mutation testing. Correctness
checking can be performed by comparing output or by com-
paring states. It can be used to model both hardware and
software faults.

To model transient memory faults, the memory locations
(variable aliases) characterized in an assertion can be cor-
rupted. The degree of corruption will depend on the specific
rules which control the violation. These faults could explic-
itly mimic the injections that others have used, for example,
by setting and resetting bits and groups of bits.

Initialization faults related to function parameters are
easily modeled. The parameters referenced in the pre-
condition can simply be set to a random value, or some pre-
determined but incorrect value, such as zero.

Many assignment faults can be generated by modifying
parameter values. An assignment that makes use of a mu-
tated parameter or global variable will be faulty. However,

not all assignment faults are covered. Like the assignment
faults, condition check faults are modeled when the condi-
tions make use of input parameters.

Invalid functions that result from complicated, abstract
programming errors are modeled quite well by assertion vi-
olation, since there are many options for generating faults
from complex assertions.

Some hardware faults cannot be easily modeled, such as
incorrect CPU instructions or stuck-at bus faults. Model-
ing these faults may not be necessary, since they will prob-
ably crash most fault tolerant systems anyway (unless it is
equipped with special hardware).

The software faults modeled by assertion violation will
tend to accelerate the progression from fault to error. An in-
jected fault is likely to be encountered soon after injection
because the violated pre-condition is ‘about’ variables that
are used in the function that runs immediately after execu-
tion. Similarly, the faulty return value changed by a post-
condition injection will soon be detected by other pre- or
post-conditions.

6. Conclusions

We have developed the assertion violation mechanism
for inserting faults. The method mutates state by violating
specified function pre- and post-conditions.

We have implemented assertion violation in our Visual
C-Patrol system (VCP). VCP includes assertion violation
fault injection in a visual interface to C-Patrol. The first step
in using VCP is to use the VCP interface to add pre- and
post- conditions to functions of interest. Then the software
is tested by running the instrumented program. Faults can
be injected and monitored at run time from the run time in-
terface. Pre- and post-conditions will indicate if the fault-
injected program satisfies specified constraints. A tester can
also determine whether the error recovery code is correct
from the output of the fault injected program.

Our evaluation demonstrates that fault injection can be
effective in increasing the coverage of hard to reach parts
of a program. When applying fault injection to individual
functions, coverage reached 90% or higher in all but one
function. Five functions reach 100% coverage, while the
coverage of only one function is unchanged. Coverage also
increased when we applied fault injection to entire source
files. We applied fault injection to a total of 30 source files,
and increased the coverage in 16 of them. Nine of the 14
files that showed no improvement already had over 90%
coverage without fault injection. Fault injection increased
the coverage in 15 of the 20 files (75%) that started with less
than 90% coverage.

Table 5 shows that we were able to increase overall test
coverage. In the file-level tests, coverage surpassed 80%. In
industrial practice 80% branch coverage is considered quite

8

Table 5. Evaluation Summary Data
Increase

Evaluation Original Final over
Software Coverage Coverage original

8 Functions from 3 files 41.9% 94.6% 125.8%
6 AC Compiler files 77.7% 83.6% 7.6%
9 C-Patrol files 84.8% 87.0% 2.6%
All 12 Autoland files 78.9% 87.3% 10.7%

good. Fault injection allowed us to increase test coverage
without adding further test cases. Thus, we can get higher
coverage with fewer test cases.

Assertion violation modifies the global variables or pa-
rameters values that appear in function pre- and post- condi-
tions. Many other kinds of assertions could be used to gen-
erate faults, and thus increase the effectiveness of fault in-
jection. Suggested future modifications to the assertion vio-
lation scheme are:

� Add the capability of local variable assertions,

� Enrich the assertion language,

� Remove some non-deterministic aspects.

References

[1] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek. Fault in-
jection experiments using FIAT. (Fault Injection-based Au-
tomated Testing). IEEE Trans. Computers, 39(4):575–583,
April 1990.

[2] B. Beizer. Black-Box Testing. John Wiley & Sons, 1995.
[3] T. A. Budd. Mutation analysis: Ideas, examples, problems

and prospects. In B. Chandrasekaran and S. Radicchi, ed-
itors, Computer Program Testing, pages 129–134. North-
Holland, 1981.

[4] R. Chillarege and N. Bowen. Understanding large system
failure – a fault injection experiment. In Proc. 19th Int.
Symp. Fault-Tolerant Computing (FTCS-19), pages 356–
363, Chicago, IL, June 1989.

[5] R. DeMillo, T. Li, and A. Mathur. Architecture of TAMER:
a tool for dependability analysis of distributed fault-tolerant
systems. Technical Report SERC-TR-158-P, Software Engi-
neering Research Center, Computer Science Dept., Purdue
Univ., 1994.

[6] R. DeMillo, R. Lipton, and A. Perlis. Social processes and
proofs of theorems and programs. Communications of the
ACM, 22(5):803–820, May 1979.

[7] R. DeMillo, W. McCracken, R. Martin, and J. Passafiume.
Software Testing and Evaluation. Benjamin/Cummings,
Menlo Park, CA, 1987.

[8] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J. Of-
fut, and K. N. King. An extended overview of the mothra
sofware testing environment. Proc. ACM SIGSOFT/IEEE

Second Workshop on Software Testing, Verification, and
Analysis, pages 142–151, July 1988.

[9] S. Garland, J. Guttag, and J. Horning. Debugging larch
shared language specifications. IEEE Trans. Software En-
gineering, 16(9):1044–1057, September 1990.

[10] J. Gerardin. The ‘def.injector’ test instrument, assistance in
the design of reliable and safe systems. Computers in Indus-
try, 11(4):311–319, Feb. 1989.

[11] A. Hall. Seven myths of formal methods. IEEE Software,
7(5):11–19, September 1990.

[12] W. Howden. Weak mutation testing and completeness of test
sets. IEEE Trans. Software Engineering, SE-8(4):371–379,
July 1982.

[13] W. Howden. A functional approach to program testing
and analysis. IEEE Trans. Software Engineering, SE-
12(10):997–1005, October 1986.

[14] C. Jones. Systematic Software Development Using VDM.
Prentice-Hall International, London, 1986.

[15] W.-L. Kao, R. Iyer, and D. Tang. Fine: a fault injection
and monitoring environment for tracing the unix system be-
havior under faults. IEEE Trans. Software Engineering,
19(11):1105–1119, Nov. 1993.

[16] A. Offutt and S. Lee. An empirical evaluation of weak mu-
tation. IEEE Trans. Software Engineering, 20(5):337–345,
May 1994.

[17] L. J. White. Basic mathematical definitions and results in
testing. In B. Chandrasekaran and S. Radicchi, editors, Com-
puter Program Testing, pages 13–24. North-Holland, 1981.

[18] H. Yin and J. Bieman. Improving software testability with
assertion insertion. In Proc. Int. Test Conf., Oct. 1994.

9

