
A Standard Representation of Imperative Language
Programs

James M. Bieman David A. Gustafson

Albert L. Baker1 Austin C. Melton

Paul N. Clites

Department of Computer Science

Iowa State University

Ames, Iowa 50011

(515) 294-4377

Computer Science Department

Kansas State University

Manhattan, Kansas 66506

(913) 532-6350

Keywords

software tools, software measures, program representation

Published in Journal of Systems and Software, vol. 8, no. 1, pp. 13-37, Jan. 1988.

Abstract

Numerous research results in the areas of software measures and software tools

are predicated on a particular programming language, or on some characterizations

of a programming language. For example, numerous software measures have been

de�ned only for structured programming languages and several of the reported

approaches to program testing de�ne a speci�c language. However, this prolifera-

tion of languages upon which measures and tools are de�ned makes independent

evaluation and comparison of measures and tools problematic.

We propose a standard representation of imperative language programs which

is independent of the syntax of any particular programming language, yet the stan-

dard representation supports the de�nition of a wide range of tools and measures.

Additionally, the standard representation will allow for the masking of actual pro-

gram semantics. Thus the standard representation provides a vehicle by which

large volumes of industrial software might be made available to researchers while

protecting the proprietary nature of the programs.

1Dr. Baker is currently a Shell Faculty Fellow, supported in part by the Shell Companies Foundation,

Inc.



1 Introduction

Programmers, managers and researchers need quantitative descriptions of software. Soft-

ware continues to increase in complexity with a corresponding decrease in the ability of

developers to understand major portions of projects. Developers need enhanced tools to

help them understand modern software, and some of these enhanced tools must provide

quantitative abstractions of software documents. The development of these tools is in a

primitive state, and there is no general framework to guide researchers in this area [6].

Software tools and measures are often de�ned in terms of source code [7], underlying

control 
ow graphs [11], system interfaces [10], textual position [16], and/or data depen-

dencies [4]. For example, the cyclomatic number as de�ned by McCabe [13] is de�ned

both in terms of the underlying 
owgraph and the complexity of the expressions in the

program predicates. This measure is also used as the basis for a testing tool [14]. Many

researchers have de�ned simple programming languages for the purpose of de�ning tools

and measures [15]. Because tools and measures are commonly de�ned in a non-standard,

language dependent fashion, it is often di�cult to implement and compare these software

engineering tools.

Considering the non-standard de�nitions of tools and measures, it is not surprising

that few convincing analytical or empirical validations of these facilities have been con-

ducted. Another problem in conducting empirical validation studies is the lack of data.

In order to validate the worth of software tools on large projects, they must be applied

to large software systems. Yet the organizations that develop large systems are naturally

reluctant to share proprietary software with outside researchers [8].

A standard, language independent representation of programs can provide a clear

and precise basis for the de�nition of tools and measures. If the representation hides the

semantics of the actual program, then proprietary interests are also protected.

We carefully de�ne a representation of source programs that allows for the protection

of the semantics of the programs and facilitates the de�nition of a wide range of tools and

measures. All the information required to perform control 
ow analysis, data dependency

analysis, and expression complexity analysis is preserved. Yet there is no way to infer,

at any level, the purpose or functionality of the original source program. The semantics

are protected because:

1. identi�ers and operator names are encoded, and

2. the mapping is many to one. A program can be converted to its standard repre-

sentation while the inverse translation is unde�ned, and cannot pragmatically be

approximated.

1



The language independent representation is computable from source programs written in

imperative programming languages in time similar to that required for traditional data


ow analysis [9].

The representation should serve as the basis of a strategy for publishing large volumes

of data on actual source programs. Such data can be used by a broad spectrum of software

engineers interested in software tools and measures. If we de�ne tools and measures in

terms of the standard representation, we do not have to rede�ne them for each language.

We only need to provide a mapping from programs in each language to the representation.

Thus, a research environment for software tools or software measures might consist of:

1. the standard representation,

2. a set of tools or measures de�ned in terms of the representation, and

3. a set of translators that convert programs in a number of languages to the standard

representation.

The standard representation is de�ned as an abstract data type. The domain of the

abstract data type is a structure that incorporates the control 
ow, data 
ow, expression

structures, and integration structures of a program unit (e.g. a Pascal procedure or

function). Software measures are de�ned as operations on the abstract data type.

We use Pascal as an example imperative language to demonstrate the translation to

the representation. The mapping from Pascal programs to the representation is described

in terms of the semantic routines that are inserted by a syntax directed compiler. Sim-

ilar mappings can be de�ned for other imperative languages including C, FORTRAN,

COBOL, Ada, assembler, etc.

The remainder of the paper is organized as follows. The representation is formally

de�ned in Section 2. Section 3 describes the mapping from Pascal programs to the

representation. Section 4 describes the encoding of program semantics. A set of measures

and software tools are de�ned in terms of the representation in Section 5. Section 6

describes current problems and the direction of our research.

2



2 A Standard Representation

The standard representation incorporates the concepts of control 
ow, data dependency,

integration structures, and expression complexity.

Program unit control 
ow is modeled by the familiar control 
owgraph in which nodes

represent basic blocks. We provide a few de�nitions which are helpful in understanding

the formal speci�cation of the standard representation.

De�nition 2.1 A 
owgraph G = (N;E; s; t) is a directed graph with a �nite nonempty

set of nodes N , a �nite, nonempty set of edges E, a start node s 2 N , and a terminal

node t 2 N . The start node s is the unique node of N with indegree zero. The terminal

node t is the unique node of N with outdegree zero. Each node x 2 N lies on some path

in G from s to t.

De�nition 2.2 A sequential block of code in a source program P is a sequence of tokens

in P that is always executed starting with the �rst token in the sequence, all the tokens

in the sequence are always executed sequentially, and the sequence is always exited at

the end.

De�nition 2.3 A basic block is a maximal length sequential block of code.

Program unit data 
ow is represented as the sequence of de�nitions and references in

the nodes that represent basic blocks. The following de�nitions are derived from those

by Hecht [9].

De�nition 2.4 A variable de�nition is a sequence of tokens in a source program that,

when executed, can (potentially) modify the value stored in a program variable.

De�nition 2.5 A variable reference or variable use is a sequence of tokens in a source

program that, when executed, references the value stored in a program variable.

Consider a program statement of the form A := (X + Y) * Z. The variable A is de�ned

by the statement and the variables X, Y, and Z are referenced.

We de�ne the representation in terms of sets, sequences, tuples, reals, integers,

booleans, and operations on these primitive types. For a detailed description of the

speci�cation language used, see [2]. To represent an entire program, we �rst break the

program down into its unit-level components, such as procedures or functions in a Pascal-

like language. Each procedure or function has its own internal structure and a speci�c

way in which it interfaces with the rest of the program. Thus we have:

3



Type De�nition 1

StandardRep = set of UnitRepType

Type De�nition 2

UnitRepType = ordered pair(

Interface: HeaderType,

UFS: UnitFlowStructure)

The interface must contain a unique name by which the program unit is known2, and

the information necessary to determine the data interface with the rest of the program.

Thus the interface should have three components: the procedure or function name, the

list of formal parameters, and the set of global variables which are referenced or de�ned

by the program unit.

Type De�nition 3

HeaderType = triple(

UnitName: UnitID,

FormalParams: sequence of VarID,

Globals: set of VarID)

In characterizing the control 
ow and data dependencies within a procedure, we follow

closely the example of [15]. The UnitFlowStructure closely resembles a conventional con-

trol 
owgraph with information concerning data dependency, integration, and software

science measures [7] embedded within the nodes.

Type De�nition 4

UnitFlowStructure = 4-tuple(

Nodes: set of NodeType,

Edges: set of EdgeType,

Start: NodeID,

Terminal: NodeID)

Type De�nition 5

2In the mapping from actual source programs to the standard representation, all identi�ers, constants,

and operators are to be encoded. We might map each distinct operator in a program to O1; O2; : : : and

each operand to V1; V2; : : :. We proceed with the speci�cation of StandardRep simply assuming this

encoding.

4



EdgeType = ordered pair(

FromNode: NodeID,

ToNode: NodeID)

A node must contain information about the uses and de�nitions of variables within the

corresponding basic block. We wish to retain the distinction between references that are

used for de�nitions and references in predicates, since some published tools make this

distinction [15]. We also include operator and operand counts from the corresponding

basic block, since such counts are used in software science measures[7] and are not accu-

rately obtainable from the other node information. Thus our characterization of a node

consists of four parts: a node identi�er, a list of variable de�nitions, a list of predicate

uses, and the software science information.

Type De�nition 6

NodeType = 4-tuple(

NID: NodeID,

LocalDe�nitions: sequence of De�nitionType,

Predicate: UseType,

Counts: HalsteadInfoType)

Type De�nition 7

HalsteadInfoType = ordered pair(

opcounts: set of OperatorCount,

opandcounts: set of OperandCounts)

Type De�nition 8

OperatorCount = ordered pair(

OperatorName: OperatorID,

Occurrences: integer)

Type De�nition 9

OperandCount = ordered pair(

OperandName: OperandID,

Occurrences: integer)

E�ectively, a de�nition of a variable occurs when either an assignment is made to that

variable, or the variable is de�ned by a procedure call.

5



Type De�nition 10

De�nitionType = SimpleDe�nition j ProceduralDe�nition

Each item referenced in a particular de�nition may have any of three forms: the item

may be a variable, a constant, or a function call.

Type De�nition 11

ExprComponent = VarID j ConstID j FunctionUse

The de�nition of a variable by assignment is represented by two components: the

name of the variable being de�ned, and the list of items referenced in the de�nition.

A procedure call is represented by the procedure's name and the sequence of actual

parameters. The representation of the procedure call, combined with the control 
ow and

data dependency information in the UnitFlowStructure of the called procedure, makes it

possible to deduce potential data dependencies resulting from the call. The representation

preserves the maximum amount of data dependency information possible with a static

(compile time) analysis. We can apply the information-
ow relations of Bergeretti and

Carr�e[3] to the StandardRep of a program to determine the interprocedural dependencies.

Type De�nition 12

SimpleDe�nition = ordered pair(

De�nedVariable: VarID,

Uses: UseType)

Type De�nition 13

ProceduralDe�nition = ordered pair(

ProcName: UnitID,

ActualParams: sequence of UseType)

All that remains is to specify the types UseType and FunctionUse.

Type De�nition 14

UseType = sequence of ExprComponent

Type De�nition 15

FunctionUse = ordered pair(

FunctionName: UnitID,

ActualParams: sequence of UseType)

6



3 The Representation of Pascal Programs

As an example mapping from a program to its StandardRep, we describe the translation

for Pascal programs. The version of Pascal that we use as the domain of the mapping is

the 1985 ISO Pascal Standard described by Jensen and Wirth[12].

To ease the discussion and to keep examples clear we will not encode the program

identi�ers and operator names. Encoding issues will be described separately in Section 4.

The StandardRep's in the examples are presented in textual form using the set, sequence,

tuple notation of Section 2. Other concrete structures (possibly non-ASCII) may be used

to store an StandardRep, but the textual form is adequate and reasonable for human

consumption.

Overall Program Structure

The StandardRep for a Pascal program is a set of procedure representations { with one

procedure representation (of type UnitRepType) for each procedure or function, including

the main procedure. For example, a pascal program of the form:

program one;

procedure a;

procedure b;

begin . . . end;fbg
begin . . . end; fag

procedure c;

begin . . . end;fcg
begin . . . end foneg.

has a StandardRep of the form fONE;A;B; Cg where ONE;A;B; and C are UnitRep-

Type's of the individual procedures. Each procedure or function in a Pascal program is

treated as an individual program unit with its own UnitRepType.

Structure of Program Units

Interface Component

The UnitRepType for each Pascal program (main procedure), procedure, or function has

an Interface component and a UFS component. The Interface component models the

7



binding of an individual procedure with the rest of the program. The Interface is a triple

which consists of

1. ProcName: the unique name of the program, procedure, or function,

2. FormalParams: a sequence of the unique names of formal parameters (we add a

return value parameter for functions),

3. Globals: the set of global variables referenced or set in the body of the procedure.

The following examples contain segments of Pascal code and the Interface component of

the representation.

1. Pascal Code: program p (input,output)

Interface: (p; hinput; outputi; fg)

2. Pascal Code: procedure q (a: integer; b,c: real; var d: char)

Interface: (q; ha; b; c; di; fv1; v2; :::vng)
where v1; v2; :::; vn are the unique names of all non-local (to procedure q) vari-

ables that are referenced or set in the body of procedure q.

3. Pascal Code function r(function a: real; b,c: integer): real

Interface: (r; ha; b; c; rreturni; fg), assuming r has no side e�ects.

UFS Component

The UFS component of the representation models the intra-procedural structure of the

program. The UFS = (Nodes; Edges; Start; T erminal) has the basic structure of a


owgraph, where Nodes represent basic blocks and Edges represent possible control


ow between Nodes. The construction of a UFS from a Pascal procedure or function is

described in terms of a top-down syntax directed parser. Semantic routines are embedded

in the grammar and executed when they are reached during a parse. These semantic

routines build the UFS { nodes are added to the Nodes set, edges to the Edges set,

de�nitions to the sequence of De�nitionType, etc. In this section we describe the UFS

construction for Pascal if, goto, and labelled statements. A complete description (in

pseudocode) is in Appendix A.

GLOBALS

ADDNODE

8



IF

GOTO

LABELS

Nodes in the UFS

Each basic block consists of a possible empty sequence of assignment statements or

procedure calls followed by a possibly empty control 
ow predicate. The structure of a

basic block is represented in the StandardRep as a sequence of de�nitions, a predicate,

and a set of operator counts.

Variables and the De�nition Sequence

In Pascal a variable is de�ned either via an assignment or a procedure invocation. The

mapping from Pascal statements to StandardRep de�nitions is described for statements

de�ning and referencing each type of Pascal variable.

Simple Pascal variables include variables of type real, integer, boolean, and char.

Sets, enumerated data types, and subrange types are also considered simple types in

de�ning the mapping of Pascal programs to the StandardRep. Variables of these simple

types map directly (with encoding) to StandardRep VarId's. For example, consider a

pascal assignment of the form y := x + y where y and x are variables of a simple

type. The assignment maps to a StandardRep SimpleDe�nition of the form (y; hx; yi).
A Pascal procedure invocation p(x, x+ y) maps to a StandardRep Procedural De�nition

(p; hhxi; hx; yii).
Pascal variables of structured types usually cannot map directly to StandardRep

VarId's because a VarId is essentially of a simple type. We describe the mapping of

Pascal structured variables to Intrep VarId's.

Array variables: At compile time, the actual cell that is de�ned by an assignment

A[i] := Z cannot be determined. In terms of the StandardRep an array is repre-

sented with one VarId. The index variable, i in the above example, is always a

referenced variable. Since an indexed array assignment only modi�es one element,

the rede�ned array is very dependent on its last state. Therefore the array itself is

referenced. The above array assignment maps to a StandardRep SimpleDe�nition

of the form (A; hA; i; Zi).

Record variables: Following the strategy used for arrays, one VarId is used to represent

an entire Pascal record. Thus, a Pascal variable reference A.b is mapped to the same

9



VarId as A.c. An assignment of the form A.c := Y maps to the SimpleDe�nition

(A; hA; Y i). We can map records with �elds that are arrays. For example, A[i].b[j]

:= 7 maps to the SimpleDe�nition (A; hA; i; j; 7i).

Pointer based objects: In Pascal, pointers can only reference objects of a speci�ed type

that are allocated at run time. Pointer values are either null or are set via the

new procedure which allocates the storage for the object referenced and sets the

pointer value. We treat the collection of objects that a pointer may reference as

one VarId in a manner similar to that used to represent array variables. During a

static analysis we cannot determine which objects are referenced by a pointer or

even how many such objects will exist at run time. However, in Pascal programs

we can limit the range of a pointer reference to objects of a speci�ed type that were

allocated dynamically. Any variable reference made using a pointer refers to the

collection of objects of the declared type that the pointer may possibly reference.

Consider the following Pascal declarations:

Cptr = "C;
C = record

v: integer;

next: Cptr

var x: Cptr;

Now we describe the representation of some Pascal statements using the above

declaration:

� new(x)

In a strict sense, the new statement is represented as a ProceduralDe�nition

of the form (new; hxi). However, instead of including a UFS of the new pro-

cedure and other \primitive" procedures and functions in a standard library,

we provide SimpleDe�nition's to represent these primitives. The SimpleDe�-

nition sequence representing the new(x) command is (x; hi); (C; hC; xi), where
C represents the collection of objects that x may reference.

� x".v := 7

This statement maps to a SimpleDe�nition (C; hC; x; 7i). We are using the

type C to represent the collection of objects that the pointer may be referenc-

ing.

10



� x := x".next
This is another SimpleDe�nition (x; hC; xi).

File variables: Every �le variable F has an associated implicitly declared bu�er variable

F ". In the representation of �le primitive procedures with a �le variable argument,

the implicit bu�er variable is included explicitly in the representation. Therefore,

writeln(F, a, b) is represented as the ProceduralDe�nition (write; hF; F "; a; bi)
or the sequence of SimpleDe�nition's (F; hF; a; bi); (F "; hbi) The often implicit

text�le program parameter output and the bu�er variable output " will be explic-

itly included as a parameter in the representation. In assignment statements that

reference or set the value of the bu�er variable F " the bu�er variable itself is

modi�ed or set. Thus, the representation of \X "" depends upon whether X is a

pointer or �le variable.

Value Parameters: Any initialization of variables is represented by the sequence of def-

initions in the Start node in the ProgramFlowStructure. In Pascal, these de�nitions

include the assignment of call-by-value parameters to local variables. Therefor, the

Start node in the UFS of procedure Q(a: integer, var b: integer) has a SimpleDe�-

nition (a0; 6 ai). All references to a in the program are represented by a0.

By adding appropriate de�nitions to the Start and Terminal nodes we can represent

additional parameter passing mechanisms including call-by-value/return.

Operator counts

The HalsteadInfoType component of each node in a UFS is necessary to calculate the

software science measures [7]. The determination of which tokens and groups of tokens

constitute operators or operands is made according to the criteria of [5]. Brie
y, control

constructs such as while. . . do. . . or case. . . of. . . end are treated as single operators, and

their counts are associated with the block where the �rst token appears.

MORE ON OPERANDS

Primitive Procedures and Functions

In addition to those described previously, Pascal includes a number of primitive or pre-

de�ned procedures and functions. The StandardRep could include a UnitRepType for

each of the primitives used in the program. Instead we de�ne a set of SimpleDe�nition

sequences that represent most of these primitive program units.

11



Prede�ned procedures.

rewrite(F) : (F; hi)

put(F) : (F; hF; F "i)

reset(F) : (F "; hF i)

get(F) : (F "; hF i)

read(F, V1; V2; : : : ; Vn) : equivalent to read(F, V1); read(F, V2); : : :; read(F, Vn)

read(F, V) : (V; hF "i); (F "; hF i)

write(F, E1; E2; : : : ; En) : (F; hF;E1; E2; : : : ; Eni); (F "; hEni)

write(F, E) : (F "; hEi); (F; hF; F "i)

pack(A, B, C) : (C; hA;Bi)

unpack(A, B, C) : (B; hA;Ci)

For the following pointer primitives, T is an implicit variable representing the collection

of objects (the type) that the pointer P may address:

new(P) : (P; hi); (T; hT; P i)

new(P , C1; C2; : : : ; Cn) : (P; hi); (T; hT; P; C1; C2; : : : ; Cni)

dispose(P) : (T; hT; P i); (P; hnili)

dispose(P C1; C2; : : : ; Cn) : (T; hT; P; C1; C2; : : : ; Cni); (P; hnili)

Prede�ned functions. The functions that are prede�ned have one formal parameter

and return a value without side e�ects. These functions include abs(X), sqr(X), sin(X),

cos(X), exp(X), ln(X), sqrt(X), arctan(X), odd(X), eof(X), eoln(X), trun(X), round(X),

ord(X), chr(X), succ(X), and pred(X). Instead of using a FunctionUse to represent the

invocation of these functions and a complete UnitRepType to to represent the function,

we can consider the use of a predi�ned function as a simple variable or constant ref-

erence. Let X and Y be variables of a simple type, the following are examples of the

SimpleDe�nition's that represent statements that use the abs function:

Y := abs(X) : (Y; hXi)

Y := abs(X - Y) : (Y; hX; Y i)

The other prede�ned Pascal functions are represented in a similar manner.

12



procedure Shellsort (var A: array[1::n] of integer );

var

i; j; incr: integer;

begin

incr := n div 2;

while incr > 0 do begin

for i := incr + 1 to n do begin

j := i� incr;

while j > 0 do

if A[j] > A[j + incr] then begin

swap(A[j]; A[j + incr]);

j := j � incr

end

else

j := 0 (* break *)

end;

incr := incr div 2

end

end; (* Shellsort *)

Figure 1: Pascal Code for Shellsort

Example IntRep

We now provide a concrete example of the UnitRepType for a particular procedure,

Shellsort[1]. Again, for reasons of clarity, we have not encoded identi�ers, constants,

or operators. Figure 1 contains source code for Shellsort, and the breakdown of the

procedure into basic blocks is shown in Figure 2. The control 
owgraph and a textual

representation of the corresponding UnitRepType are given in Figure 3. Note that the

UnitRepType is intended as a basis for automated tools and measures, and is not intended

for human consumption.

13



Basic block n1: incr := n div 2;

Basic block n2: while incr > 0 do

Basic block n3: for i := incr + 1

Basic block n4: to n do

Basic block n5: j := i� incr;

Basic block n6: while j > 0 do

Basic block n7: if A[j] > A[j + incr] then

Basic block n8: swap(A[j]; A[j + incr]); j := j � incr

Basic block n9: else j := 0

Basic block n10: ; (* representing the increment in the for loop *)

Basic block n11: incr := incr div 2

Figure 2: Basic Blocks for Shellsort

Implementation of A Pascal to Representation Translator

In this paper, we describe the translation process from the perspective of a top-down

parser. A top-down description of the translation process is comparatively easy to un-

derstand. However, automated compiler generator tools such as YACC and LEX employ

a bottom-up translation technique. Such a translator for Pascal has been implemented

using YACC and LEX[?]. This translator will produce a Standard Representation from

arbitrary Pascal programs.

14



((Shellsort,hAi,fng),
(f(s,hi,hi,;),
(n1,h(incr,hn,2i)i,hi,

(f(:=,1),(div,1),(;,1),(begin. . . end,1)g,
f(n,1),(incr,1),(1,1) g) ),

(n2,hi,hincr,0i,
(f(while. . . do,1),(>,1)g,f(incr,1),(1,1)g )),

(n3,h(i,hincr,1i)i,hi,
(f(+,1),(begin. . . end,1),

(for. . . to. . . do,1)g,
)g,

f(incr,1),(i,1),(1,1)g) )
(n4,hi,hi,ni, (;,f(n,1)g) ),
(n5,h(j,hi,incri)i,hi,

(f(:=,1),(-,1),(;,1),(begin. . . end,1)g,
f(i,1),(incr,1),(j,1)g) ),

(n6,hi,hj,0i, (f(while. . . do,1),(>,1)g,f(j,1)g) ),
(n7,hi,hA,j,A,j,incri,

(f(if. . . then,1),([],2),(+,1),(>,1)g,
f(j,2),(a,2),(incr,1)g) ),

(n8,h(swap,hhA,ji, hA,j,incrii),(j,hj,incri)i, hi,
(f(swap,1),((),1),([],2),(,,1),(+,1),

(;,1),(:=,1),(-,1),(begin. . . end,1)g,f(j,2),(a,2),(incr,1)g) ),
(n9,h(j,h0i)i,hi,(f(else,1), (:=,1)g,f(j,1),(0,1)g) ),
(n10,h(i,hii)i,hi,(;,;) ),
(n11,h(incr,hincr,2i)i,hi,

(f(:=,1),(div,1),(;,1)g,
f(incr,2),(2,1)g) ),

(t,hi,hi,;)g,
f(s,n1),(n1,n2),(n2,n3),(n2,t),(n3,n4),

(n4,n5),(n4,n11),(n5,n6),(n6,n7),

(n6,n10),(n7,n8),(n7,n9),(n8,n6),

(n9,n6),(n10,n4),(n11,n2)g,
s,

t))

��
��
s

��
��
n1

��
��
n2

��
��
n3

��
��
n4

��
��
n5

��
��
n6

��
��
n7

��
��
n8 ��
��
n9

��
��
n10

��
��
n11

��
��
t

?

?

?

?

?

?

?

	 R

��� @@I

�
�
��

@
@
@
@
@
@@R

�
��

@
@
@
@
@R

�
��

@
@
@
@R

�
�
�
�
�

@
@@

�

�
�
�
�

@
@@

�

(a) Corresponding control 
owgraph (b) Textual representation of UnitRepType

Figure 3: UnitRepType for Shellsort

15



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.

Addison-Wesley, Reading, MA, 1983.

[2] A. L. Baker, J. M Bieman, and P. N. Clites. Implications for Formal Speci�cations

{ Results of Specifying a Software Engineering Tool. Technical Report, T.R. 86-9,

Dept. of Computer Science, Iowa State University, Ames, Iowa, 1986.

[3] J. Bergeretti and B. A. Carre. Information-
ow and data-
ow analysis of while-

programs. ACM Transactions on Programming Languages and Systems, 7(1):37{61,

January 1985.

[4] J. M. Bieman and W. R. Edwards. Experimental evaluation of the data depen-

dency graph for use in measuring software clarity. Proc. 18th Hawaii International

Conference on Systems Science, 18:271{276, 1985.

[5] Robert A. Bugh. An Empirical Investigation of Control Flow Complexity Measures.

Master's thesis, Iowa State University, 1984.

[6] B. Curtis. Conceptual issues in software metrics. In Proceedings of the Nineteenth

Hawaii International Conference on Systems Sciences, January 1986.

[7] M. H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

[8] W. A. Harrison and C. Cook. A method of sharing industrial software complexity

data. SIGPLAN Notices, 20(2):42{51, February 1985.

[9] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, New York, 1977.

[10] S. Henry and D. Kafura. Software structure metrics based on information 
ow.

IEEE Trans. Software Engineering, SE-7(5):510{518, 1981.

[11] J. W. Howatt and A. L. Baker. De�nition and design of a tool for program control

structure measures. Proc. COMPSAC85, 214{220, 1985.

[12] H. A. Jensen and K. Vairavan. An experimental study fo software metrics for real-

time software. IEEE Trans. Software Engineering, SE-11(2):231{234, 1985.

[13] T. J. McCabe. A complexity measure. IEEE Trans. Software Engineering, SE-

2(4):308{320, 1976.

16



[14] T. J. McCabe. A Testing Methodology Using the McCabe Complexity Metric. IEEE

Computer Society Press, Silver Spring, MD, 1982.

[15] S. Rapps and E. J. Weyuker. Selecting software test data using data 
ow informa-

tion. IEEE Trans. Software Engineering, SE-11(4):367{375, 1985.

[16] M. R. Woodward, M. A. Hennell, and D. Hedley. A measure of control 
ow com-

plexity in program text. IEEE Trans. Software Engineering, SE-5(1):45{50, 1979.

17


