
DESIGNING FOR SOFTWARE TESTABILITY

USING AUTOMATED ORACLES
�

James M. Bieman Hwei Yin

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523 USA
(303) 491-7096

bieman@cs.colostate.edu, yin@cs.colostate.edu

Published in Proc. International Test Conference, pp. 900{907, September 1992 (ITC92).

ABSTRACT

Software testing often requires massive numbers of test
cases that must be manually inspected for correctness.
This paper demonstrates the use of software \test ora-
cles" to automate the process of checking the correct-
ness of program output. The Prosper system, imple-
mented by the authors, can be used to de�ne test ora-
cles and monitor the runtime behavior of software. An
e�ective method to design software for testability must
include the concurrent development of test oracles.

1 INTRODUCTION

Both path-based (white box) software testing and the
random statistical (black box) software testing used in
software reliability modeling usually require the execu-
tion of massive numbers of test cases. The testing pro-
cess must be automated to e�ectively complete such
massive testing. Automated testing requires (1) an
automated means for generating the test cases, (2) a
test harness to execute the software of interest on the
test data, and (3) automated test oracles | automatic
means for determining if program output is correct.

Our focus is on the test oracle problem. Unfortu-
nately, in most large-scale software development envi-
ronments, human labor is the primary means employed
to monitor the correctness of test case execution. Engi-
neers may either manually derive correct output values

�
This research was partially supported by the Colorado Ad-

vanced Software Institute (CASI) and Storage Technology Corp.

through a Technology Transfer Grant, \E�ective Speci�cations

for Software Reliability Management."

for each test case generated, or may manually inspect
the output after each test run. This labor intensive pro-
cess is both expensive and error prone. The process of
determining the correctness of program output must be
automated to support the amount of testing required
to develop measurably reliable software systems.

Automated test oracles can be based on some form
of executable speci�cations. In this paper, we demon-
strate a test oracle design technique and system (Pros-
per) that we have developed. We use the Prosper ex-
ecutable speci�cation language to specify test oracles.
Using a run time type system, we can automatically
monitor a program to determine if its execution is con-
sistent with its Prosper test oracle. Run time software
errors are 
agged by the type system.

To be e�ective on large software systems, executable
test oracles must be developed along with the software
design and implementation. The software design pro-
cess must include an oracle design component. We aim
to develop software that can be tested automatically
using associated oracles.

2 TEST ORACLES IN PROSPER

The Prosper type system can ensure that program
post-conditions are satis�ed when post-conditions are
written as Prosper Boolean functions.

Consider a program P that inputs data of type T1
producing output of type T2. P has a type signature:

P: T1 ! T2.

A post-condition P-post specifying the correctness of
the output from P can be written as a Prosper Boolean



function with the type signature:

P-post: T1� T2 ! bool.

P-post takes an input value and an output value and re-
turns true if the output value satis�es the speci�cation
for P.

We can also de�ne P-post in a Curried fashion; a
Curried function processes its arguments one at a time:

P-post': T1 ! (T2 ! bool).

The Curried P-post' inputs an argument of type T1,
and outputs a function of type T2 ! bool. When given
an argument of type T1, P-post' partially evaluates,
creating a function of type T2 ! bool. Later, when the
output of P is known, it can be processed by the par-
tially evaluated P-post' to produce the Boolean result.

The Prosper select construct is a built-in function
that de�nes a new type based on a characteristic func-
tion. It can use functions like the Curried P-post' to
de�ne membership in a user de�ned type. Using select

we can strengthen the type signature of P to

P(x): T1! (select(P-post'(x)))

In the above type signature, parameter x binds to the
input argument of P and is used as an argument to the
P-post' function. After P receives an input value, the
output type is dynamically created to allow only those
outputs that are correct relative to x. P-post'(x) is
used by the Prosper select construct to automatically
build an output checker for program P . When P is
activated with input x, P-post'(x) is invoked creating
a characteristic function that describes a type relative
to x. Thus, P-post' partially executes and waits for
P (x) to produce its result. The output of P (x) then
becomes the input to the partially executed P-post'.
This output checking is equivalent to running P-post'

as follows:

(P-post'(x))(P(x)).

Prosper automatically performs this checking and in-
correct output is 
agged. If program P produces incor-
rect results, the Prosper system will identify the error
as a type violation. The execution of massive numbers
of test cases is possible when Prosper-like test oracles
are designed as part of a software system.

A unique aspect of Prosper is a mixing between ob-
jects from the \world" of types and objects from the
\world" of values. Type expressions can accept values
as parameters, and functions can accept or return types
as if they are values. In the forgoing example, x is the
input parameter of P; x is also the input to the P-post'
function, which is used by the select function to de�ne
a new type. This kind of computation is unusual, and
can be used to design test oracles.

2.1 The Prosper System

Our system uses a Lisp-like syntax, is implemented in
Lisp, and executes on a Sun SPARC workstation [24].
Prosper (PROtotypes and SPEci�cations with Relative
types) was originally de�ned by Leszczy lowski and Bie-
man [15]. Our implementation includes enhancements
to several aspects of the original de�nition. One im-
provement is the inclusion of Prosper select expressions,
a mechanism for de�ning types in terms of character-
istic functions.

Prosper computation is based on expression evalua-
tion; therefore, expressions must be used to describe
Prosper speci�cations. When an expression is fully
evaluated, both the expression value and type are re-
turned.

Prosper represents all of its values as value cells.
Value cells consist of two parts: a value and its type
(or domain). These parts are separated with an \@"
symbol, as in (3 @ integer) or (true @ boolean).
Type checking ensures that the type part of the cell is
the appropriate higher world classi�cation of the value
part. Thus, the value cell ("ab" @ string) asserts
that the quantity "ab" is part of the domain string.
When value cells are entered explicitly, a type check is
performed to ensure that the quantity and domain en-
tered are consistent. The interpreter evaluates a value
cell to itself. User input follows the \>" character in
the following examples of value cell evaluation:

> (3 @ integer)

(3 @ INTEGER)

> ("true" @ boolean)

(*ERROR* ACTUAL-STRING, EXPECTED-BOOLEAN)

> ((3 @ integer) @ integer)

(3 @ INTEGER)

Note that we have made a few minor syntax simpli-
�cations to aid the reader in the Prosper code shown
in this paper.

Prosper uses its type system to enforce invariants,
expressed as Boolean functions, at run time. Consider
a Prosper type, intlist, used to represent integer lists.
We can write assertions concerning integer lists as Pros-
per Boolean functions. For example, an assertion that
an intlist value is sorted can be de�ned as a Boolean
function IsOrdered with the following type expression:

IsOrdered: intlist!Boolean

In Prosper, the IsOrdered function is de�ned by the
following Lisp-like routine:

2



(define IsOrdered

(fun L:intlist boolean

(cond ((< (length L) 2) true)

((<= (first L) (first (tail L)))

(IsOrdered (tail L)))

(true false))))

Function IsOrdered inputs an intlist value which
is bound to the parameter L and outputs a Boolean
value. The body of the function is a straightforward
comparison of successive elements.

If we want an intlist variable to be maintained
as an ordered list, we can de�ne a new Prosper type
SortedList which uses IsOrdered as a characteristic
function:

(define SortedList (select IsOrdered))

The Prosper select function generates a new type
from the characteristic function. In the example,
select uses IsOrdered as a characteristic function to
de�ne the type SortedList. Whenever an intlist

value is bound to a parameter or identi�er speci�ed as
of type SortedList, the Prosper type checker will de-
termine whether the list is ordered using the IsOrdered
function. An attempt to bind an unordered list to a
SortedList parameter will cause a run time type er-
ror.

Invariants are speci�ed as (possibly) higher order
Boolean functions, and the monitoring of invariants is
performed by the type checking system at run time.
We can use invariant monitoring for testing oracle pur-
poses.

2.2 A Sorting Program Oracle

The output of a function Sort that sorts intlist val-
ues must satisfy the following post condition (expressed
using Prosper Boolean functions):

IsOrdered(Sort(L)) ^ Permutation(L,Sort(L))

which states that the output of Sort is an ordered per-
mutation of its input.

We can use a curried Prosper function SortPost

which processes arguments one at a time:

SortPost: intlist! (intlist! boolean)

The �rst input to the curried function is an intlist,
say L, and the output is a new function. This new func-
tion takes a second intlist as input and returns true
only when the second intlist is a sorted permutation
of the �rst intlist L.

The Prosper test oracle function SortOracle mon-
itors the correctness of the enclosed sorting program,
Sort (text following the semicolon are comments.):

(define SortOracle

(fun L:intlist ; input type
(select (SortPost L)) ; output check
(Sort L))) ; function body

where Sort is a sorting function with type signature

Sort: intlist! intlist

Correctness monitoring is speci�ed in the second and
third lines of the above function. We specify that
the input to SortOracle is an intlist object L. We
also specify in line 3, (select (SortPost L)), that
the output type must satisfy the characteristic func-
tion produced by SortPost with input list L. That is,
(SortPost L) produces a new function that evaluates
to true only when the list produced by Sort is a per-
mutation of L and ordered. The output of Sort must
satisfy this characteristic function when monitored by
SortOracle. SortPost may be of the following form:

(define SortPost

(fun L1:intlist ; accepts list L1
(intlist -> boolean) ; returns a function

; SortPost produces the following function:
(fun L2:intlist boolean

(and (IsOrdered L2)

(Permutation L1 L2)))

Figure 1 shows the monitoring process of the sorting
program. The execution of SortOracle and monitor-
ing of Sort takes place as follows:

1. Assume SortOracle is invoked with list M as input:
(SortOracle M)

2. The input list M is bound to formal parameter L.

3. The sorting program, Sort, is invoked with list
M. Sort produces a new (hopefully) sorted list as
output.

4. SortPost is invoked with list M as input. SortPost
produces a characteristic function as output. This
characteristic function accepts a list as input and
outputs true if and only if the input is ordered and
is a permutation of M.

5. select uses the characteristic function generated
in 4 above to de�ne a type based on the speci�ca-
tion de�ned by SortPost.

6. The output of Sort is checked to see if it is of the
type de�ned in 5 above.

Thus, incorrect output is 
agged at run time. We in-
voke SortOracle with input list (7 3 5):

3



?

? ?

?

??

list
input

type based on input list

output

function
characteristic

\sorted"

output & its correctness

Output Checker

Select

Curried SortPostSort

Figure 1: SortOracle data 
ow

> (SortOracle ((7 3 5)@intlist))

((3 5 7)@intlist)

The correctness monitoring speci�ed by line two and
three of SortOracle is the test oracle for the Sort.
Sort is the actual sorting program that is to be tested.
Many possible sorting programs can be used. One ex-
ample is a selection sort:

(define Sort

(fun L:intlist intlist

(cond

;an empty list is sorted
((empty L) L

;Remove smallest element, recurse on tail.
;Put smallest element back in front of list.
(true (define FirstEl (smallest L))

(cons FirstEl

(sort (delete FirstEl L)))))))))

where delete produces a list without the �rst occur-
rence of FirstEl in L.

Notice that the type speci�cation for Sort in line
2 speci�es the output as an intlist without any

stronger restriction. All testing oracle work is per-
formed by SortOracle, the caller of Sort. Although
we have separated the test oracle from the sorting algo-
rithm implementation, we can still perform correctness
monitoring by calling Sort from within SortOracle.
This separation is not necessary, but it allows an engi-
neer to strip away the oracle to improve performance
after testing.

Revealing a Defect.

A common error in student Lisp programs is to skip
the recursive call in the expression that produces the
result. This error causes the last two lines in Sort to
be written without the recursive call:

(cons FirstEl (delete FirstEl L))

rather than the correct version:

(cons FirstEl (sort (delete FirstEl L)))

We now run the defective sorting program on the
sample list (7 3 5):

> (Sort ((7 3 5)@intlist))

((3 7 5)@intlist)

Only the lowest element in the input list is in the cor-
rect position. When we use the SortOracle to monitor
the process, the incorrect output is discovered by the
output type checker:

> (SortOracle ((7 3 5)@intlist))

(*ERROR* NOT OF SELECT TYPE)

SortOracle will give an error message whenever Sort

produces an output list that does not satisfy the spec-
i�cation.

The error that we introduced produces incorrect out-
put for the majority of input lists. The output is correct
only when the input list is already sorted, or when the
smallest element is the only element not in the correct
sorted position. Program defects are much more di�-
cult to detect when they are exposed by only a small
percentage of possible input values.

Monitoring Random Tests.

We demonstrate how defects that cause infrequent er-
rors are monitored. Suppose that the delete routine
that is used by Sort, \(delete n L)", deletes all oc-
currences of integer n in list L rather than just the �rst
occurrence. If this version of delete is used to imple-
ment Sort, Sort will fail only on input lists with du-
plicate elements. Output on these lists will be sorted,

4



but they will not be permutations of the input because
they will be missing the duplicates. In all other cases,
Sort will produce correct results.

We tested SortOracle using this defective version of
Sort. We ran SortOracle on 1000 input lists of �ve el-
ements, with each element selected randomly from the
integers between 1 and 1000. The probability that a
test case contains a duplicate is .00965. SortOracle

found defective output in 10 of the 1000 test cases that
we ran. Thus, the number of test runs that failed to
satisfy our SortOracle is reasonably close to the ex-
pected failure rate.

In operational use, a testing oracle is run with pro-
grams and data containing unknown defects. Random
tests can �nd defects as long as the number of test
cases is large enough. This is to ensure a high proba-
bility of �nding data that causes the incorrect output.
The ratio of invalid tests detected by the oracle to the
total number of cases is a measure of the reliability of
the tested software. Thus, an automated oracle can be
used as a software reliability measurement tool.

It is possible to manually scan program output
searching for errors. However, when large numbers of
test cases are run, manual correctness checking is im-
practical and error prone. Scanning the output from
our 1000 test cases of the defective Sort program is
a grueling task. It is easy to miss the incorrect out-
put, especially if the errors are rare. The SortOracle,
however, detects all such errors automatically and ac-
curately.

3 DESIGNING WITH ORACLES

Many defects are much rarer than the one in the de-
fective Sort program described above. Spotting defec-
tive output that occurs infrequently is nearly impossi-
ble when defect detection relies solely on human anal-
ysis. Therefore, automated testing oracles are essential
for detecting infrequent errors in a software product.
Testing oracles are a form of parallel code that checks
rather than produces output.

Oracle development can represent signi�cant e�ort
which may increase design and implementation cost;
however, overall testing and maintenance costs should
be reduced. Commercial software systems are many
orders of magnitude more complex than the example
sorting program; they may have thousands of intercon-
nected modules. Oracle development must therefore be
carefully integrated into the software development life
cycle. Oracles must be designed for unit testing, sub-
system testing, and integration testing in a disciplined
manner.

Oracles can be designed directly from formal design

speci�cations [21]. The purpose of a formal speci�ca-
tion is to describe the behavior of a software system at
the highest level of abstraction without including im-
plementation details. A speci�cation that is executable
can be tested to determine if its behavior satis�es infor-
mal requirements. The term \executable speci�cation"
usually refers to speci�cations that produce rather than
check output. There are a number of approaches to
developing formal speci�cation [8, 13, 6]. Most tech-
niques are based on either algebra or set mathemat-
ics [6, 10]. These techniques are not, in general, exe-
cutable due to the abstract nature of some of the con-
structs used. Some researchers claim that speci�cations
should not execute so that implementation details can
be left out [9]. Despite these criticisms, many speci�-
cation languages including Paisley, OBJ, me too, RSF,
and Prosper are executable [25, 7, 11, 5, 15, 1]. An-
other use for speci�cation is to annotate a design or
implementation. Anna [17] annotates Ada programs,
and A++ annotates C++ programs [4]. Anna is par-
tially executable. A Prosper test oracle is also a form
of an executable speci�cation. It must execute in order
to check the correctness of output. However, the oracle
does not have to produce the speci�ed output.

Often, a speci�cation describes the system in terms
of mathematical entities rather than programming lan-
guage data types [12]. When designing an implemen-
tation from such a speci�cation, the developer must
map implementation objects (programming language
data types) to the more abstract objects of the speci-
�cation. To develop a test oracle, this mapping must
be explicit; the developer must specify a mechanism to
convert program output into values that the test oracle
can process.

Three name spaces can be used when designing with
test oracles: a speci�cation name space, an oracle name
space, and an implementation name space [21]. The
speci�cation name space is based on abstract mathe-
matical objects. The implementation name space is
based on data manipulated by program code. The or-
acle name space lies somewhere in between. Mappings
must be de�ned to show how objects in one name space
relate to objects in another. Values in the implemen-
tation name space must be converted to values in the
oracle name space before the oracle can execute.

We propose that software be designed using the fol-
lowing process:

1. Develop an abstract speci�cation that includes
post conditions for the output of operations. The
speci�cation and associated post conditions can be
expressed in natural language. However, a formal
speci�cation increases precision at an early stage.

5



2. Determine what implementation data structures
will represent objects in the abstract speci�cation.

3. Design (and implement) oracles that can deter-
mine whether the output from program operations
satisfy the speci�cations. Oracles can be designed
to focus on the most critical component of the
speci�cation.

4. Design and implement program functions using
the speci�cation from Step 1.

5. Design a mechanism to automatically generate test
data. Since the oracle function is automated, large
sets of test data can be used. The data sets can
be tailored to speci�c structural testing criteria.

6. Run and monitor the implemented functions using
the test data.

7. Correct the program (or test oracle) and re-run
the tests

To maximize the reliability of a system, we suggest
that the above steps be performed for all program units
and subsystems. Since much of the testing process is
automated, testing can begin as soon as the program
units and their associated oracles are complete. Testing
can be performed concurrently with development.

An automated (or semi-automated) mechanism for
generating large sets of test data can be used when
designing with test oracles. A random test case gen-
erator, for example, may be used to generate any size
set of test data. If the random data is consistent with
the expected use of the software (following the opera-
tional pro�le), then test results can be used to measure
the current reliability of the software. Random testing
can be used along with structural test coverage crite-
ria [18, 23, 22, 3, 20, 19]. Random data can be run
until it is determined that the desired criteria are sat-
is�ed. Alternatively, data can be generated to specif-
ically satisfy particular testing criteria [2]. The use of
test oracles does not depend on using random testing
or structural testing. However, the e�ort of developing
test oracles is justi�ed when a large number of test runs
are required.

Test oracles can be set up to run on-line so that out-
put can be checked as it is produced. Our Prosper sys-
tem is currently designed to perform oracle functions
on-line. Another arrangement is to dump program out-
put (and other necessary state information) to a �le so
that the oracle can check program correctness as a sep-
arate process. For each function being tested, an oracle
system needs the following key information:

� input state.

� output state.

� timing information (especially for real time sys-
tems).

The oracle compares the input state to the output state
and checks for consistency with the speci�cation. The
exact architecture of the oracle system must address
the overhead of running the test oracles.

Oracles can improve software correctness and relia-
bility. However, oracles can also reduce performance.
The e�ects on performance are most serious for real
time software. Oracle execution requires processor time
and memory which can seriously reduce performance.
One strategy is to use the oracles during testing, and
then remove them when the software is released. How-
ever, removing oracles can cause unexpected problems.
Test oracles are essentially software probes, and remov-
ing probes may change the timing behavior of the sys-
tem. Timing attributes can be critical for real time sys-
tems. Oracle software can be run independently from
a real time system to avoid changes in timing behavior.

Since the test oracle is a program it can also con-
tain defects, An error detected by the test oracle may
actually be the result of a defective oracle rather than
defective code. The source of a defect, whether it is a
program defect or an oracle defect, must be found dur-
ing the debugging process. Thus testing checks both
the oracle and the program, and insures that they are
consistent.

It is possible for incorrect output to be accepted by
an incorrect oracle | both the oracle and program can
fail on the same data. Such coincidental correctness

is a serious problem recognized in studies of n-version
programming [14, 16]. In n-version programming sev-
eral implementations are developed for the same spec-
i�cation. The execution behavior of the di�erent ver-
sions are compared. Coincidental correctness between
a program and its test oracle is unlikely because of dif-
ferent objectives: a program must produce an answer,
while an oracle simply checks that answer. However,
coincidental correctness is still possible. If an incor-
rect oracle is used as a speci�cation then the errors
may be propagated to the implementation. Such er-
rors will not be discovered during oracle-based testing.
Also note that oracles and programs should not share
subroutines. Consider the Sort program in Section 2.2
with the defective delete subroutine. The error would
not be detected if the oracle code in SortPost used the
same delete subroutine.

A common problem in software maintenance occurs
when program code is modi�ed but the documentation
is not. Over time, engineers learn not to trust docu-
mentation and, as a result, only the program code can

6



be used to help understand the system. Test oracles are
actually a formalized form of documentation. Consis-
tency between test oracle documentation and the pro-
gram implementation can be insured. Programs can
be tested using the oracles after modi�cations. The
oracles will be updated as required to complete this
regression testing process. With such an arrangement,
test oracles can provide another accurate description of
a software system.

4 CONCLUSIONS

Automated test oracles are critical to any automated
software testing process. We use the Prosper system
as a test oracle mechanism to monitor functional pro-
grams. In Prosper, correctness properties are de�ned
and enforced using a run time type system. We show
that Prosper can be e�ective in �nding defects that are
revealed in less than 1% of randomly generated test
data. If we were to rely on human inspections of pro-
gram output, such errors would likely be missed.

Without test oracles, rigorous testing is not possi-
ble. Oracles allow the testing of large amounts of data.
Therefore, they are appropriate for use with the most
discriminating testing criteria, random testing tech-
niques, and reliability measurement. E�ective test or-
acles must be designed before (or concurrently with)
the implementation of software. Oracle development
should be part of the software development process.

We continue to experiment with the Prosper system.
We are also developing an oracle notation for programs
implemented in C.

REFERENCES

[1] J.M. Bieman and H. Yin. Monitoring the correct-
ness of software. Proc. ISMM Int. Symp. Engi-

neering & Industrial Applications, pp. 79{82, Dec.
1991.

[2] L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Trans. Soft-

ware Engineering, SE-2(5):215{222, Sept. 1976.

[3] L. A. Clarke, A. Podgurski, D. J. Richardson, and
S. J. Zeil. A comparison of data 
ow path selection
criteria. Proc. 8th Int. Conf. Software Engineer-

ing, pp. 244{251, 1985.

[4] M. P. Cline and D. Lea. The behavior of C++
classes. Proc. Symp. OOP Practical Application,
pp. 81{91, 1990.

[5] M. Degl'Innocenti, G. L. Ferrari, G. Pacini, and
F. Turini. RSF: a formalism for executable re-
quirements speci�cations. IEEE Trans. Software

Engineering, 16(11):1235{1246, Nov. 1990.

[6] S.J. Garland, J.V. Guttag, and J.J. Horning.
Debugging larch shared language speci�cations.
IEEE Trans. Software Engineering, 16(9):1044{
1057, Sept. 1990.

[7] J. Goguen and J. Meseguer. Rapid prototyping in
the OBJ executable speci�cation language. ACM

Sigsoft Software Engineering Notes, 7(5), 1982.

[8] A. Hall. Seven myths of formal methods. IEEE

Software, 7(5):11{19, Sept. 1990.

[9] I.J. Hayes and C.B. Jones. Speci�cations are
not (necessarily) executable. Software Engineer-

ing Journal, 4(6):330{338, Nov. 1989.

[10] I. Hayes (editor). Speci�cation Case Studies.
Prentice-Hall, London, 1987.

[11] P. Henderson, C. Minkowitz, and J. S. Rowles.
me too Reference Manual. STC Technology Ltd.,
Sta�ordshire, 1987.

[12] C.B. Jones. Software Development: A Rigorous

Approach. Prentice-Hall, London, 1980.

[13] C.B. Jones. Systematic Software Development Us-

ing VDM. Prentice-Hall, London, 1986.

[14] J. Knight and N. Leveson. An experimental evalu-
ation of the assumption of indepaendence in multi-
version programming. IEEE Trans. Software En-

gineering, SE-12(1):96{109, Jan. 1986.

[15] J. Leszczy lowski and J.M. Bieman. PROSPER: A
language for speci�cation by prototyping. Com-

puter Languages, 14(3):165{180, 1989.

[16] B. Littlewood and D. R. Miller. Conceptual
modeling of coincident failures in multiversion
software. IEEE Trans. Software Engineering,
15(12):1596{1614, Dec. 1989.

[17] Donald C. Luckham and Friedrich W. von Henke.
An overview of ANNA, a speci�cation language
for ADA. IEEE Software, pp. 9{22, March 1985.

[18] G. J. Myers. The Art of Software Testing. John
Wiley & Sons, New York, 1979.

[19] S. C. Ntafos. A comparison of some structural test-
ing strategies. IEEE Trans. Software Engineering,
14:868{874, June 1988.

7



[20] S. Rapps and E. J. Weyuker. Selecting soft-
ware test data using data 
ow information. IEEE
Trans. Software Engineering, SE-11(4):367{375,
April 1985.

[21] D. J. Richardson, S. L. Aha, and T. O. O'Malley.
Speci�cation-based test oracles for reactive sys-
tems. Proc. 14th Int. Conf. Software Engineering

(ICSE-14), May 1992 (in press).

[22] M. D. Weiser, J. D. Gannon, and P. R. McMullin.
Comparison of structured test coverage metrics.
IEEE Software, 2(2):80{85, March 1985.

[23] E. J. Weyuker. The complexity of data 
ow crite-
ria for test data selection. Information Processing

Letters, 19:103{109, Aug. 1984.

[24] Hwei Yin. Automatic enforcement of invariants:
The implementation of Prosper. Master's thesis,
Department of Computer Science, Colorado State
University, 1991.

[25] P. Zave and W. Schell. Salient features of an ex-
ecutable speci�cation language and its environ-
ment. IEEE Trans. Software Engineering, SE-
12(2):312{325, February 1986.

8


