
How Software Designs Decay: A Pilot Study of Pattern
Evolution

Clemente Izurieta
Department of Computer Science

Colorado State University
Fort Collins, Colorado, USA

01-970-481-6172

cizuriet@colostate.edu

James M. Bieman
Department of Computer Science

Colorado State University
Fort Collins, Colorado, USA

01-970-491-7096

bieman@colostate.edu

ABSTRACT
A common belief is that software designs decay as systems
evolve. This research examines the extent to which
software designs actually decay by studying the aging of
design patterns in successful object oriented systems.
Aging of design patterns is measured using various types of
decay indices developed for this research. Decay indices
track the internal structural changes of a design pattern
realization and the code that surrounds the realization.
Hypotheses for each kind of decay are tested. We found
that the original design pattern functionality remains, and
pattern decay is due to the “grime”, non-pattern code, that
grows around the pattern realization.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – software evolution,
software decay, software grime.

General Terms
Measurement, Design, Experimentation.

Keywords
Software Engineering, Evolution, Open Source Software, Software
Decay, Software Grime Buildup.

1. INTRODUCTION
Software design decay is a consequence of software
evolution. Decay is most apparent when the time required
to make changes in a software system increases, regardless
of the amount of resources available. Although studies in
software aging do exist, they are scarce. Parnas [5] uses an
analogy between software systems and medical systems to
describe software aging. He uses the term software
geriatrics, which equates refactoring to major surgery,

applies the notion of second opinions, and describes the
cost associated with preventative measures. Eick et al. [1]
use a number of generic code decay indices (CDIs) to
analyze the change history of a telephone switching
system. Little or no work has studied how design patterns
decay.

In section two we give specific definitions of decay.
Section three describes our pilot case study and the
different instances of patterns that we track as the system
evolves. We also describe the hypotheses evaluated by the
case study. Section four describes the results and section
five explores threats to the validity of the case study.

2. DECAY DEFINITIONS
We focus on design patterns in object oriented systems to
characterize decay. Informal pattern definitions, such as
those in Gamma et al. [4], are not sufficient for identifying
decay. A precise specification is necessary, but more
importantly, the specification must be usable in a practical
sense. We use the Meta Role Based Modeling Language
(RBML) [2], which is defined in terms of a specialization
of the UML metamodel.

We define Decay as the deterioration of the internal
structure of system designs. Design pattern decay is the
deterioration of the structural integrity of a design pattern
realization. To experience decay, a pattern realization must
undergo negative changes (deterioration) through
subsequent releases and evolution. The structural integrity
of a design pattern realization is determined by
systematically checking its classifiers (classes, interfaces,
etc.) and associations against its formal RBML
specification.

Design pattern grime is the buildup of unrelated artifacts in
classes that play roles in a design pattern realization. These
artifacts do not contribute to the intended role of a design
pattern. Grime is observed in the environment surrounding
the realization of a pattern. We have identified different
forms of grime. Class grime is associated with the classes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’07, September 20–21, 2007, Madrid, Spain.
Copyright 2007 ACM 1-59593-218-6/06/0009…$5.00.

bieman
Text Box
Preprint: Appeared in Proc. First. Int. Symp. Empirical Software Engineering and Measurement (ESEM), pp. 459-461, 2007.

that play a role in the design pattern and grime is indicated
by increases in the number of ancestors of the class, the
number of public attributes, etc. Modular grime is
indicated by increases in the coupling of the pattern as a
whole by tracking the number of relationships
(generalizations, associations, dependencies) pattern
classes have with external classes. Organizational grime
refers to the distribution and organization of the files and
namespaces that make up a pattern. Grime is relative to the
role that a design pattern plays. What is considered grime
from a design pattern point of view may be adequate
functionality from a different design perspective.

This paper focuses on modular and organizational grime
measurements. To measure modular grime, we use the
number of relationships that a realization of a pattern
develops throughout its evolution. Organizational grime is
measured by counting the number of files that implement
the pattern, as well as the number of namespace
dependencies developed by a pattern realization.

3. PILOT CASE STUDY
This case study tracks the evolution of various instances of
general purpose design patterns from the JRefactory [3]
Open Source System. JRefactory is a refactoring tool for
the Java programming language and is available through
SourceForge.net. It allows you to perform many
refactorings of a system, and updates the java source files
as appropriate. We studied versions 2.6.12, 2.6.38, 2.7.05,
2.8.00, 2.9.00, and 2.9.19. These releases represent the
evolution of the software over a period of almost four
years.

The following Null hypotheses are tested:

 H1,0: There are few structural violations of design pattern
realizations.

H2,0: The number of external relationships of a design
pattern realization remains the same over time.

H3,0: The namespace organization of the components that
make up a design pattern remains the same over time.

4. RESULTS
We tracked the evolution of instances of the Visitor, State,
and Singleton general purpose patterns over a period of
four years and found no evidence of structural decay. The
instances of each pattern were tested for conformance with
the RBML specification of the pattern, and no structural
violations were found. Minimal conformance is achieved
when an instance meets all the constraints specified by its
RBML specification. Figure 1 depicts an example. Each

class in the realization maps to an RBML role in the
specification. Similarly, each association in the pattern

Figure 1. A simple example of structural conformance of a

realization of the Visitor pattern against its RBML specification.

realization maps to an association in the RBML
specification. The mapping is indicated by the “is bound
to” labels in the diagram. The lack of structural violations
gives us no evidence to refute H1,0. We are currently
investigating additional Open Source systems and the
findings also suggest that we cannot refute the null
hypothesis H1,0. We have observed near-instances of
patterns. A near-instance is a close match to a pattern
RBML specification, but violates some requirements.

The modularity of a pattern realization determines its
capability to localize the functionality necessary to perform
its intended role. Changes performed on pattern
realizations should have minimal implications on other
aspects of the system. A pattern realization that lacks
modularity can affect other system classes. Although
structural violations are rare, we find a form of grime
buildup involving new external relationships to other
artifacts of the system, thus reducing modularity. Figure 2
displays the modular grime buildup of the Visitor and
Singleton patterns in JRefactory. The figure also displays
the relationship of the modular grime buildup against the
total number of classes that participate in the pattern. In all
cases, we see growth in the number of new external
relationships compared to the number of classes
participating in the pattern realization. This evidence
suggests that we must consider the alternative hypothesis of
H2,0 for this pilot case study. As patterns evolve, they
develop relationships that break down its modularity.

We examine the organization of various design patterns in
the system. In one realization of the Visitor pattern, 86
files make up the package of release 2.6.12. This package
is dependent on 6 external packages. By the time version
2.9.19 is released, 115 files make up the package and the
number of dependencies has grown to 8 external packages.

Additionally, the package has been physically moved to a
different directory.

Relationship of Participating classes and Modular
Decay (Grime)

0
20
40
60
80

100

120
140
160
180
200

Jan-01

M
ay-01

S
ep-01

Jan-02

M
ay-02

S
ep-02

Jan-03

M
ay-03

S
ep-03

Jan-04

M
ay-04

Releases

C
ou

nt

Visitor
Relationships

Visitor
Participating
classes

Singleton
Relationships

Singleton
Participating
classes

Figure 2. Relationship of Modular Grime and participating

classes in the design pattern.

In version 2.6.12, the subject package is a child of the
visitor package, whereas in version 2.9.19, the subject and
visitor packages are siblings. Other instances show similar
growth.

We found that the number of physical files that make up
the implementation of design patterns remains constant
throughout the evolution of the system, providing evidence
that although patterns are evolving, there is no growth in
the number of physical files that implement them. This in
turn, contributes to organizational grime buildup. We find
evidence of this in realizations of the Builder, Factory,
Singleton, Adapter, Command, Iterator, State, and Visitor
patterns. This evidence suggests that we must consider the
alternative hypothesis for H3,0. In Figure 3 we can see that
the number of files remain constant for all but the Adapter
pattern.

5. THREATS TO VALIDITY
There are threats to validity in all case studies. Construct
validity refers to the meaningfulness of measurements, and
to validate this you must show that the measurements are
consistent with an empirical relation system. We find that
some pattern realizations show more grime than others,
however, this determination is dependent on the assessment
of the examiner, and the strictness of the RBML
specification that is used to characterize the pattern.
Internal validity focuses on the cause and effect
relationships. In this study one can try to determine
whether decay and grime are directly related to the
evolution of the software through its release history, and

one can infer that temporal precedence does exist, in fact it
is necessary, as pattern instances evolve. In other words,

Files Containing the Implementation

0

5

10

15

20

25

30

35

40

2.6.12 2.6.38 2.7.05 2.8.00 2.9.00 2.9.19

Release

Co
un

t

Builder
Factory
Singleton
Adapter
Command
Iterator
State
Visitor

Figure 3. Organizational Grime Buildup.

less decay and grime exists at an earlier rather than later
stage of the lifecycle. Finally, external validity refers to the
ability to generalize results. Additional pattern instances
and Open Source case studies are required beyond this pilot
case study to make a further assessment.

6. CONCLUSIONS
This research is a first step towards more comprehensive
studies, and aims to further the understanding of design
decay. We focused on design patterns in object oriented
systems, and found evidence to suggest that the original
realization of design patterns remain, and the decay is
measured around the “grime” that grows around the
pattern realization over a period of time. Results from this
research will provide a means for helping to identify
refactoring areas in systems. Refactoring deals with the re-
design or re-coding of the internals of software in order to
prevent further decay and grime buildup.

7. REFERENCES
[1] Eick, S.G., Graves T.L., Karr A.F., Marron J.S., Mockus A.,

Does Code Decay? Assessing the Evidence from Change
Management Data. IEEE Transactions on Software
Engineering, 2001, 27(1):1-12.

[2] France, R., Kim, D.K., Song, E., Ghosh, S. Metarole-Based
Modeling Language (RBML) Specification V1.0.

[3] JRefactory Opens Source Software.
http://jrefactory.sourceforge.net

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading MA, 1995.

[5] Parnas, D.L. Software Aging. Invited Plenary Talk. 16th
International Conference ICSE 1994, pp. 279-287, May

1994.

