
A Test Driven Approach for Aspectualizing

Legacy Software Using Mock Systems

Michael Mortensen

Hewlett-Packard, 3404 E. Harmony Rd MS 88, Fort Collins, CO, 80528

Sudipto Ghosh, James M. Bieman

Computer Science Department, Colorado State University, Fort Collins, CO,
80523-1873

Abstract

Aspect-based refactoring, called aspectualization, involves moving program code
that implements cross-cutting concerns into aspects. Such refactoring can improve
the maintainability of legacy systems. Long compilation and weave times, and the
lack of an appropriate testing methodology are two challenges to the aspectual-
ization of large legacy systems. We propose an iterative test driven approach for
creating and introducing aspects. The approach uses mock systems that enable
aspect developers to quickly experiment with different pointcuts and advice, and
reduce the compile and weave times. The approach also uses weave analysis, regres-
sion testing, and code coverage analysis to test the aspects. We developed several
tools for unit and integration testing. We demonstrate the test driven approach in
the context of large industrial C++ systems, and we provide guidelines for mock
system creation.

Key words: mock systems, aspect oriented programming, legacy systems,
refactoring, testing

1 Introduction

Aspect-oriented programming provides a new construct, an aspect, that can
modularize scattered and tangled (termed crosscutting) code. Replacing cross-

Email addresses: mike.mortensen@hp.com (Michael Mortensen),
ghosh@cs.colostate.edu, bieman@cs.colostate.edu (Sudipto Ghosh, James
M. Bieman).

Preprint submitted to Elsevier 17 May 2007

bieman
Text Box
Preprint. To appear in Information and Software Technology.

cutting code with aspects can improve the design structure of legacy sys-
tems [16,34]. The use of aspects in a refactored aspectualized system helps
modularize cross-cutting code concerns. As with any refactoring technique,
a systematic approach to testing is needed to check that new faults are not
introduced [11].

In an aspect-oriented program, cross-cutting concerns are modularized into
aspects. The aspects are woven into the primary code by a preprocessor, com-
piler, or run-time system. An aspect includes advice, which is the functionality
to be woven in, and a point-cut, which identifies the locations in the primary
code, called joinpoints, where the advice is inserted. Advice specifies when
it executes: before advice executes before the joinpoint, after advice executes
after the joinpoint, and around advice executes instead of a joinpoint [19].
Around advice can either bypass or execute the code represented at the join-
point. Aspect languages such as AspectJ [3] and AspectC++ 1 [12] offer a
set of pattern-matching mechanisms to match advice to joinpoints. We use
AspectC++ in this work, since we are refactoring legacy C++ systems.

This paper introduces the use of mock systems to aid in aspectualization of
a system. Developers develop and test aspects within the small mock sys-
tem, which can be quickly woven and compiled. After testing aspects in the
mock system, we weave them with the real system. Our approach uses the
testing of aspects with mock systems as unit testing and the testing of the
real system as a form of integration testing. We apply coverage criteria to
test the aspects, and use existing system regression tests for integration test-
ing. We use information generated during weaving to automate this approach,
and we demonstrate the approach by aspectualizing large C++ systems using
AspectC++.

The remainder of this paper is structured as follows. Section 2 summarizes
related background work. We present our test driven approach in Section 3
and describe new tools to find faults and analyze coverage in Section 4. In
Section 5, we describe aspects that we developed to refactor legacy systems
using mock systems. Section 6 presents a set of guidelines for creating mock
systems. We evaluate the feasibility of our approach in Section 7. Conclusions
and future work are described in Section 8.

2 Background

We summarize related work on aspect mining and refactoring, test-driven
development, and testing of aspect-oriented programs.

1 www.aspectc.org

2

2.1 Aspect Mining and Refactoring

Aspectualizing involves finding crosscutting code, in a process called aspect

mining, followed by refactoring.

Coady and Kiczales [8] refactor legacy operating systems written in C to use
aspects. Two main criteria identify the aspects: intent and program structure.
They report that using aspects helps to localize changes, reduces redundancy,
and improves modularity. These benefits are realized with negligible perfor-
mance impact.

Lohmann et al. [26] use aspects to implement cross-cutting architectural de-
cisions, such as synchronization policies and power usage that affect many
modules in a system, to improve modularity and allow architectural flexibil-
ity.

Hannemann, Murphy, and Kiczales [17] refactor cross-cutting concerns by
identifying roles performed by system components. Roles are mapped to de-
sign patterns and aspects using a tool that automates the transformation of
the system into an AspectJ-based system. Rather than identify component
roles, we examine the code for scattered code fragments.

One use for aspects is to modularize framework-related code in applications
that use frameworks. Our intent is similar to that of Ghosh et al. [13], who
differentiate between business logic and code that interacts with middleware
services, and implement middleware-related code with aspects.

Tonella and Ceccato [34] empirically assess aspectizable interfaces in the Java
Standard Library. They use aspects to implement secondary concerns of classes
and interfaces such as serializability or participation in a role of a design
pattern (e.g. observable). They report that using aspects improves maintain-
ability and understandability. We also seek to implement secondary concerns
as aspects, but our refactoring is done within applications rather than in a
framework or library.

Marin, Moonen, and van Deursen [28] identify and use fine-grained refactoring

types to identify and classify refactorings. A refactoring type documents a
concern’s intent, its typical idiomatic implementation without aspects, and an
aspect-oriented mechanism to implement the concern. We also identify aspects
based on intent and idiomatic implementation.

Clone detection techniques [5] can also identify cross-cutting concerns. Bruntink
et al. [6] evaluate the effectiveness of clone detection software in identifying
cross-cutting concerns in legacy C software, and report that error-handling
code and parameter checking code were easiest to automatically identify.

3

2.2 Test Driven Development

Test Driven Development (TDD) is a software process in which unit tests
are written before the functional code is written. A key goal of TDD is that
all code has associated tests. To emulate a complex system dependency, test
driven development may use a mock object (or mock) in place of the real
object [4]. Mock objects are similar to stubs used in testing, but emulate a
class or interface, and may provide some basic checking, such as the validity
of argument values.

We use two key ideas from test driven development: mock objects and the use
of tests to drive refactoring. We extend the concept of mock objects to create
mock systems, providing a context for creating and unit testing aspects. We
weave aspects into the mock systems to develop them through iterative unit
testing, which increases confidence in aspects introduced into a real system.

2.3 Testing Aspect-Oriented Programs

Douence et al. [9] explore techniques to reason about or specify aspect-oriented
systems to better understand the effects of aspects on the system. In general,
complete verification of aspect behavior is not practical. Thus, we focus on
improved testing techniques.

Alexander, Bieman, and Andrews [1] describe a key problem related to testing
aspects: aspects depend on weaving and do not exist independently, and are
often tightly coupled to the context to which they are woven. Thus, aspects
cannot be unit tested in isolation, but can only be tested in conjunction with
the core concerns that they are woven with. We use mock systems, weaving as-
pects with the mock concerns and using mock concern method calls to provide
unit testing of the woven functionality.

Aspect-oriented programming can also introduce new faults, by way of faulty
advice code or faulty pointcuts [1]. Existing AOP testing approaches focus
on aspect-specific faults [22,29], or on coverage criteria to provide adequate
testing of aspects in the context of a system. Proposed coverage criteria for
aspects are based on dataflow coverage [37], path coverage [23], and state-
based coverage [36]. Dataflow and path coverage require program analysis
that is beyond the scope of our work. Our legacy systems do not have state
diagrams to guide state-based testing. However, we do measure coverage of
joinpoints matched by a pointcut, as described in Section 3.2.

Zhou, Richardson, and Ziv [38] use an incremental testing approach in which
classes are unit tested, aspects are tested with some classes, and then aspects

4

are integrated one at a time with the full system. Test case selection forces
the execution of specific aspects. Using our approach, iterative test cycles are
applied to the mock system rather than the full system. Rapid iterations are
achieved because the mock system and aspects can be compiled and woven in
a small fraction of the time required to compile and weave the full system.

Lesiecki [24] advocates delegating advice functionality to classes, so that the
classes used by advice can be unit tested directly. This is similar to the lan-
guage approach of JAML [27], which implements aspects as classes that are
woven by XML specifications. Lesiecki uses mock objects and mock targets to
help unit test aspects and uses visual markup in the Eclipse Integrated De-
velopment Environment (IDE) to verify that pointcuts affected the expected
program points. A mock target is similar to our concept of a mock system.
However, a mock target is created from an aspect to unit test pointcut match-
ing. By contrast, our mock systems are created from the real system based on
how we expect aspects to be used in that system.

3 Approach

We use the following steps in our aspectualization approach:

(1) Identify cross-cutting concerns and duplicated code in the legacy system
that can be realized as an aspect.

(2) Create a small mock system to iteratively develop and unit test a proto-
type aspect.

(3) Refactor the real system to use the aspect by removing duplicate or cross-
cutting code from the system and then weaving the aspect.

(4) Conduct integration testing of the refactored system by running the re-
gression tests.

Figure 1 illustrates the approach. During the first two steps, developers use
the mock system to experiment with several aspect pointcut specifications and
advice to test that they correctly modularize the cross-cutting concerns. The
pointcut specifications must have the correct strength [1] so that they match
all (and only) the desired joinpoints in the mock system.

The mock system mimics the structures that the aspect will interact with
in the real system so that the pointcut will also work in the real system.
We typically create a mock system for each aspect. The advice must specify
correct behavior. The aspect is woven with the mock system so that we can
validate advice behavior. After step three is performed, developers need to
test the refactored system using pre-existing regression tests.

5

Creating and debugging aspects often requires developers to iteratively iden-
tify, develop, integrate, and test aspects. Thus, the steps may be repeated as
needed. Problems encountered during integration may result in changing an
aspect and re-testing within the mock system.

3.1 Identifying Aspects in Legacy Systems

The legacy systems described in this paper consist of two VLSI CAD appli-
cations which are both based on a VLSI CAD framework [31]. We identify
aspects in the system to factor out scattered identical or similar code, to en-
able fast debugging, and to provide automatic enforcement of system-wide
policies.

Like Coady and Kiczales [8], we use intent and structure as a primary means
to identify aspects. We look for features that crosscut modules or provide
the means (intent) to deal with crosscutting concerns (such as callbacks and
mixins). For example, we identify policies based on the design intent of a
base class and scattered code in methods of its sub-classes. We also refactor
system-wide concerns that affect performance and architectural decisions such
as caching and system configuration, following the approach of Lohmann et
al. [26].

Just as Ghosh et al. [13] differentiate between application-specific code and
middleware-related code, we use aspects to modularize cross-cutting applica-
tion code that uses framework methods and data structures. Since our ex-
ample systems are framework-based, we seek candidate aspects such as code
repeated when using the framework, or common idioms associated with parts
of the framework.

Due to a lack of appropriate tools for C++ code (some tools support refac-
toring of Java code [17,34]), we primarily rely on manual inspection of source
code and simple textual approaches such as grep to identify aspect candidates.
Developing automated aspect mining tools is not the goal of our work.

Because cross-cutting code typically involves many files and classes, code
browsers and Unix utilities such as grep help to identify similar or related
code. Aspect-mining tools that fully parse a program are a better long term
approach [15]. We have begun experimenting with clone detection software,
as Bruntink et al. [6] have done, to evaluate code clones as potential aspects.
Our initial efforts involve the use of CCFinder[18] to identify code clones in
the PowerAnalyzer.

6

Fig. 1. Steps for our Approach.
7

3.2 Using Mock Systems to Create and Unit Test Aspects

In this step we aim to produce aspects with pointcut specifications and ad-
vice that will work correctly in the real system. Each identified cross-cutting
concern is implemented as an aspect.

A mock system consists of functions and classes that implement a simple
program with similar program structure and behavior as the real system, but
on a much smaller scale: hundreds of lines of code (LOC) instead of tens of
thousands. A mock system contains joinpoints that mimic the real system.
The pointcuts are defined to match the mock system structure. We create the
mock system by copying or implementing the subset of classes, methods, and
functions in the real system that are relevant to an aspect. The methods and
functions need only implement enough functionality for the mock system to
run the test. The mock system may use assertions to aid in unit testing the
aspect. Guidelines for this process are in Section 6.

The overall goal of unit testing is to test that (1) the pointcuts have the
correct strength and (2) the advice is correct. During test execution of the
woven mock system, we aim to achieve joinpoint coverage and mock system
statement coverage. Joinpoint coverage requires executing each joinpoint that
is matched by each aspect. Thus, joinpoint coverage focuses on testing each
aspect in all of the contexts where it is woven. We use statement coverage to
identify any mock system code that was not executed.

To meet the goal of correct pointcut strength, we analyze the weave results to
identify unused advice. In addition, for each advice of each aspect, we annotate
some methods or functions in the mock system to indicate whether or not they
should be advised. We use four types of annotations: ADVISED, NOT ADVISED,
ADVISED BY(name), and NOT ADVISED BY(name). These annotations express
the design intent — whether or not a core concern is expected to have advice
that matches it. The name argument can be used to indicate a specific aspect
that should or should not advise a method. We check whether the annotated
methods had the expected advice (or lack or advice), depending on the anno-
tation. One advantage that our annotations provide is that they are checked
right after weaving, and do not depend on running the mock system.

We use three support tools: weave analysis, advice instrumentation, and cov-
erage measurement. Weave analysis evaluates pointcut strength, while advice
instrumentation and coverage analysis check that advice is tested in all con-
texts (joinpoints), supporting the goal of specifying correct advice.

8

3.3 Removing Cross-Cutting Code

Once we complete unit testing of the woven mock system, we apply the aspects
to the real system. Refactoring involves removing scattered code, and may also
involve restructuring or renaming core concerns so that pointcut statements
can match the desired joinpoints in the program. The aspects are then woven
with the refactored system.

The goal of unit testing with the mock system is to avoid changing an aspect
during integration testing. Some aspects, such as caching, define a pointcut as
a list of all functions to cache. When using the aspect with the real system,
this pointcut must change to reflect each cached method from the real system,
but the advice can be tested within the mock system.

3.4 Integration Testing of Refactored System

This step tests whether or not aspectualizing the system introduces new faults
by running existing regression test suites. We do not seek 100% statement cov-
erage of the real systems, since the regression tests do not achieve complete
coverage on our legacy systems even without aspects. We use joinpoint cover-
age to verify that advice that we are adding has been tested in all execution
contexts, and add regression tests if needed to achieve joinpoint coverage.

If a regression test fails, we determine the root cause of the failure. Suspected
root causes can be simulated in the mock system by emulating the system
context that contained a fault or that exposed a fault in the aspect. This
allows us to observe the erroneous behavior in the mock system and fix it
before we modify, weave, and compile the real system. During integration
testing, any unused advice is reported as an error. In addition, annotations
(such as Advised and NotAdvised) can be inserted in the real system to check
that aspects advise the intended core concerns.

4 Tools

We developed three tools to support our approach:

(1) The Weave analyzer checks for unused advice and for annotation viola-
tions.

(2) The Advice instrumenter supports coverage analysis.
(3) The Coverage analyzer measures joinpoint coverage and statement cov-

erage of the mock system.

9

Our unit and system testing tools support AspectC++, and they leverage fea-
tures of the AspectC++ weaver. The AspectC++ weaver writes information
about the weave results to an XML file for use by IDEs such as Eclipse 2 .
The XML weave file lists the pointcuts and advice for each aspect, identifying
each with a unique numerical identifier. The weave file lists all source code
joinpoints (by line number) that are matched by each pointcut [33].

4.1 Weave Analyzer

The weave analyzer parses the XML weave file, which identifies the line num-
bers of joinpoints matched by each pointcut. Next, it reads the core con-
cern source code to find the line numbers that have annotations indicating
where advice should and should not be woven. Weave analysis checks for our
four types of annotations: ADVISED, NOT ADVISED, ADVISED BY(name), and
NOT ADVISED BY(name).

By comparing line number information from the XML weave file with the lines
that have annotations, the weave analyzer identifies lines of code with one of
the following annotation violations:

(1) Lines with an ADVISED annotation that are not matched by any pointcut.
(2) Lines with an ADVISED BY(name) annotation that are not matched by a

pointcut of the named aspect.
(3) Lines with a NOT ADVISED annotation that are matched by any pointcut.
(4) Lines with a NOT ADVISED BY(name) annotation that are matched by a

pointcut of the named aspect.

For each of these annotation violations, the tool prints the line of source
code and the preceding and succeeding lines to provide context. Checking
for annotation violations helps identify pointcut strength errors by flagging
pointcuts that do not match the developer’s intent. The NOT ADVISED annota-
tions identify pointcuts that are too weak, matching methods the designer did
not intend. The ADVISED annotations identify pointcuts that are too strong
(restrictive), missing intended joinpoints.

In addition to checking annotations, the weave analyzer reports any advice
whose pointcuts match no program joinpoints as an error. Unused advice
indicates a pointcut error.

Example output of the location and body of unused advice that was identified
by weave analysis of the ErcChecker mock system is shown below:

2 http://www.eclipse.org

10

========================

We have UNUSED advice:

Advice: aspect:0 fid:1 line:18 id:0

type:after lines: 4

========================

File: LogMath.ah aspect: LogExecution lines: 18-21

advice call("% mth%(...)") : after()

{

cerr << " AFTER calling "

<< JoinPoint::signature()

<< endl;

}

When a method with an ADVISED annotation does not have a matching point-
cut, the tool prints the line of source code along with the preceding and suc-
ceeding lines. Example output for a such method is shown below:

========================

We have UNADVISED code: did not find a

Pointcut for Line 13 of file ./main.cc

which was specified as ADVISED

========================

void run_checks() /* AOP=ADVISED */

{

4.2 Advice Instrumenter

As part of our build process, we instrument advice to enable the measurement
of joinpoint coverage. During execution of the mock or real system, we gather
information about which aspects were executed, and, for each each aspect,
which joinpoints are executed. To gather this data, we preprocess the aspects
before weaving, and for each advice body we insert a call to a C++ macro,
TEST TRACE, which we define. This macro produces the following: the aspect
filename, the source code line number of the advice body, and the joinpoint
identifier where the aspect is executing.

The aspect filename is determined in C++ by the C++ preprocessor directive
FILE , which is replaced at compile time by the actual name of the file

containing the directive. In AspectC++, aspect file names end .ah; file names
are not changed during the weave.

The source code line number of the advice body is inserted as an argument
to the macro call that is added to the advice. Although C++ contains a di-

11

rective to emit the actual line number of a statement, LINE , the number
is determined at compile-time. Since AspectC++ uses source-to-source weav-
ing, the line numbers emitted by the LINE directive are based on the woven
code rather than on the source code. The coverage analyzer (described in sec-
tion 4.3) uses the XML weave data, which refers to pre-weave source numbers.
Thus we cannot use the LINE directive. Instead, the advice instrumenter
embeds the pre-woven line number as a parameter to the TEST TRACE macro.

To obtain the joinpoint identifier, the TEST TRACE macro uses an AspectC++
construct: JoinPoint::JPID, which is an integer that can be accessed within
advice code. The integer serves as the joinpoint identifier that was written to
the XML weave file.

4.3 Joinpoint Coverage Analyzer

We measure joinpoint coverage during both mock and system testing. System
joinpoint coverage data is calculated during regression runs from the instru-
mented code. The generated data includes the original, pre-weave source code
line number of the advice and the joinpoint ID (available in AspectC++ ad-
vice as JoinPoint::JPID). This data is cross-referenced to the XML weave
file to identify any advised joinpoints that were not executed.

Existing statement coverage tools can check coverage of all mock code during
unit testing. We use gcov 3 on the woven code, which generates a coverage file
for each source file. Statement coverage produced by gcov identifies missed
core concern code in the mock system. Since the mock system is designed to
emulate interactions between the aspect and real system and to call methods
that will be advised, we use this coverage to check that we are actually testing
all the statements in the mock code.

The gcov output is a copy of the mock system code that marks how many
times each line was executed. We process this file to ignore AspectC++-specific
aspect definition code that gcov incorrectly analyzes. Our coverage analyzer
prints out any missed mock system statements from this gcov output file.
Sample output is shown below:

File QueryPolicy.ah was covered

File main.cc was covered

File query.h had 2 missed lines:

###: 63:this->__exec_old_executeQuery();

###: 67:inline void __exec_old_execute

std::cerr << "Executing query

3 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

12

File erc_main.cc had 2 missed lines:

###: 64: cerr << "No LevelManager

###: 65: return;

TotalLinesMissed = 4

The results above indicate that two code fragments were not used. The first
unused code fragment reported (associated with lines 63 and 67 of query.h)
refers to a method in the base class of a mock hierarchy. The method was
overridden by every child class and thus was never used. We fixed this by
converting it into a pure virtual method in the base class. The second unused
code fragment (lines 64–65 of erc main.cc) represents error handling code
that was not tested. We covered this fragment by adding code to the mock
system to test the error-handling code. Because the mock system is small and
is created to test aspects, we aim for 100% statement coverage of the mock
system. When using gcov and g++ in the mock system, we do not enable
compiler optimizations, avoiding known interactions problems between gcov

coverage and g++ optimization.

Figure 2 shows the data read in and produced by our tools, and how the tools
use data produced by the AspectC++ weaver. The advice instrumenter reads
an aspect and adds a call to TEST TRACE, with the ‘#’ value indicating that
an actual line number would be inserted. The weave analyzer reads the C++
source code and XML weave file, and is run after the code is woven. The
coverage analyzer reads the XML weave file and output of the woven system
to identify advised joinpoints that were not executed.

4.4 Related tool approaches

The AspectC++ weaver may eventually be extended by its developers to
identify unused advice as an error when weaving. Even if such an extended
weaver were available, our tools provide other capabilities not offered by the
AspectC++ or AspectJ weavers. Our four annotations enable developers to
indicate where they do and do not expect advice, so that pointcut errors can
be caught immediately after weaving. These annotations help when creating a
pointcut. We also believe they should help during maintenance, since changes
to core concerns could change the matching joinpoints.

Laddad [20] shows how to use the declare error construct in AspectJ to
compare two pointcuts (i.e. an old one and a potential new one) to catch errors
when a pointcut is changed. His approach does not help when a pointcut is
initially created, nor does his approach compare the matched pointcuts to
source code annotations that capture a developer’s intent and expectation.

13

Fig. 2. Using the Tools During Refactoring.

14

5 Example Mock Systems and Aspects

We used mock systems to aspectualize two legacy systems at Hewlett-Packard.
We now describe the aspects and mock systems and use them as a running
example and for evaluating our approach. In this section we first describe the
two legacy systems. Next, we describe four types of aspects and the mock
systems used to develop and test them. Our evaluation results are presented
in Section 7.

5.1 The Legacy Systems

The ErcChecker is a C++ application that consists of approximately 80,000
LOC. It performs 59 different electrical checks. Each electrical check imple-
ments a set of virtual methods as a subclass of an abstract class ErcQuery.
We use aspects to modularize the enforcement of two design policies related to
the ErcQuery subclasses. We use an aspect to implement caching for functions
that calculate electrical properties of objects in the ErcChecker. The original
code had caching functionality scattered in each of these functions to improve
performance.

The PowerAnalyzer is a C++ application containing 12,000 LOC that is
used to estimate power dissipation of electrical circuits. It consists of three
smaller tools and a libPower library with some common code. Although the
PowerAnalyzer uses an object-oriented framework, and defines and uses C++
classes, much of it is written as procedural functions rather than classes and
methods.

Both the PowerAnalyzer and ErcChecker make calls to the object-oriented
framework API to create an in-memory graph of instances of classes from
the framework. The graph represents circuit elements (e.g. transistors and
capacitors) and the connectivity between those elements (called nets or nodes).

5.2 ErcChecker Policies

The ErcChecker has two policies that each electrical check must implement.
The policies represent a set of features that each electrical check is supposed
to provide, which are implemented as scattered code in the createQueries()
method of each ErcQuery subclass.

The first policy aspect, QueryConfigAspect, provides run-time configuration,
which allows users to disable queries at run-time via a configuration file that

15

users can edit. Each createQueries() method has similar code with the fol-
lowing structure:

static void CLASS::createQueries() {

if(ErcFet::getQueryConfig("CLASS")==eOff){

//run-time user config disabled this query

return;

}

//create and evaluate query objects...

Calls to ErcFet::getQueryConfig() are almost identical in each subclass,
with the word CLASS above being replaced by the actual name of each subclass.
Because C++ lacks run-time reflection, the createQueries() method uses
the class name as a literal string when calling getQueryConfig().

This policy is always implemented as scattered code within the create-

Queries() method of each ErcQuery subclass. Hence, the pointcut should just
be %::createQueries(), with the AspectC++ wildcard (%) used to match
createQueries() in all subclasses. The advice can use the scattered call (the
call to getQueryConfig()) and either proceed to the createQueries() body
or return without executing it.

The second policy aspect, QueryPolicy, implements three of the six concep-
tual steps needed by each query, but with significant variation between the
queries. These steps are:

(1) Call framework methods to identify needed circuit data.
(2) For each relevant part of the circuit, create an instance of the query class

associated with the check.
(3) Call the executeQuery() method on the query object from step two.
(4) Add queries that result in a failure or warning to a container class.
(5) Write the results of executeQuery() to a log file.
(6) Delete queries that did not result in a failure or warning.

Although the first three steps vary significantly between the different sub-
classes, steps four through six use the same set of method calls and always
follow a call to executeQuery(). Thus, a single aspect can implement steps
four through six as after advice to provide the same functionality. Since
steps four through six always follow a call to executeQuery(), the aspect
uses executeQuery() as the pointcut.

5.2.1 Using the mock system for aspect creation and testing

Since both policy aspects use the same class hierarchy, the mock system models
the ErcQuery base class and its subclasses. We created a mock ErcQuery class

16

and four subclasses with method stubs based on different types of checks,
such as transistor-based checks and net-based checks. In addition, a driver file
(main.cc) creates query objects, calls the createQueries() and execute-

Query() methods, and reports success or failure. The LevelManager singleton
class stores all objects related to failures and reports this information, so we
need a mock class for the LevelManager.

The subclasses in the mock system contain only the method call to be advised
and the system methods used by that method and the advice. In the mock
system, the sub-classes of ErcQuery emulate both types of query behavior:
failing due to circuit errors and passing due to error-free circuits.

With the mock system in place, we created and tested the QueryConfigAspect
and QueryPolicy aspects. The QueryConfigAspect advice executes around
each call to the createQueries() method, and extracts the class name from
the joinpoint information available in AspectC++. The QueryConfigAspect

implementation is shown below:

aspect QueryConfigAspect {

pointcut createQuery()=execution("% %%::createQueries(...)");

advice createQuery() : around() {

string jpName = JoinPoint::signature();

int first_space = jpName.find(’ ’);

int scope_operator = jpName.find("::");

string className=jpName.substr(first_space+1,

scope_operator-first_space-1);

if(ErcFet::getQueryConfig(className)==eOff)

return; //user config exists, SKIP

tjp->proceed();

}

};

The QueryConfigAspect prevents the call to createQueries() by only call-
ing proceed() when a configuration does not disable a query.

The QueryPolicy aspect uses after advice to implement the last three steps of
the query policy for each subclass. Its AspectC++ implementation is shown
below:

aspect QueryPolicy {

pointcut exec_query(ErcQuery *query) =

execution("% %::executeQuery(...)")

&& that(query);

17

advice exec_query(query) : after(ErcQuery *query)

{

if(gReportAll || query->errorGenerated()) {

LevelManager::addQuery(query);

gLog->log() << "Query error: "

<< " type: "

<< query->getName()

<< " start element: "

<< query->getStartName()

<< query->getSummary()

<< endmsg;

query->logQueryDetails();

}

else {

gLog->log() << "Query ok: "

<< query->getName()

<< endmsg;

query->logQueryDetails();

delete query;

}

}

};

The QueryPolicy aspect uses the errorGenerated() method to determine if
the query that called executeQuery() found an error. If errorGenerated()
returns true, then the query is added to the LevelManager, which stores all
circuit failures so that the user can view them. If errorGenerated() returns
false, the advice deletes the query.

Unit testing for both aspects was driven by code in the mock system that cre-
ated electrical query objects using our ErcQuery mock classes. We annotated
the createQueries() method of each ErcQuery subclass to check that the
pointcut matched. Statement coverage of the mock system found dead code
and an unused mock class method, enabling us to make changes to achieve
100% statement coverage of the mock system.

5.2.2 Refactoring and integration testing

Introducing the aspects requires removing all code that is duplicated by the
aspect. Since the pointcuts matched methods (executeQuery() and create-

Queries()) that are already in the real system, we did not rename or restruc-
ture the code to provide targets for aspects weaving. We encountered three
challenges when refactoring to use the query behavior policy.

18

The first challenge was that replacing custom text (scattered in each query)
with an aspect changed the output of the program. Regression tests that
rely on output logs fail due to the now standardized output. Although the
standardization should improve the maintainability of the ErcChecker, it does
require a one-time update of the expected test output files.

The second challenge results from the asymmetric nature of aspect-oriented
refactoring: removing the scattered code must be done for each subclass (typ-
ically manually), while the aspect is woven automatically into all matching
subclasses. The QueryPolicy aspect deletes query objects that do not detect
electrical errors (step 6 in section 5.2). During refactoring, if the object dele-
tion code is not removed from the core concern, both the core concern and
the aspect try to delete the same object, resulting in a memory fault. When
we manually removed scattered code, we failed to remove the deletion code
from one ErcQuery subclass. Finding the root cause of this defect in the real
system was difficult because the defect results from an interaction between the
aspect and underlying system, and the woven code can be hard to understand.
Once the root cause was suspected, we created another ErcQuery class in the
mock system that deliberately called delete outside the aspect to recreate
the memory fault.

The third challenge was that we did not anticipate some necessary changes to
the real system and aspect when creating the mock system and the aspect.
During refactoring, we realized that 18 of the 59 ErcQuery subclasses printed
out some additional information between steps five and six, which were imple-
mented by the advice [31]. In order for the aspect to work with all subclasses
of ErcQuery, we (1) added an empty method to the base class, (2) refined the
method to contain the logging statements in the subclasses that needed this
feature, and (3) modified the advice to call the new method. We made these
change to the ErcQuery class hierarchy and aspect in the mock system. We
tested the changes in the mock system, made the changes to the real system,
and continued refactoring the real system.

5.3 ErcChecker caching aspect

Caching is a common example in the AOP literature of a candidate aspect
since its implementation is similar across all cached functions [21,25]. We can
identify cached functions since they use a local static set or static map. The
ErcChecker contains 38 functions that implement similar caching code, but
are in various classes and do not have a common naming convention. The
aspect pointcut specifies a list of all the functions to be cached, while the
advice provides the caching functionality.

19

5.3.1 Using mock systems for aspect creation and testing

We created one mock system to test the caching aspect’s functionality, and
another mock system to evaluate performance. The first mock system contains
methods that have the same types of parameters and return values as the
functions to be cached in the real system. The mock system methods are
short (1-4 lines) and return a value based on the argument. For example, to
test caching of methods whose argument is a bcmNet pointer, we can use the
GetNetValue() method below.

int GetNetValue(bcmNet *n) /*AOP=ADVISED*/

{

return n->GetName().length();

}

In the mock system, we can call GetNetValue() with different bcmNet in-
stances and check for the correct return value. Then, with caching added, we
can check that we still get the correct return values.

For aspect-oriented caching, we had several requirements that we wanted to
check using the mock systems. First, the cache needed to function properly.
Second, we wanted our caching aspect to work correctly with different data
types. Third, we did not want the cache to introduce any noticeable per-
formance penalty; in fact, caching should improve performance. Fourth, we
needed a way to measure if a cached function was actually using previously
stored values (i.e. being called repeatedly with the same value), since unnec-
essary caching adds overhead without improved performance.

The first mock system focused on functional behavior and modeled pointers to
complex data types and different scalar types. The mock system imported the
BlockData component from the ErcChecker. The BlockData component pop-
ulates the framework with data, enabling caching to be tested with framework
pointers. We explored a number of alternative caching implementations [30]
using C++ templates and inheritance.

We created caching aspects for procedural functions and object-oriented meth-
ods. For methods, the hash key stored is the object invoking the method, while
for procedural functions the hash key is the function parameter. The caching
aspect for procedural functions is shown below. It stores the first argument
to the cached function (tjp->arg(0)) and the return value (tjp->result()).
The static map defined in the aspect uses AspectC++ type definitions. For
example, JoinPoint::Arg<0>::Type is the data type for the first argument
to the parameter of the function that matched the pointcut.

aspect AbstractFunctionCache {

pointcut virtual ExecAroundArgToResult() = 0;

20

advice ExecAroundArgToResult() : around()

{

JoinPoint::Result *result_ptr = NULL;

static map <

typename JoinPoint::Arg<0>::Type,

typename JoinPoint::Result > theResults;

JoinPoint::Arg<0>::Type *arg_ptr =

(JoinPoint::Arg<0>::Type*) tjp->arg(0);

JoinPoint::Arg<0>::Type arg = *arg_ptr;

if(theResults.count(arg)) {

//already have the answer, return it

result_ptr = tjp->result();

*result_ptr = theResults [arg];

} else {

//proceed and store the answer

tjp->proceed();

result_ptr = tjp->result();

theResults [arg] = *result_ptr;

}

}

};

The AbstractFunctionCache aspect defines a virtual pointcut. To use the
cache, a concrete aspect extends the AbstractFunctionCache and defines the
pointcut as a list of functions to be cached. In the mock system we verified
that the pointcut matched intended functions. We verified that the advice
avoided recomputation when calls used the same arguments. The mock system
contained math functions (e.g., Square() and SquareRoot()) for which a
concrete aspect was created that cached their values. Although the pointcut
was not the same in the mock system and real system, the abstract aspect
with its virtual pointcut is the same in the mock and real systems.

Because C++ supports an object-oriented style and a procedural style, the
mock system had class-based method calls and procedure calls, and the as-
pects were developed to provide both types of caching. Our approach enabled
developers to easily switch between a simple cache or a slightly slower cache
that reported on cache usage for each function so we could measure if caching
was actually saving computation [30].

We also created a second mock system to compare the performance overhead of
the AspectC++ approach to the original C++ caching code. We used mock
statement coverage to check that the cached functions in the mock system
were called. Joinpoint coverage checked that the function and method caching
aspects were executed at all matching join points.

21

5.3.2 Refactoring and integration testing

The only change needed to weave the caching aspects with the full system was
to expand the pointcut of the concrete caching aspects to match all cached
functions. We changed the pointcut by using the names of the previously
identified caching functions.

When we removed the original caching code from methods in the real system,
we added an annotation to indicate that the method should be advised and
added it to the list of functions in the pointcut. The weave analyzer checked
that the pointcuts defined when refactoring matched the intended functions.

5.4 PowerAnalyzer debugging aspect

The first aspect used in the PowerAnalyzer was a development aspect to aid in
debugging a case of abnormal termination. During one user’s run, the Power-

Analyzer aborted a run with a message from a framework class that a null
pointer had been encountered. Unfortunately, the framework method called
exit(), which forced the PowerAnalyzer to exit without creating a core file
that stores program state and stack trace information 4 . Calling exit() limits
visibility when using a debugger such as gdb.

The error message listed the name of the framework iterator method name.
However, the method was in a base class that was inherited by several sub-
classes, so there were many candidate calls in the application that may have
triggered the error. These calls represented possible locations of the defect and
cross-cut 18 locations in four files.

The prior approach to debugging such problems involved adding print state-
ments around all calls that could have triggered the error. This required modi-
fying all 18 locations in four files, finding the defect and fixing it, and removing
the 18 modifications from the four files. This process is tedious and error prone.
A single aspect can automatically provide the same tracing, using the frame-
work iterator initialization as the pointcut. The advice can use AspectC++
features to print the context of each iterator call.

5.4.1 Using the mock system for aspect creation and testing

The mock system for the debug tracing aspect calls different types of frame-
work iterators as well as similarly named methods that should not be matched

4 By contrast, using assert also exits a program, but creates a core file with the
state of the program so that the call stack and program state can be analyzed.

22

by the CadTrace aspect pointcut. We checked that the aspect prints out trac-
ing statements only before the intended iterator calls. We also reused the
BlockData component from the PowerAnalyzer to load framework data so
that we could call framework iterators in the mock system.

We used our annotations to indicate which methods in the mock system should
have advice and which should not. The aspect was created, and the weave
analyzer and joinpoint coverage data checked that the aspect matched only
the desired framework calls.

Since all the iterators initially call a Reset() method, the aspect used before

advice associated with Reset() iterator methods.

aspect CadTrace {

advice call("% %Iter::Reset(...)\")

: before() {

cerr << "call Iter::Reset for"

<< JoinPoint::signature() << " at jpid: "

<< JoinPoint::JPID << endl;

}

};

The CadTrace aspect uses the AspectC++ method, JoinPoint::signature(),
to print out which iterator is called. The JoinPoint::JPID value is used with
the XML weave file to determine the callsite context — the location in the
core concern that called the iterator.

5.4.2 Refactoring and integration testing

A development aspect for tracing calls does not require refactoring the core
concerns, so integration only requires weaving the aspect into the application
code. The aspect worked correctly with the libPower library on the first try
and the call that triggered the framework error was located. After weaving
the aspect with the PowerAnalyzer, we ran the test that was producing the
program exit failure.

5.5 PowerAnalyzer timing aspect

The second PowerAnalyzer aspect modularizes code that reports the status
of the application and writes to a log file. Because run-times for VLSI CAD
software can be long (hours or even days), a common extra-functional concern
is to write time stamps and elapsed time to a log file. The PowerAnalyzer

uses a Timer class, which contains a method to reset the elapsed time and a

23

method to return the elapsed time as a string suitable for writing to a log file.

The aspect encapsulates the Timer within the advice body and uses the
AspectC++ joinpoint API to print the context in which the Timer is be-
ing used. Since the Timer is used within different functions, function names
must be used as pointcut targets. In order to avoid enumerating all functions
that should be associated with the Timer, we decided to rename methods to
begin with tmr if they should have the timing functionality. This enables the
aspect to use a pointcut with a wildcard to indicate “all functions beginning
with tmr”.

Modularizing the code for capturing and recording timer information into a
single aspect provides flexibility if the the Timer interface changes. In addition,
if a different timing module were substituted only the aspect would need to
change, rather than scattered code in the PowerAnalyzer.

5.5.1 Using the mock system for aspect creation and testing

The mock system for the TimeEvent aspect has two methods beginning with
tmr to match the pointcut and two other methods that do not match this
pattern. The two methods that begin with the pointcut pattern have ADVISED
annotations, while the other two have NOT ADVISED annotations. One tmr

method calls the other to test that timing works correctly with nested calls.
The method bodies contain only print statements to show program flow and
calls to a system function (sleep()) to insert delays that are measured by the
Timer class. The mock system does not rely on framework components, but
uses the Timer module, which already existed in the PowerAnalyzer.

The aspect for timing, TimeEvent, uses around advice. The aspect instantiates
a Timer object to record the time, proceeds with the original function call,
and then accesses the Timer object to calculate and write the elapsed time.

aspect TimeEvent {

pointcut tmr() = call("% tmr%(...)"));

advice tmr() : around() {

Timer timer; //set up timer

timer.Reset();

tjp->proceed(); // execute advised method

//write out the time used

PrintI(911, "Time around %s: (%s)\n",

JoinPoint::signature(),

timer.CheckTime());

PowerMessage::WriteBuffers();

}

};

24

The mock system allowed us to quickly make changes to the pointcut (changing
it twice) as we corrected problems we encountered when advising nested calls.
We also used the mock system to test how the advice instantiated the Timer

module and how timer log messages were formatted.

5.5.2 Refactoring and integration testing

AspectC++ relies on name-based pointcuts to weave in advice. Even though
similar code to instantiate and use Timer objects exists at many locations,
there was no common structure or naming convention for the pointcut to
match. To refactor the PowerAnalyzer, functions that used the Timer class
had the Timer instance and calls removed, and were renamed from Function-

Name to tmrFunctionName to match the pointcut specification.

One challenge was that some of the application code was written as large,
procedural functions, including a 500 line function with 15 separate uses of
the Timer module. These separate uses were either loop statements or concep-
tually separate code blocks. For this function, we first used Extract Method
refactoring [11] 5 . Creating a function with a name that begins with tmr al-
lowed capturing the joinpoint in AspectC++. By using a meaningful function
name, we could pass a single signature to the Timer module instead of a sepa-
rate descriptive argument for each Timer call. For consistency, we applied the
same aspect across all three executables of the PowerAnalyzer.

Using name-based pointcuts results in tight coupling that can cause problems
during maintenance due to name changes in functions [35]. There is tight cou-
pling between the TimeEvent aspect and the naming convention of methods.
If a new function is added that should use the timer, it must begin with tmr

or it will not have the Timer functionality woven in. In addition, if someone
changes one of the names of the functions so that it no longer begins with tmr,
time logging will no longer occur for that function. If a function that does not
need timing information is created with a name that begins with tmr, that
function will match the pointcut and have TimeEvent advice associated with
it. Since PowerAnalyzer regression tests focus on functionality and not the
time taken by system functions, an error associated with timing might not
be immediately detected. Our annotations can be used in the real system to
report when a change in the system or a pointcut change causes a pointcut to
not match the intended joinpoint.

We refactored the application so that the Timer module is only directly called
from the advice of the TimeEvent aspect. To enforce this design decision,
we also added additional advice to the TimeEvent aspect so that a direct

5 This refactoring step states: “Turn the fragment into a method whose name ex-
plains the purpose of the method.”

25

use of the Timer will result in an error when the woven code is compiled.
AspectC++ does not have a declare error statement like AspectJ. However,
Alexandrescu [2] shows how to create compile-time assertions in C++ by
defining a C++ template that is instantiated with a boolean value, and only
defined for only one boolean value (e.g. true), so that a compile time error
occurs whenever the template is instantiated with a false value. We created
additional advice [30] for the PowerAnalyzer that uses a C++ template that
fails whenever it is woven around core concern calls to the Timer class, ensuring
that the Timer is only called from our TimeEvent advice.

6 Mock System Creation

A key feature of our approach is the use of a mock system. In the ideal case,
a mock system will have a structure that allows aspects to be moved without

change from the mock system to the real system for integration testing. Thus,
an important question is how to create a mock system.

Based on our experience with legacy applications, we developed a preliminary
list of mock system creational patterns that can aid the developer of a mock
system. As more experience is gained with using mock systems, we expect the
catalog of patterns to grow.

The patterns are based on characteristics of both the aspects and the real
system. The mock system must provide an environment that emulates the
structure and functionality for pointcuts, advice, and other aspect-based fea-
tures to function.

6.1 Create mock methods for spectator aspects

Spectator aspects are defined by Clifton and Leavens [7] as aspects that do not
change the behavior of advised modules. Faults in spectators result in incorrect
system behavior (e.g. missing or incorrect logging), but do not change the
advised core concern.

Motivation: Because spectators do not rely on the internal state of the meth-
ods and classes they advise, we use method stubs in the mock system. Stubs
are methods with empty or trivial bodies. Spectators are validated by ensur-
ing that the pointcut matches the expected joinpoints and that the advice
functionality executes correctly.

Step:

26

(1) Create method stubs with naming conventions such that the pointcut
will match in the mock system and the real system.

Example: The TimeEvent aspect in the PowerAnalyzer is a spectator that
adds timing information without affecting the power analysis. An error in the
aspect may result in incorrect times and pointcut strength faults may result in
the wrong methods being timed, but the functionality of the PowerAnalyzer
is not affected.

For the TimeEvent aspect, methods to be timed must begin with tmr to match
the pointcut: call("% tmr%(...)"). We created the mock system by writ-
ing method stubs that match this calling convention; the stubs are called in
main().

6.2 Create simple functional mock methods for non-functional concerns

Non-functional aspects [26] modularize cross-cutting concerns that improve
non-functional characteristics such as performance or dependability without
changing the existing functionality. Unlike spectators, faults in non-functional
aspects can change the observed behavior of the advised concerns.

Motivation: We use mock methods to provide simple functionality when val-
idating a non-functional aspect. This differs from the motivation in Section 6.1
because non-functional concerns, such as caching, must not only advise the
right joinpoints but also must implement the cross-cutting concern without
changing the existing functionality.

Steps:

(1) Create mock class methods with the same parameter types and return
types as the methods in the real system, but with simpler functionality.

(2) Invoke the mock method with several different parameter values from the
main() function to validate the non-functional property.

A mock system for the caching aspect can use a function that operates on the
same data types used in the real system. Joinpoint coverage checks that the
advice is used. Statement coverage of the woven mock system can be used to
check that all advice statements are executed. For caching, we want to test
that the advice executes correctly: on the first call it should use proceed()

and store the result, while subsequent calls with the same parameter should
return the cached value without calling proceed() to re-execute the method.
Unit tests can call a function with the same value multiple times and check
for the correct output.

27

Example: The caching aspect in the ErcChecker should improve performance
without affecting functionality, but faulty advice can affect program modules.

In the mock system, we created functions that work on the same types, but are
simple to compute and validate. For example, rather than calculating fanout
of an electrical net, we created a function (GetNetLength()) that returns the
length of the net’s signal name.

int GetNetLength(bcmNet *n)

{

return n->GetName().length();

}

We also create a similar function (GetWrongNetLength()) with a different
value, that is cached:

int GetWrongNetLength(bcmNet *n)

{

return n->GetName().length()+10;

}

These functions were called in an interleaved fashion to validate that the aspect
created separate caches for each, and that the advised functions returned the
correct value in each case. An example from the mock system is shown below:

//code that sets up the framework context

bcmCell *cell = GetTopCell();

//find 3 net objects...

bcmNet *net1 = FindNet(cell, "VDD");

bcmNet *net2 = FindNet(cell, "GND");

bcmNet *net3 = FindNet(cell, "clock");

//make sure GetNetLength works,

//when not cached (first call)

//and when cached (second call)

assert (GetNetLength(net1) == 3);

assert (GetNetLength(net1) == 3);

//interleave calls to GetNetLength and

// GetNetLength to make sure they are not

// ’mixing’ caches from different functions

// together

assert (GetNetLength(net3) == 5);

assert (GetWrongNetLength(net3) == 10);

assert (GetWrongNetLength(net3) == 10);

assert (GetNetLength(net3) == 5);

28

In the mock system, we created functions and methods using other framework
pointers, such as bcmCell and bcmInstance. We also tested caching of built
in types (e.g. float) using mathematical functions including Square() and
SquareRoot().

6.3 Reuse real system components

Components needed in the mock system can sometimes be directly obtained
from the existing real system.

Motivation: Often there is code in a large system, such as framework code,
that is necessary to establish the initial state of the system before any advised
methods are called. For example, a graphical system might have a common
set of methods to create an environment for OpenGL or for a GUI windowing
system. Our CAD applications require reading a netlist into memory before
most framework methods may be called. We can import system components
that are necessary for system initialization and copy in the small code sections
that must be called to use these components. This avoids creating mock classes
for large or complex components but still enables the mock system to have
some actual functionality.

Steps:

(1) Identify components methods and classes in the real system that provide
essential functionality in the mock system.

(2) In the mock system, import the necessary components. In C++, this
can be done by including a header file and linking against a system or
framework library.

(3) Copy small code sections that contain boilerplate code for using imported
components.

Example: To use framework calls in mock systems for the ErcChecker and
PowerAnalyzer, we reused a singleton class, BlockData, that handled initial-
ing and loading framework design data. In the mock system, we included the
BlockData class header and copied the code that uses it to initialize framework
data in the mock system.

6.4 Emulate the callsite context for joinpoints

The developer creates callsite contexts in the mock system that are similar
to the expected joinpoints in the real system. Callsite context includes infor-
mation that the aspect uses from the joinpoint, including method parameters

29

and call flow information.

Motivation: Changes to the control flow such as exceptions, method calls,
and recursive calls should be identified and tested in the mock system. Cre-
ating appropriate callsite information for method calls in the mock system
includes using a similar number of arguments and argument types (e.g., sim-
ple scalar types, user-defined types, pointers, and templatized types such as
STL containers).

In emulating the control flow context of the real system, particular atten-
tion should be given to potential causes of infinite recursion, which Laddad
identifies as a common mistake in adopting AOP [21]. For example, an aspect
whose pointcut may match a call within its own advice may lead to unintended
infinite recursion unless the pointcut is constrained (e.g., through a more re-
strictive pattern or using AspectC++ directives such as within or cflow). In
addition, aspects may advise recursive methods in the real system. Developers
can create intra-method calls and recursive calls in the mock system to test
the advice with existing recursion.

Aspects that throw or catch exceptions may be changing the resulting control
flow and the exceptions seen by callers. Throwing and catching exceptions can
be tested in the mock system.

Steps:

(1) Identify callsite context passed in from the joinpoint, including parameter
values and parameter types, especially templates and user-defined types.
Create and advise mock methods with the same parameter types.

(2) If advice catches exceptions thrown by the real system, throw these ex-
ceptions in the mock system.

(3) If advice throws exceptions, catch these exceptions in the mock system.
(4) Identify call flow information (such as cflow) and recursion that exists

in the real system and emulate it in the mock system.

Example: In the PowerAnalyzer, functions that were timed were nested,
calling other functions that were also timed. We modeled this structure in the
mock system to check that (1) the timing information for each function was
correct, (2) the nested timed calls reported correct timing information, and
(3) the nested calls did not lead to infinite recursion. In the caching aspect, we
used the mock system to verify that the templatized cache used by the advice
worked with a wide variety of built-in and user-defined data types.

30

6.5 Provide functionality used by advice

System functionality used by advice is imported into or emulated by the mock
system.

Motivation: To test the advice, the mock system must provide the methods
called by the advice and data structures used by the advice. A Logging or
Tracing aspect, for example, may instantiate and use a Logger object, which
must be present in the mock system. To test an aspect that modularizes a
system policy, the mock system must provide functionality that the advice
depends upon. We can use existing system components in the mock system or
create new mock classes for components that are large or difficult to import.

Steps:

(1) Identify any system components called from advice.
(2) Identify any data structures (classes, pointers to certain object types)

used by the advice.
(3) Create mock components or reuse components so that advice functional-

ity can be validated.

Example: The advice of the ErcChecker’s QueryPolicy aspect performs log-
ging of ErcQuery information, deletes ErcQuery objects that did not find
electrical errors, and adds ErcQuery objects that detect electrical failures to a
container class (LevelManager). In order for the mock system to have enough
functionality to validate the advice, the mock system needs to (1) create Erc-
Query objects, (2) provide a Logging class that the advice uses, and (3) pro-
vide a mock LevelManager class. We created mock classes for all three of these
requirements in the ErcChecker mock system.

By using the same names for the Logging class and the mock container class
(LevelManager), we used the aspect in the ErcChecker without changing the
methods called. During system refactoring, we identified an additional method
that needed to be called from the advice. We first emulated the changes in the
mock system, and then continued refactoring the real system.

6.6 Use annotations in the mock system to check potential pointcut strength

faults

Faulty pointcuts that match too many or too few locations can be difficult to
debug. By creating annotations in the mock system for methods that should
and should not match a pointcut, we check the weave results for incorrect
pointcuts.

31

Motivation: Pointcut strength faults [1] are particularly difficult to test for.
The mock system is created with annotated methods that are intended to
be matched by an aspect as well as annotated methods that should not be
matched. If multiple aspects are woven with a mock system, our annotation
approach (see Sections 3.2 and 4.1) would allow us to specify the specific
aspect that should or should not advise a method. By choosing the class and
method names in the mock system based on those in the real system, we
increase our confidence that the pointcuts will choose correct joinpoints in the
real system.

Steps:

(1) Create namespaces, classes, and names that should not match the point-
cut but are similar (e.g, same prefix to class names or namespace names).

(2) Create namespaces or user-defined types that have similar naming con-
ventions as pointcuts.

(3) Model class hierarchies in the mock system to validate pointcut matching
in base classes and subclasses.

(4) Add annotations to indicate methods that should be advised and which
should not be advised.

Example: For regular expression types of pointcuts such as

call("% %Iter::Reset(...)")

we should create multiple method calls that we intend to match (e.g., Inst-
Iter::Reset(), NetIter::Reset()). In addition, namespaces can affect whether
pointcuts match, since % in AspectC++ only matches one level (all classes)
and not two levels of naming (all namespaces and all levels).

Calls to the Reset() method of an framework iterator were annotated to
indicate the name of the aspect that should advise them:

while((n=

netIterPtr->Next())) {/*AOP=ADVISED_BY(PowerOnlyFilter)*/

The weave analyzer checks that the ADVISED BY(PowerOnlyFilter) anno-
tation did have an associated advice joinpoint from the PowerOnlyFilter

aspect. We also used annotations to indicate functions that should not have
any advice:

void lookAtInsts(bcmCell *cell) /* AOP=NOADVICE */

32

6.7 Emulate aspect-aspect interactions

When multiple aspects are used in a system, we can emulate the ways that
multiple aspects interact.

Motivation: Aspects may interact with one another by many means, includ-
ing advising the same method and introducing members or methods to the
same class [10]. These intended interactions should be modeled in a mock
system by creating the conditions (e.g., overlapping joinpoints) that are an-
ticipated in the real system. For example, we can create a mock class method
that will match two aspects and test the combined behavior.

Although the real system may contain unanticipated aspect-aspect interac-
tions, the mock system tests that the aspects work together correctly in at
least some situations. Like unit testing, this provides an environment to vali-
date basic functionality before large-scale integration.

Steps:

(1) Identify joinpoints in the real system that will be matched by more than
one aspect.

(2) Create the mock system to contain joinpoints advised by these aspects.
(3) After weaving aspects with the real system, use analysis of weave results

to identify any unexpected shared joinpoints that should also be tested
within the mock system.

Example: Although our aspects for these systems were non-overlapping, we
did consider implementing caching with two overlapping aspects: one for func-
tion caching and one for hit/miss analysis of the cache. The two aspects were
tested together in the first caching mock system. The aspects had identical
pointcuts to advise the same methods. Because the pointcuts were the same,
we did not have to change the mock system to test the interaction of multiple
aspects. Both aspects were woven with the mock system. During testing, we
found that order of execution was important because both aspects used pro-

ceed(). If the caching aspect executed first and had stored the value already,
it returned without calling proceed(), which prevented the other aspect from
advising the call as well. We chose not to use this two aspect version of caching;
thus, it was not tested in the performance-oriented mock system.

One benefit of using a mock system for testing aspect interference is that a
small system can be set up with specific call orders. One drawback is that
there may be many complex scenarios that are not anticipated in the mock
system.

33

7 Evaluation

In Section 5 we describe the process of creating aspects and mock systems
to aspectualize two legacy systems. In this section we evaluate the costs and
benefits of using mock systems in terms of our experiences. We evaluate the
process in terms of four evaluation questions. Then we examine threats to
validity.

7.1 Evaluation Questions

The goal of the evaluation is to answer the following research questions:

(1) Can mock systems be developed for aspects that will be woven with legacy
systems?

(2) What costs are incurred in creating a mock system?
(3) Does using mock systems save time when creating an aspect requires

multiple iterations of our approach?
(4) Did the aspects created using the mock system require changes to work

with the real system?

We use version 1.0pre3 of AspectC++, which is a source-to-source weaver:
weaving C++ code is followed by compiling the woven code. Our development
environment for our tools is based on Linux and uses version 3.2.3 of the g++

compiler. We use version 3.2.3 of gcov (which depends on features of the g++

compiler) for measuring statement coverage.

Since we were able to create a mock system for each aspect, the answer to
the first question was always “yes”. For each aspect, we answer the second
question by reporting the lines of code and time required to create it. Lines
of code includes only new code created for the mock system, not components
reused from the real systems. We report time spent creating the mock system,
either by writing new code or reusing existing components.

For the third question, we compare the time spent on creating the mock system
to the compilation and weave time saved by using the mock system when
multiple iterations were needed to create an aspect. We answer the fourth
question by describing any changes made to pointcuts or advice when moving
the aspects from the mock system to the real system.

34

7.2 ErcChecker policy aspects

7.2.1 What costs are incurred in creating a mock system?

We created the mock system in one hour by inspecting the classes and com-
ponents called by the ErcQuery hierarchy. The mock system had a small class
hierarchy based on the ErcQuery class hierarchy. The mock hierarchy con-
tained four classes and had a depth of inheritance of two. The mock system
also implemented classes that are used by the mock system hierarchy or by
advice. For the ErcChecker policy aspects, the mock system we created con-
tained 160 LOC.

7.2.2 Does using mock systems save time when an aspect requires repeated

cycles to create?

Weaving takes 15 minutes. Compiling the woven code takes 10 minutes. Thus,
making and testing small changes in pointcuts or advice requires 25 minutes.
The mock system can be compiled and woven in one minute.

Due to the wide scope of refactoring (59 subclasses to consider) [31] and errors
in the initial aspect advice, and because several faults were encountered doing
refactoring [32], 10 iterations were needed during the creation of the aspect.
Since the time saved when weaving and compiling by using a mock system is
24 minutes, the compilation and weave savings were 240 minutes. The mock
took 60 minutes to create, so the total savings of the mock systems approach
was 180 minutes.

7.2.3 Did the aspects created in the mock system require changes to work in

the real system?

We discovered a required change in the ErcQuery hierarchy for the aspect
to work with all 59 subclasses. This also required a one line addition to the
advice. A more thorough inspection of the ErcChecker could have identified
this before creating the mock system. The pointcut did not have to be changed
when the aspect was woven with the real system.

35

7.3 ErcChecker caching aspects

7.3.1 What costs are incurred in creating a mock system?

We created two mock systems. The first mock system focused on functional be-
havior and modeled pointers to complex data types and different scalar types.
The mock system consisted of 400 lines of C++ code and also imported the
BlockData component. Creating it took 45 minutes. Using the mock system,
a prototype caching aspect could be woven, compiled, and run in less than a
minute.

Once we developed the caching aspect, we created a second mock system
for measuring performance. We compared the performance overhead of the
AspectC++ caching using around advice to the overhead of the scattered
C++ caching code. This mock system contained 200 lines of C++ code and
did not import the BlockData component. Creating it took 20 minutes.

7.3.2 Does using mock systems save time when an aspect requires repeated

cycles to create?

We used 15 iterations to create the caching aspect to evaluate different ap-
proaches. Weaving and compiling the ErcChecker would have dramatically
slowed down our ability to test and evaluate the aspect since compiling and
weaving the ErcChecker requires 25 minutes. For 15 iterations to create the
caching aspect, using mock systems saved 24 minutes per iteration, for a total
of 360 minutes, minus the mock development time (80 minutes). Thus, total
savings was 280 minutes (4.67 hours).

7.3.3 Did the aspects created in the mock system require changes to work in

the real system?

The only changed needed in the aspect was in the pointcut definition. In the
concrete aspect, it listed all functions to be cached. Changing the pointcut was
done by using the names of caching functions we had identified previously. The
abstract aspect that contained the caching advice code did not change.

36

7.4 PowerAnalyzer Tracing Aspect

7.4.1 What costs are incurred in creating a mock system?

We reused the BlockData component and created 60 lines of C++ code that
made calls to different types of framework iterators, and similarly named meth-
ods that should not match. Creating the mock system took 30 minutes.

7.4.2 Does using mock systems save time when an aspect requires repeated

cycles to create?

Once the aspect was created, weaving and compiling it within the mock system
took less than a minute. The CadTrace aspect was woven with the libPower

component of the PowerAnalyzer. Weave time and compilation time total 4
minutes.

Since this aspect worked correctly on the first iteration, there was no time
savings from compiling and weaving the aspect with a smaller system during
development. Using the mock system introduced a 30 minute cost.

7.4.3 Did the aspects created in the mock system require changes to work in

the real system?

The aspect was woven with the PowerAnalyzer without changes to the point-
cut or advice.

7.5 PowerAnalyzer Timing Aspect

7.5.1 What costs are incurred in creating a mock system?

The mock system provided similar naming conventions as the PowerAnalyzer.
We created two methods that matched the proposed pointcut naming conven-
tion and two that did not, and had one advised method call the other. The
mock system contained 50 LOC and was created in 30 minutes.

7.5.2 Does using mock systems save time when an aspect requires repeated

cycles to create?

Each of PowerAnalyzer executables takes three minutes to weave and compile,
so nine minutes are required to weave the aspect with the full system. Weaving

37

the aspect with the mock system, compiling and running together took under
a minute.

Iterative aspect development was important because we changed the pointcut
twice as we experimented with pointcuts and advice to handle nested calls
advised by the TimeEvent aspect. The advice body also went through two
iterations to finalize the format and information logged. Making these changes
using the mock system provided feedback in less than one minute.

The four iterations we used to create the aspect took only four minutes of
run time in the mock system. Had the full system been used, these iterations
would have taken 36 minutes. The compile/weave time savings (32 minutes)
minus the mock creation time (30 minutes) means that the total time saved
was 2 minutes.

7.5.3 Did the aspects created in the mock system require changes to work in

the real system?

No, the aspect was woven without change with the PowerAnalyzer because
we did not find any issues that required going back to the mock system for
evaluating further changes.

7.6 Discussion

The mock systems for the four aspects were all small, with the compilation
and weave times being dramatically less (one minute versus up to 25 minutes)
than in the real system. None of the mock systems were difficult to create,
with all taking an hour or less. The total time spent creating mock systems
for the ErcChecker’s caching aspect was 65 minutes, but this was because two
mock systems were created.

Table 1 summarizes our data for each aspect. The ‘Iterations’ column is the
number of iterations used to create the aspect. The ‘Mock LOC’ shows the
size (lines of code) of the mock system, while ‘Mock Creation Time’ is the
time (in minutes) spent creating the mock systems. The ‘Changes’ column
indicates if changes had to be made in the aspects when moving them from
the mock system to the real system. The ‘Time saved’ column is the time saved
in the aspect creation iterations minus the time to create the mock system.
The negative value for the CadTrace aspect indicates a net cost to use the
mock system.

For the ErcChecker, which used 10–15 iterations to create aspects, there was
a clear time savings. For the PowerAnalyzer, the time savings is 2 minutes

38

Table 1
Summary of mock systems data for each aspect.

Aspect Iterations Mock
Creation
Time

Mock
LOC

Changes Time
saved

QueryPolicy 10 60 min 160 advice 3 hrs

Caching 15 65 min 600 pointcut 4.67 hrs

CadTrace 1 30 min 60 none -0.5 hrs

TimeEvent 4 30 min 50 none 2 mins

for the TimeEvent aspect and negative (a cost) for the CadTrace aspect.

Use of the mock system did not save time when aspectualizing the Power-

Analyzer. However, the use of a mock system to aspectualize the larger Erc-
Checker did save significant time. This savings was due to the longer com-
pile times and the increased number of iterations. For caching, this was due
to many different caching strategies being considered and evaluated. For the
QueryPolicy aspects, the number of iterations results from the large number
of classes involved in the refactoring and faults encountered during the refac-
toring. One hypothesis that we propose is mock systems will provide a greater
time savings when aspectualizing large systems. In addition, mock systems
will provide greater cost benefits for aspects that use more complex advice
and hence require more iterations to create and validate.

Even when mock systems do not save development time, they provide a more
controlled environment for testing the aspect, just as traditional unit testing
can focus more on a function or class before integration testing. For example,
using a mock system for evaluating caching focuses solely on caching rather
than testing the caching aspect as part of the full system. Other types of
testing, such as performance or stress testing, can be done with mock systems,
such as our testing of caching behavior and performance.

One additional cost of mock systems is that as an aspect evolves during devel-
opment, any changes need to be mirrored and validated in the mock system
or the mock system becomes stale.

We do not have tools that help automate the creation of mock systems. Al-
though tools can potentially extract classes or interfaces from the real system,
engineering judgement is required when deciding what classes and methods
are needed in the mock system. In our work, we quickly created mock systems
and were not motivated to develop automated tools.

39

7.7 Threats to validity

The evaluation of the new approach demonstrates that it can be applied to
legacy systems. However, like most case studies, it is difficult to generalize
from a small-scale study. Thus, there are threats to external validity.

This study applied the aspectualization process to only two legacy systems.
The legacy systems were not selected randomly, which limits external valid-
ity. Certainly, different results are likely when applying the process to other
systems. Still this study demonstrates that the process can work, and the use
of mock systems can lower costs and help to find errors.

Because of the limited nature of the evaluation, there are threats to internal
validity, which is concerned with whether the new approach is actually respon-
sible for the time savings and for revealing faults. One concern is that all of
the aspect development and refactoring was performed by the same subject.
This subject is also one of the developers of the approach, and clearly under-
stands and believes in the approach. Others would not be biased, and might
choose different aspects or implement them differently. In addition, the subject
had development experience with the ErcChecker, and this potentially sped
up aspect identification, refactoring, and mock systems development. For the
PowerAnalyzer, although the developer did not participate in the design or
development of the system, he did have some limited knowledge of the code
based on making changes during maintenance.

Construct validity focuses on whether the measures used represent the in-
tent of the study. We reported on whether or not aspect pointcuts or advice
changed when moving from the mock system to the real system, since this
is one way of measuring if the mock structure is similar enough to the real
system. Other approaches might use structural code metrics or defects found
to measure how effective mock systems are at providing an adequate environ-
ment for developing aspects. Time savings is a key dependent variable; it is
based on compilation and weave times and how many iterations were used in
the mock system to create an aspect. This is a reasonable way to measure
effort. However, all iterations may not require an equal amount of time to
complete.

8 Conclusions and Future Work

We developed a test driven approach for creating and unit testing aspects with
mock systems, and for performing integration testing with these same aspects
in the context of large legacy systems. We built tools for advice instrumenta-

40

tion, weave analysis, and coverage measurement that support our approach.
Similar tools could be developed for other aspect-oriented languages, such as
AspectJ.

We demonstrate our approach by refactoring two large legacy C++ applica-
tions. We also provide guidelines for the creation of mock systems. We show
how using mock systems helps overcome the challenges of long compilation
and weave times when refactoring large legacy systems. For the larger of the
two systems, using a mock system saved between three and five hours for
each aspect. Using mock systems and the tools helps validate aspects, explore
different implementations, and identify pointcut and advice faults.

The aspects enable cross-cutting concerns, such as specific design policies,
caching, debug tracing, and timing to be implemented in a more modular way.
A development aspect that is not a permanent part of the program supports
a pluggable approach, in which weaving, not manual code changes, is used to
enable or disable tracing.

We continue to evaluate our test driven approach as these programs are refac-
tored. We are studying how mock systems can also be used to test other advice
features, such as introductions, class hierarchy changes, exception softening,
and advice precedence. We expect that introductions and hierarchy changes
can be unit tested on mock systems that will then be modified by the aspect.
We are exploring other legacy C++ systems within Hewlett-Packard that use
the same framework as these applications do.

One goal of mock systems is to create aspects that do not require change
when woven with the real system. If AspectC++ supported annotation-based
weaving, the caching aspect pointcut change could have been avoided. Weaving
based on annotations is different from our own annotations, which are used to
check the weave results. Instead, languages such as AspectJ allow developers
to use annotations as weave targets. While this requires the annotations to be
inserted at all join points, it avoids depending on function names or naming
conventions. If AspectC++ supported annotations, we could use annotation-
based pointcuts for some aspects, and the mock system and real system could
both contain annotations.

Testing more complex aspects leads to an open question: are there criteria or
measures that should be used to validate that a mock system is similar enough
to the actual system? This is an important question, since unit testing with
a mock system assumes the mock system provides a useful abstraction of the
real system.

Another interesting question is the effect of crosscutting interfaces [14] on mock
systems. Crosscutting interfaces (XPIs) use a semantic description of intent
and a pointcut designator signature to specify the dependencies between core

41

concerns and aspects. Clearly defined interfaces for aspects might allow mock
systems to be created to match the same XPI.

Our existing coverage-based approach could be extended to consider statement
coverage within advice bodies. Since we gather statement coverage information
from woven code, we would have to reverse-engineer the weaving process to
match it to the original advice body. In addition, even if we knew that all ad-
vice statements were executed, we might want to know if all advice statements
were executed at each join point.

Although mock systems are beneficial during refactoring of legacy systems,
mock systems will need to be maintained with the aspects and system in order
to remain relevant. Understanding the costs and benefits of a mock system
over time is an important extension of this work.

More studies are also needed on using mock systems to evaluate adding many
aspects to a system, particularly when there will be intended aspect-aspect
interactions. In addition, strategies for effectively detecting or mitigating un-
intended aspect-aspect interactions need to be developed. In our preliminary
studies we saw that mock systems can help isolate aspect-aspect interactions
by easily creating structures based on method names and class structures
where multiple aspects interact in the small. Our weave analyzer could be
extended to report joinpoints advised by multiple aspects so that developers
are aware of them and test aspect interactions in a mock system.

References

[1] Roger T. Alexander, James M. Bieman, and Anneliese A. Andrews. Towards
the systematic testing of aspect-oriented programs. Technical Report CS-4-105,
Department of Computer Science, Colorado State University, March 2004.

[2] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. AW C++ in Depth Series. Addison Wesley, January 2001.

[3] AspectJ project.
http://www.eclipse.org/aspectj/.

[4] Dave Astels. Test Driven development: A Practical Guide. Prentice Hall
Professional Technical Reference, 2003.

[5] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In ICSM ’98:
Proceedings of the International Conference on Software Maintenance, page
368, Washington, DC, USA, 1998. IEEE Computer Society.

42

[6] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé.
On the use of clone detection for identifying crosscutting concern code. IEEE
Transactions on Software Engineering, 31(10):804–818, 2005.

[7] Curtis Clifton and Gary T. Leavens. Obliviousness, modular reasoning, and
the behavioral subtyping analogy. In AOSD 2003 Workshop on Software-
engineering Properties of Languages for Aspect Technologies, March 2003.

[8] Yvonne Coady and Gregor Kiczales. Back to the future: A retroactive study
of aspect evolution in operating system code. In Mehmet Akşit, editor, Proc.
2nd Int’ Conf. on Aspect-Oriented Software Development (AOSD-2003), pages
50–59. ACM Press, March 2003.

[9] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and
interaction analysis of stateful aspects. In Karl Lieberherr, editor, Proceedings
of the 3rd International Conference on Aspect-Oriented Software Development
(AOSD-2004), pages 141–150. ACM Press, March 2004.

[10] Pascal Durr, Tom Staijen, Lodewijk Bergmans, and Mehmet Aksit. Reasoning
about semantic conflicts between aspects. In Kris Gybels, Maja D’Hondt,
Istvan Nagy, and Remi Douence, editors, 2nd European Interactive Workshop
on Aspects in Software (EIWAS’05), September 2005.

[11] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, August 1999.

[12] Andreas Gal, Wolfgang Schröder-Preikschat, and Olaf Spinczyk. AspectC++:
Language proposal and prototype implementation. In Kris De Volder, Maurice
Glandrup, Siobhán Clarke, and Robert Filman, editors, Workshop on Advanced
Separation of Concerns in Object-Oriented Systems (OOPSLA 2001), October
2001.

[13] Sudipto Ghosh, Robert France, Devond Simmonds, Abhijit Bare, Brahmila
Kamalakar, Roopashree P. Shankar, Gagan Tandon, Peter Vile, and Shuxin
Yin. A middleware transparent approach to developing distributed applications.
Software Practice and Experience, 35(12):1131–1159, October 2005.

[14] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit
Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software design with
crosscutting interfaces. IEEE Software, 23(1):51–60, 2006.

[15] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition
in legacy code. In Peri Tarr and Harold Ossher, editors, Workshop on Advanced
Separation of Concerns in Software Engineering (ICSE 2001), May 2001.

[16] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java
and AspectJ. In Proceedings of the 17th ACM conference on Object-oriented
programming, systems, languages, and applications, pages 161–173. ACM Press,
2002.

[17] Jan Hannemann, Gail Murphy, and Gregor Kiczales. Role-based refactoring of
crosscutting concerns. In Peri Tarr, editor, Proceedings of the 4th International

43

Conference on Aspect-Oriented Software Development (AOSD-2005), pages
135–146. ACM Press, March 2005.

[18] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering, 28(7):654–670, 2002.

[19] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Akşit and Satoshi Matsuoka, editors, 11th European Conference on
Object-Oriented Programming, volume 1241 of LNCS, pages 220–242. Springer
Verlag, 1997.

[20] Ramnivas Laddad. Aspect-oriented refactoring. Technical report, The
ServerSide.com, 2003.

[21] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning, 2003.

[22] Otavio Augusto Lazzarini Lemos, Fabiano Cutigi Ferrari, Paulo Cesar Masiero,
and Cristina Videira Lopes. Testing aspect-oriented programming pointcut
descriptors. In WTAOP ’06: Proceedings of the 2nd workshop on Testing aspect-
oriented programs, pages 33–38, New York, NY, USA, 2006. ACM Press.

[23] Otavio Augusto Lazzarini Lemos, Jose Carlos Maldonado, and Paulo Cesar
Masiero. Structural unit testing of AspectJ programs. In 2005 Workshop
on Testing Aspect-Oriented Programs (held in conjunction with AOSD 2005),
March 2005.

[24] Nick Lesiecki. Unit test your aspects. Technical report, Java Technology Zone
for IBM’s Developer Works, November 2005.

[25] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On
the combination of AOP with generative programming in AspectC++. In
Gabor Karsai and Eelco Visser, editors, Proc. Generative Programming and
Component Engineering: Third International Conference, volume 3286 of
Springer-Verlag Lecture Notes in Computer Science, pages 55–74. Springer,
October 2004.

[26] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schrder-Preikschat. On the
configuration of non-functional properties in operating system product lines. In
David H. Lorenz and Yvonne Coady, editors, ACP4IS: Aspects, Components,
and Patterns for Infrastructure Software, March 2005.

[27] Cristina Videira Lopes and Trung Chi Ngo. Unit testing aspectual behavior.
In 2005 Workshop on Testing Aspect-Oriented Programs (held in conjunction
with AOSD 2005), March 2005.

[28] Marius Marin, Leon Moonen, and Arie van Deursen. An approach to aspect
refactoring based on crosscutting concern types. In Martin Robillard, editor,
MACS ’05: Proceedings of the 2005 workshop on Modeling and analysis of
concerns in software, pages 1–5. ACM Press, May 2005.

44

[29] Michael Mortensen and Roger T. Alexander. An approach for adequate testing
of AspectJ programs. In 2005 Workshop on Testing Aspect-Oriented Programs
(held in conjunction with AOSD 2005), March 2005.

[30] Michael Mortensen and Sudipto Ghosh. Creating pluggable and reusable non-
functional aspects in AspectC++. In Proceedings of the Fifth AOSD Workshop
on Aspects, Components, and Patterns for Infrastructure Software, pages 1–7,
Bonn, Germany, March 20 2006.

[31] Michael Mortensen and Sudipto Ghosh. Using aspects with object-oriented
frameworks. In AOSD ’06: 5th International Conference on Aspect-oriented
Software Development Industry Track, pages 9–17, March 2006.

[32] Michael Mortensen, Sudipto Ghosh, and James Bieman. Testing during
refactoring: Adding aspects to legacy systems. In 17th International Symposium
on Software Reliability Engineering (ISSRE 06), November 2006.

[33] Olaf Spinczyk and pure-systems GmbH. Documentation: AspectC++ Compiler
Manual, May 2005. http://www.aspectc.org/fileadmin/documentation/ac-
compilerman.pdf.

[34] Paolo Tonella and Mariano Ceccato. Refactoring the aspectizable interfaces: An
empirical assessment. IEEE Transactions on Software Engineering, 31(10):819–
832, 2005.

[35] Tom Tourwé, Johan Brichau, and Kris Gybels. On the existence of the
AOSD-evolution paradox. In AOSD 2003 Workshop on Software-engineering
Properties of Languages for Aspect Technologies, March 2003.

[36] Dianxiang Xu and Wiefing Xu. State-based incremental testing of aspect-
oriented programs. In Proceedings of the 5th International Conference on
Aspect-Oriented Software Development (AOSD 2006), March 2006.

[37] Jianjun Zhao. Unit testing for aspect-oriented programs. Technical Report
SE-141-6, Information Processing Society of Japan (IPSJ), May 2003.

[38] Yuewei Zhou, Debra Richardson, and Hadar Ziv. Towards a practical approach
to test aspect-oriented software. In TECOS 2004: Workshop on Testing
Component-Based Systems, Net.Object Days 2004, September 2004.

45

