
IMPROVING SOFTWARE TESTABILITY

WITH ASSERTION INSERTION
�

Hwei Yiny James M. Bieman

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523 USA
(303) 491-7096, Fax: (303) 491-2466

yin@ssdevo.enet.dec.com, bieman@cs.colostate.edu

Published in Proc. International Test Conference, October 1994 (ITC94).

ABSTRACT

Executable assertions can be inserted into a program

to �nd software faults. Unfortunately, the process of

designing and embedding these assertions can be ex-

pensive and time consuming. We have developed the

C-Patrol tool to reduce the overhead of using asser-

tions in C programs. C-Patrol allows a developer to

reference a set of previously de�ned assertions, written

in virtual C, bind assertion parameters, and direct the

placement of the assertions by a pre-processor.

1 INTRODUCTION

Developing reliable software is di�cult and requires

discipline both in specifying system functionality and

in implementing systems correctly. Run time asser-

tion checking is one technique that can help locate de-

fects and insure that programs satisfy speci�ed con-

straints [10]. Executable assertions have several prac-

tical uses:

� They can serve as automated test oracles | au-

tomatic means for determining if program output,

or a program state, is correct.

� They can serve as diagnostic tools to help locate

software faults that cause speci�c failures. Such

�Research partially supported by the Colorado Advanced
Software Institute (CASI), Storage Technology Inc., and Micro-
Motion Inc. CASI is sponsored in part by the Colorado Ad-

vanced Technology Institute (CATI), an agency of the state of
Colorado. CATI promotes advanced technology teaching and re-
search at universities in Colorado for the purpose of economic
development.

yHwei Yin is now with Digital Equipment Corp. in Colorado
Springs, Colorado.

diagnostic tools can be useful both during debug-

ging and while code is under maintenance.

� They can serve as dependable program documen-

tation. A testing protocol can assure the consis-

tency between assertion documentation and nor-

mal program code.

� They can be used to enforce particular program-

ming styles that are not supported by an imple-

mentation language. C-Patrol, for example, pro-

vides the user with data abstraction support that

is not available in C or many other languages.

In e�ect, executable assertions are a form of dual

programming. Unfortunately, the e�ort required to de-

sign and embed assertions into programs can be signif-

icant. Executable assertions will become more useful

and more commonly used if the overhead is limited.

In our research, we have carefully evaluated the use

of executable assertions in an industrial setting in or-

der to develop useful support tools. We �nd that ex-

ecutable assertions are used extensively for software

testing. They are hand coded and placed at desired

locations to indicate when and where a program is in

a faulty state. The assertions are written as regular

C code; no formal speci�cation language is used. The

assertions are often designed to check that data values

satisfy speci�ed constraints. Assertions are de�ned in

terms of speci�c data declarations, and they must be

placed where the data values are referenced or modi-

�ed.

The industrial developers that we observed use ex-

ecutable assertions primarily for checking ad-hoc data

requirements that arise during program development.

The assertions could be used to enforce constraints

developed directly from a requirements speci�cation

rather than from the program itself. The developers

need a mechanism to associate assertions with data ob-

jects as well as speci�c program states. They need con-

structs to increase the expressiveness of assertions, and

support the reuse of assertions. These needs motivate

our development of the C-Patrol tool.

In Section 2, we describe the current C-Patrol pro-

totype and its major feature, the labeled code system,

and we review potential uses for the system in Sec-

tion 3. Section 4 contains our analysis of the critical

design decisions and the issues that were instrumental

in shaping the current system. We survey related work

in Section 5, and our conclusions are in Section 6.

2 C-PATROL DESCRIPTION

C-Patrol is a pre-processor that inserts assertions, writ-

ten in virtual C, into speci�ed locations in C programs.

C-Patrol design concepts are independent of C itself;

thus, major portions of the implementation can be eas-

ily modi�ed to support assertion insertion for programs

in other languages. C-Patrol is similar to Anna [7] in

that assertions are written as comments that can be

textually converted into C code by a pre-processor. C-

Patrol, however, is much simpler than Anna and derives

its expressive power from a procedure-like mechanism,

the labeled code system, rather than from a large in-

ventory of high-level constructs. A prototype has been

implemented; results from the user testing of this pro-

totype will undoubtably uncover new uses for the sys-

tem and will heavily in
uence future developments and

design goals.

At its simplest level, C-Patrol is simply a code in-

sertion technique. The user places virtual C code

within special C-Patrol comments. These comments

are skipped by the C compiler and do not a�ect the

performance of the underlying system. To activate this

virtual code, the user invokes the C-Patroller, a pre-

processor that translates virtual code into regular C

and inserts it following instructions called directives.

This augmented program may then be compiled and

run as normal C.

In the current design, virtual code is C code in-

terspersed with directives. No special meta-language

needs to be learned, and there are no restrictions placed

on the virtual code written. Users are responsible for

ensuring that virtual code does not produce any unde-

sired side-e�ects.

Simplicity is the crucial theme that pervades C-

Patrol design. In general, the system will not attempt

to control the behavior of the user; it is up to the user

to be self-regulating (following the design philosophy of

C). To make this task easier, the system is designed to

be as intuitive and as easy to understand as possible so

that the user can readily comprehend the consequences

of his or her actions before they are taken.

2.1 Code Insertion Directives

Insertion directives simply control where code is to be

inserted:

/*? %%insert:

printf("hello");

x = f(y);

%%call r, s;

printf("goodbye"); ?*/

In this example, the /*? and ?*/ tokens delimit the

C-Patrol comment, and the %%insert directive indi-

cates that the enclosed virtual code is to be inserted

exactly where it appears in the surrounding code. The

%%call directives that appear within the virtual code

will be replaced by normal C before insertion (a pro-

cess to be explained later). Since virtual blocks will

consist entirely of standard C, the resulting insertion

can be compiled and executed along with the rest of

the surrounding C code.

Other insertion directives, such as the %%pre and

%%post directives, specify insertion at the entry and

exit points of a target function. These directives pro-

vide a clear and simple format for specifying code that

is to be executed on function boundaries.

2.2 Labeled Code

Users can control the insertion of previously de�ned

assertions using the C-Patrol system of labeled code.

Like macros, labeled code consists of a block of virtual

code that is inserted when invoked by a %%call direc-

tive. Unlike procedures or functions, labeled code is not

identi�ed by a single name, but by a label consisting of

a series of tags called label identi�ers:

/*? %%label bill, ted:

printf("code block one");

printf("one done");

%%label ted;

printf("code block two");

%%label bill, fred:

printf("code block three");

?*/

Unlike procedure or macro names, label identi�ers are

not unique to blocks of code. Virtual code in labeled

blocks consists only of pure C { no special C-Patrol

directives or parameters may appear within. A call

directive invokes labeled code by making reference to

individual identi�ers rather than entire labels. Thus:

%%call bill, fred;

will cause the �rst and third blocks to be inserted in

their declared order since identi�ers in their labels are

mentioned by the call. Essentially, %%call refers to all

labels that contain any of the identi�ers listed. Thus,

the labeled code system is much like a database sys-

tem, where keywords (label identi�ers) access related

records (labeled blocks) by association.

2.3 Extensions to the Labeled Code Sys-

tem

The user can subdivide label identi�ers through the use

of sub�elds:

/*? %%label bill.x.v, bill.y:

assert(bill.x.v < bill.y);

%%label display, bill;

printf("bill y:%d, x.v:%d, x.q:%s\n",

bill.y, bill.x.v, bill.x.q);

?*/

In the example, the label identi�er bill has been di-

vided into sub�elds x and y; sub�eld x has been further

divided by sub�eld v. The resulting hierarchy of iden-

ti�ers provides a simple but powerful addition to the

labeled code system. Note how we use the labeling

system in conjunction with the assert and printf fa-

cilities to enforce and display data-oriented information

about object bill.

The exclusive call is an alternative to the normal call

directive that allows greater power in \weeding out"

unwanted invocations of labeled blocks:

%%ex-call r, s.v

No label that contains items outside of those listed in

the %%ex-call will have its code included.

Labeled code directives can be viewed in terms of

mathematical sets:

� Label identi�ers: Label identi�ers describe indi-

vidual, disjoint sets.

� Commas: Commas between listed identi�ers indi-

cate set union. Thus, the space described by listing

several identi�ers in a label or call is the union of

the individual sets.

� Sub�elds: Sub�elds within an identi�er describe

disjoint strict subsets within the parent set.

� %%call: The %%call invokes a label if the space

described by the call intersects in any way with the

space of the label; in other words, the intersection

between the two sets must be non-null.

� %%ex-call The %%ex-call invokes a label only if

the space described by the label is a subset of the

call. Thus, the %% ex-call is much more restric-

tive than the %%call, but provides the user with

more control over which code is invoked.

2.4 Templates

Template blocks of virtual code provide
exibility

through the use of parameters. Template declaration

is similar to the declaration of a traditional procedure

or macro:

/*? %%template printme(a, b):

printf("%d %d", a.c, b.c); ?*/

The template printme has two parameters: a and b.

When given character string bindings, the C-Patroller

will look for the a and b tokens within the virtual block

and textually substitute them for the passed strings.

Template blocks can be converted into normal la-

beled blocks through the use of binding directives:

/*? %%bind r =

printme("is the value", my_array[j]);

?*/

The printme template (de�ned earlier) is passed the

string "is the value" and my array[j] for parame-

ters a and b respectively. The resulting code is then

given the label r. Thus, the above binding directive is

equivalent to the declaration:

/*? %%label r:

printf("%d is the value", my_array[j].c);

?*/

Note that identi�er r may still be used in other labels.

Templates may be invoked directly by %%call and

%%ex-call directives, as long as all parameters are

bound.

2.5 Pre-Processing

To make C-Patrol comments a part of the underlying

program, the pre-processor, C-Patroller, must �rst sub-

stitute virtual code for all the template and label calls

that appear within insertions. After these transforma-

tions, insertions will consist entirely of standard C, so

the C-Patroller may then insert the new code directly

into the host program without further translation. For

%%insert directives, the C-Patrol comment is simply

replaced by the new code. For %%pre directives, the in-

sertion must be made so that the new code is executed

just before any statements in the target function. Simi-

larly, %%post directive insertions are made so that new

code is executed just before any exit from the func-

tion. After insertions are complete, the program may

be compiled and run as a normal C program, since the

program then consists entirely of standard C code.

3 USES FOR C-PATROL

C-Patrol is primarily designed to allow developers to

group sets of assertion de�nitions in a logical place,

perhaps with data declarations, and direct the inser-

tion of the assertions as required to perform run time

checking. The C-Patrol system is quite
exible, and we

expect to �nd numerous new applications for the tool.

The labeled code system was designed speci�cally

to support data invariants. However, there is nothing

application-speci�c about the concept. Calls to labeled

code are simply a way of accessing blocks of code in an

associative, database-like method. For example, test

states can be organized with labeled code:

/*? %%label A: x = f(3);

%%label B: x = f(20);

%%label A,B: y = g(8); ?*/

These simple settings of x and y are only representative

of potentially complex manipulations. Now we demon-

strate calls that set up and use these test states:

/*? %%insert:

switch(toggle) {

case '1': %%call A; break;

case '2': %%call B; break;

case '3': %%ex-call A; y = g(43); break;}

?*/

The toggle variable can be controlled by the testing

user to bring up these various states. The �rst two

cases are direct calls to suites A and B. Both suites share

the settings for variable y. In the third case, we use the

%%ex-call to activate only part of the A setting, and

then complete the setting explicitly. This example does

not take advantage of the organizational power of the

sub-�eld system, which can add further
exibility.

C-Patrol was designed initially as a system for im-

plementing automated oracles and speci�cations. An

oracle is a method of determining whether a program

has performed according to speci�cation [9]. Many or-

ganizations use human oracles | users determine from

system and debug output whether program behavior

is correct. C-Patrol can help automate aspects of the

oracle process. We can use the C assert primitive to

check conditions of the state of the program:

/*? %%insert:

assert(<condition>); ?*/

The pre, post, and insert directives support check-

ing assertions at speci�c control
ow points.

The mission of oracle code is di�erent from the mis-

sion of the actual code or an executable speci�cation.

Oracle code is designed only to recognize correct and

incorrect data, not produce such data. The choice of C

as a virtual language means that the oracle is written

in the concrete domain of actual structures used by the

program.

C-Patrol provides a means for checking that data

structures satisfy invariants. Objects can be linked to

label identi�ers, thus associating invariants to objects:

int X; /*? %%label X: assert(X < 20); ?*/

Calls to identi�er X can then be used to invoke this

invariant. We can also link types to template blocks:

/* this is a type definition */

struct the_type { int a; int b; }

/*? %%template the_type(P):

assert(P.a < P.b); ?*/

We can then create an object out of this type by assign-

ing a label identi�er to an instantiation of the template:

/* this is a variable declaration */

struct the_type the_val;

/*? %%bind the_val = the_type(the_val);

%%label the_val:

assert(the_val.a < 10); ?*/

A new condition, the val.a < 10, was added to the

existing template condition, the val.a < the val.b.

C-Patrol is thus capable of expressing one level of inher-

itance | special conditions can be added to an object

of a type.

In C-Patrol actual implementation data structures

must be accessed when expressing constraints. One of

the objectives in future work is to provide a way of bet-

ter shielding abstract speci�cations from the details of

implementation. In conjunction with traditional meth-

ods of speci�cation, such checking code can be used

throughout the life cycle of a project to ensure that

the original intent of the designer is satis�ed.

4 ALTERNATIVES FOR MANAGING

ASSERTION INSERTION

Our design was heavily in
uenced by the commercial

sponsors of this research. We learned that our sponsors

frequently use an object based programming style even

though the implementation language is C. Because of

the reliance on data abstraction, our design needed to

include features for checking both data invariants and

pre- and post-conditions. The task of enforcing data

invariants in a language like C, which does not support

data abstraction, led to a design using labeled code and

templates. The C-Patrol system is not restricted to a

particular application. However, the design is oriented

toward speci�cation and enforcement problems for data

invariants.

Another important factor in
uencing C-Patrol de-

sign is the emphasis on industrial practicality over aca-

demic exercise. Restrictions in implementation man-

power and user training time led to a design that em-

phasized simplicity whenever possible. The prototype

system is quite basic; more ambitious features will not

be included unless a clear need is discovered during pro-

totype testing. A consequence of such simplicity is that

little automatic checking is provided to protect users

from dangerous operations. C-Patrol relies on a design

that is as transparent as possible so that the user can

either anticipate problems beforehand or quickly debug

the ones that arise.

4.1 Virtual Code

A major issue in the C-Patrol design was the content of

virtual code. Three major approaches were considered:

� Meta-Language: A common approach used in

speci�cation-oriented systems is to introduce a

new meta-language that describes invariants at a

more abstract level than is possible in C.

� Restricted C: We could modify or limit the C

that can appear as virtual code. If the system

is designed to passively check the program with-

out modifying it, such enforcement can protect

the program from accidental state modi�cations

caused by insertions.

� Unrestricted C: This is the approach currently

adopted by the C-Patrol design.

We discuss the merits and disadvantages of each of

these approaches in detail.

4.1.1 Meta-Languages as Virtual Code

One common approach to expressing executable speci-

�cations or oracle constraints is to implement powerful,

high level constructs, such as those found in VDM [5]

or Z [3], in virtual code. The clear syntax and high

level primitives of such languages allow the user to ex-

press complex requirements in a precise and abstract

manner. Furthermore, a language can be designed that

inherently protects the underlying program from the

actions of virtual code.

User training overhead is one important reason

for using C instead of meta-language virtual code.

Although meta-languages provide greater expressive

power, some transparency may be lost if users do not

fully understand the actions of very high level primi-

tives. Furthermore, users are naturally reluctant to de-

vote the time necessary to develop the needed compre-

hension of such languages. By using the host language,

C, the problem of misuse due to incomplete comprehen-

sion is minimized. There is also a gain in practicality

| pre-compilers that implement high level primitives

can be quite complex and cannot compete with the ef-

�ciency or reliability of proven C compilers.

Determining the type of high order primitives to be

included is another problem. Most high level primitives

are directed toward particular applications; the types

of high level operations needed vary with paradigms of

use. When used outside of its intended application, a

language can become awkward to use. Furthermore,

a computational argument posed by Hayes and Jones

shows that there are classes of high level primitives that

are impractical or impossible to implement [4]. We

keep C-Patrol open to as many applications as possi-

ble rather than anticipate the primitives that will be

of service to the user. Feedback from prototype testing

may cause the addition of special primitives. However,

there are a plethora of C libraries with specialized func-

tions that may provide the high level power needed for

most applications. The inclusion of such libraries can

be hidden within C-Patrol comments.

4.1.2 Restricted C as Virtual Code

User can be protected from harmful virtual code by

restricting the virtual code to a subset of C that guar-

antees a certain level of safety. The chief C subset

that we considered was read-only code | code that

is guaranteed to not modify state information. We

could enforced this restriction in one of two ways. We

could eliminate certain C constructs (such as assign-

ment statements) from virtual code, or we could scan

the code for destructive operations and warn the user.

There are several di�culties with using restricted C.

Eliminating modifying constructs (such as assignment

statements) also eliminates computations that use and

modify local computation variables, thus severely lim-

iting the expressive capabilities of virtual code. At-

tempting to statically separate local variable manip-

ulation from outside variable manipulation will either

add a great deal of complexity (and unreliability) to

the prototype, or will burden the user with tedious or

unclear regulation. Furthermore, it may be di�cult to

identify which uses of outside variables modify them

and which uses simply read them. Variable aliasing or

renaming complicates this problem.

Perhaps the most important reason that no restric-

tions are placed on virtual code is that we are uncertain

of how C-Patrol will be used. In some testing applica-

tions, for instance, the user may intentionally modify

the state to produce certain debugging conditions. By

opening virtual code to all possible C, we also open

C-Patrol to all possible applications. Results from pro-

totype testing will be critical for determining whether

restrictions will be placed on virtual code.

4.1.3 Unrestricted C as Virtual Code

We have accepted the dangers of using unrestricted C

as virtual code in exchange for simplicity and appli-

cation independence. The C-Patroller is not a�ected

by the content of user insertions | virtual code is

treated simply as a block of text that is to be inserted

into a program. This approach also gives us a certain

level of language independence. Since the language in

which virtual code is written is unimportant to the C-

Patroller, large portions of the C-Patrol implementa-

tion should prove to be portable to other imperative

languages, such as Fortran or Pascal.

4.2 Insertion Methods and Stability

Labeled code used to enforce data invariants must be

invoked explicitly by the user. Automatic insertion of

such invariants would better approximate the concept

of an extended type; enforcement of these additional

constraints would be implicit and could be viewed as

a kind of rigorous type check. We are considering a

limited form of automatic insertion for future versions

of C-Patrol. However, problems relating to stability are

the predominant force in shaping the current system of

labeled code [8].

Stability is de�ned relative to an object, its invari-

ant, and a point in program control
ow. An unstable

state is a program state where the object invariant is

temporarily violated. Unstable states occur frequently

during an operation on an object, where the object is

being incrementally modi�ed to a new state. In the

following example, we assume the invariant X.a < X.b

holds for object X:

X.a = X.b + 2;

X.b = X.a + 10;

The invariant is maintained in this operation. How-

ever, there is a temporary instability between the two

C statements where X.a is less than X.b. Before an

operation is complete, relationships between sub-�elds

of the object may be temporarily violated while �elds

are being updated. An attempt to check an invariant

at such a point can result in a misleading error or, in

the case of uninitialized data, aborted execution.

To help identify the problems related to unstable

states, we have identi�ed three types of read-only in-

variants based on their access levels:

1. Constant: the invariant does not relate the data

to other objects or �elds, as in A.x < 10.

2. Internal: the invariant relates �elds from the same

object to each other, as in A.x < A.y.

3. External: the invariant relates di�erent objects to

each other, as in A.x < B.x.

Invariants written at each of these access levels require

di�erent levels of stability. State stability and access

levels thus have a direct e�ect on the safety of various

insertion techniques.

The C-Patrol labeling system provides the user with

a tool for identifying the access level of an invariant.

By mapping label identi�ers to objects, the user can

specify the level of access by listing all objects or sub-

�elds referenced in the code's label:

/*? %%label A.x: assert(A < 10);

%%label A.x, A.y: assert(A.x < A.y);

%%label A.x, B.x: assert(A.x < B.x);

?*/

Once identi�ed, the access level desired by the insertion

can be speci�ed by the call directive:

%%ex-call A.x; {* constant level only *}

%%ex-call A; {* constant or internal *}

%%call A.x; {* all levels *}

Another method of controlling access levels is to

make such restrictions an inherent property of virtual

code. This would involve the use of either restricted C

or meta-language virtual code.

4.2.1 Statement Boundary Insertion

One possible automatic insertion method places in-

variants immediately after all statements that mod-

ify an object. Static implementations of this method

encounter problems in discriminating statements that

modify the object from statements that simply read it

(i.e. separating L-value from R-value accesses). Fur-

ther di�culties may occur due to aliasing; the object

may be referenced indirectly through pointers, or lo-

cal variables may temporarily assume the same name,

thus confusing the insertion algorithm. One solution

to these problems is to intercept references to the ob-

ject in the symbol table; however, even this method

is subject to problems of stability. Only constant ac-

cess level invariants are guaranteed to be appropriate

for such insertions. Identifying constant level invari-

ants can be facilitated by correct labeling or by using

a virtual language that inherently guarantees such a

condition.

4.2.2 Function Boundary Insertion

Internal stability problems result from interrupting a

procedure with a check. This problem can be circum-

vented by performing checks only at function bound-

aries { essentially, adding the checks to the operation's

pre- and post-conditions. This is the approach favored

by Ei�el [8] and A++ [2] where data invariants are

enforced as an additional pre- and post-conditions for

operations on objects. Special pre-condition exceptions

are made for initialization routines.

The approach used in Ei�el and A++ is feasible be-

cause the underlying languages support object-oriented

programming. With procedural languages like C, de-

termining which functions are operations on a partic-

ular class of object is non-trivial. The problems en-

countered are similar to those that exist at the state-

ment level; it is di�cult to separate read-only usage

from modifying usage and unexpected aliasing can ei-

ther cause excessive or insu�cient enforcement. Fur-

thermore, the symbol table access solution is no longer

trivial, since the execution of the check must be delayed

until the next function boundary is recognized.

Stability can be a problem for function boundary

insertions as well. External access level invariants may

state relationships between di�erent objects; after an

operation on one object is complete, there may be a

temporary violation of an inter-object condition until

the other object is adjusted accordingly.

4.2.3 Explicit Insertion with Labeled Blocks

By relying on explicit invocation of invariants, C-Patrol

defers the problem of identifying object operations and

their access level to the user. It is thus the user's re-

sponsibility to locate all functions that modify an ob-

ject. This explicit insertion approach can be aided

by coding standards, used in many companies, that

require that a list of modi�ed objects be supplied in

program documentation. The %%call directive can be

used to emulate such documentation:

/*? %%pre:

%%call A, B;

{* just like many doc standards *}

?*/

The %%pre and %%post insertion directives allow con-

venient function boundary insertion. Invariant invoca-

tions can be placed within %%pre and %%post direc-

tives, thus yielding the bene�ts of function boundary

enforcement. The problem of external access can be

handled by the %%ex-call directive. Assuming the

labels on blocks are reliable, the user can deny exe-

cution to invariants that contain accesses to objects

whose state is uncertain.

/*? %%ex-call A;

{* will not invoke blocks

with other objects *}

?*/

The sub-�eld system can be used to provide this service

at the internal access level.

4.3 Toward Extended Types

One of the objectives of C-Patrol is to provide the user

with some form of an extended type. Essentially, the

user should be able to annotate a type with additional

checking code. Any time an object of that type is mod-

i�ed, the checking code is automatically executed, and

warnings are generated if any conditions are violated.

The labeled code system does not have parameters, a

crucial feature needed in extended type checking code.

Without parameters, checking code must be directed

toward a speci�c object rather that the group of objects

of the same type. Template blocks were provided to

alleviate this problem, as demonstrated in Section3.

In our initial e�orts to provide parameters, we tried

to incorporate the parameters directly into the labeled

code system. However, we found it di�cult to ensure

that all parameters were bound before the virtual code

is inserted into the program. There is no one-to-one re-

lationship between label identi�ers and the virtual code

that the labels are attached to. Each code block con-

tains a unique set of parameters to be bound; however,

at the point of a call directive, the precise set of blocks

that are being invoked cannot be determined when a

particular identi�er is used. Thus, it is not possible to

determine which parameters need to be bound. Our

current solution is to create a special structure, the

template directive, that ensures a one-to-one mapping

between the code block and the identi�er that refer-

ences it. We incorporate bound template blocks into

the labeled code system, thus preserving some of the

power of the labeled system while adding a system for

parameterized code.

Another barrier to the implementation of extended

types is the stability at the points of code insertion.

If a type is de�ned relative to another value, then the

resulting code has either an internal or external access

level, allowing invocation in unstable states. The sim-

plest solution to this problem is to restrict such code

to constant access levels.

The �nal problem with extended types is type in-

ference. In the presence of complex structures, point-

ers, and aliases, it can be di�cult for the pre-compiler

to recognize which variables belong to the type being

enforced. A solution being considered for future ver-

sions of C-Patrol will force the user to syntactically

specify which variables are of the type via regular ex-

pressions. The pre-processor will scan the program for

occurrences of these expressions and insert code at the

next statement boundary. The string that matched the

expression would be used to instantiate the parameter

in the type code. This proposed solution, called key-

jerk code, still has many problems that must be resolved

before it can be implemented.

5 RELATED WORK

We �nd a wide spectrum of related research areas in-

cluding software speci�cations, testing, CASE tools, C

tools, and object oriented programming. We provide an

overview of related work that in
uenced the C-Patrol

design.

Our original objective was to bring abstract con-

cepts from the Prosper project into the highly prag-

matic world of C [13, 1, 6]. Prosper is an experimental

pre- and post-condition enforcement language designed

for purely functional programs. With functional lan-

guages, side e�ects are not a factor.

One inspiration for C-Patrol work comes from An-

notated Ada, or Anna [7]. Anna also uses comments

to hide insertions. C-Patrol extends the Anna work

by adding the labeled code system. However, C-Patrol

does not provide the Anna primitives that make ex-

pressing constraints more intuitive. Executing checking

code can be expensive, and one Anna implementation

relies on concurrency to o�oad checking overhead [12].

The use of pure C for virtual code makes C-Patrol ex-

ecution more e�cient, reducing the need for such mea-

sures.

The labeled code system began as an attempt to im-

itate the methods of Ei�el [8]. Ei�el object invariants

are inserted as additional pre- and post-conditions to

all operations on the object. Such methods are di�-

cult to execute in C due to the lack of language sup-

port in identifying the operations of an object. Ei�el

also has a system for selectively activating insertions,

a feature that will eventually have to be implemented

in C-Patrol.

The object-oriented nature of C++ also simpli�ed

the task of the Annotated C++ project (A++), which

seeks to do for C++ what Anna does for Ada [2]. A++

exploits the object-oriented nature of C++ to explicitly

provide more advanced object-oriented concepts, such

as encapsulation and inheritance. Such features may

be the subject of future C-Patrol research.

The Anna project also inspired another cousin, APP,

the Annotation Pre-Processor for C [10]. APP, like C-

Patrol, was designed using a highly pragmatic philos-

ophy. Unlike C-Patrol, APP has been operational for

some time, although testing has been limited to rela-

tively private experiments by the researcher. APP pro-

vides four primitives that function much like C-Patrol

insertion directives. However, APP also provides spe-

ci�c constructs to reference the input values of vari-

ables. C-Patrol provides additional highly
exible ca-

pabilities to help users manage and place assertions. C-

Patrol is designed so that it is quite possible that APP

commands can be organized and inserted into code by

the C-Patrol labeled code system. Such a hybrid sys-

tem would provide utility beyond that of either tool.

Rubinfeld demonstrates a form of dual programming

called self-checking code [11]. Systems like C-Patrol

may be ideal for such applications, allowing users to

shield their programs from the e�ects of checking code

by hiding them in comments.

6 CONCLUSIONS

There is a real need for tools to manage the use of ex-

ecutable assertions for �nding run time defects in soft-

ware. Our tool, C-Patrol, inserts assertions, written

in virtual C, into speci�ed locations in C programs. A

prototype C-Patrol system has been implemented, and

the prototype is being evaluated at several industrial

sites. Users have already reported that C-Patrol has

helped to �nd defects that had previously gone unde-

tected.

In developing C-Patrol, we evaluated alternatives for

managing the assertion insertion process. Possible de-

sign alternatives concern:

� The choice of language used to express the asser-

tions. Choices include (1) a meta-language such as

Z or VDM [3, 5], (2) a restricted form of the imple-

mentation language, or (3) an unrestricted form of

the implementation language. C-Patrol uses unre-

stricted C, which maximizes user control and eases

training e�ort.

� The method used to insert the assertions. Asser-

tions can be inserted manually into desired loca-

tions, or automatic insertion can be used. Prob-

lems related to invariant stability | the existence

of program states where a data invariant is ex-

pected to be temporarily violated | limit the use

of automated insertion. We use a
exible labeled

code system that allows the de�nition of assertions

at convenient locations, while providing users the

ability to direct code insertions via labels. The

labeled code system is a procedure-like invocation

system that inserts code blocks based on their as-

sociation to a series of label identi�ers rather than

through explicit names. Because insertion is under

user control, stability problems can be avoided.

� Support for extended types to allow the check-

ing of data invariants. C-Patrol provides generic-

like templates to allow the de�nition of assertions

with datatype declarations that can be instanti-

ated with speci�c variables.

Future work will be heavily dictated by the results of

on-going testing of the prototype. We are also planning

a number of added features and re�nements including

support for selective activation of insertions, libraries

of pre-de�ned assertions (in virtual C), support for la-

bel identi�er scoping, and automated insertion through

\Key-jerk" code. \Key-jerk" code is a method of invok-

ing code blocks by association with regular expressions.

The C-Patrol design relies on a network of innova-

tive constructs that balance simplicity, generality, and

power. It has shown potential in a spectrum of appli-

cations far beyond those originally intended and quite

possibly beyond those currently envisioned. Future de-

velopment of C-Patrol will continue to emphasize the

combination of abstract software engineering and in-

dustrial pragmatism that has already provided an ex-

tremely promising design.

REFERENCES

[1] J. Bieman and H. Yin. Designing for software

testability using automated oracles. International

Test Conf., pages 900{907, 1992.

[2] M. Cline and D. Lea. The behavior of C++

classes. Proc. Symp. on Object Oriented Program-

ming Emphasizing Practical Applications, 1990.

[3] I. Hayes, editor. Speci�cation Case Studies.

Prentice-Hall International, London 1987.

[4] I. Hayes and C. Jones. Speci�cations are not (nec-

essarily) executable. Software Engineering Jour-

nal, pp. 330{338, November 1989.

[5] C. Jones. Systematic Software Development using

VDM. Prentice-Hall International, London 1986.

[6] J. Leszczylowski and J. Bieman. PROSPER, a lan-

guage for speci�cation by prototyping. Computer

Languages, 14(3):165{180, 1989.

[7] D. Luckham and F. von Henke. An overview of

ANNA, a speci�cation language for Ada. IEEE

Software, pp 9{22, March 1985.

[8] B. Meyer. Ei�el the Language. Prentice Hall In-

ternational, 1992.

[9] D. Richardson, S. Aha, and T. O'Malley.

Speci�cation-based test oracles for reactive sys-

tems. Proc. 14th Int. Conf. Software Engineering,

May 1992.

[10] D. Rosenblum. Toward a method of programming

with assertions. Proc. 14th Int. Conf. Software

Engineering, pp. 92{104, May 1992.

[11] R. Rubinfeld. A mathematical theory of self-

checking, self-testing and self-correcting programs.

Int. Computer Science Inst., October 1990. Tech-

nical Report TR-90-054.

[12] S. Sankar and M. Mandal. Concurrent runtime

monitoring of formally speci�ed programs. IEEE

Computer, pp. 32{41, March 1993.

[13] H. Yin. Automatic enforcement of invariants: The

implementation of prosper. MS Thesis, Colorado

State University, 1991.

