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Abstract

We identify and analyze basic principles which necessarily underlie software measures research. In

the prevailing paradigm for the validation of software measures there is a fundamental assumption that

the sets of measured documents are ordered, and that measures should report these orders. We describe

mathematically the nature of such orders. Consideration of these orders suggests a hierarchy of software

document measures, a methodology for developing new measures, and a general approach to the analyt-

ical evaluation of measures. We also point out the importance of units for any type of measurement and

stress the perils of equating document structure complexity and psychological complexity.
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1 Introduction

This paper presents some underlying principles for software measures research. By \software measures"
we mean measures which are obtainable directly from software documents. (Lines of code is a common
example of a software measure.) The careful characterization of software measures research as presented in
this paper generalizes earlier e�orts to provide axioms for software measures, e.g., [19, 38, 49], is consistent
with measurement theory, e.g., [20, 34, 42], and provides a reasonable and precise approach to the de�nition
and analytical evaluation of software document measures.

In this paper we provide a careful analysis of three problems in software measures research:

1. In the research to date we see no clear and explicit distinction between a psychological complexity

measure and a document measure. We use the term document measure to refer to measures that are
obtainable directly from particular types of documents. According to published claims, a psychological
complexity measure should actually quantify the elusive notions of understandability, maintainability,
estimated production costs, etc.[ e.g. [1] ] In Section 2 we comment further on this distinction of
measure types and argue that researchers should �rst focus their e�orts on the structural complexity
of documents and provide analytical evaluations of measures of structural complexity. Later, using the
mathematical perspective developed in the paper, we show that it is unlikely that a single document
measure can serve as an adequate psychological complexity measure.

2. Software measures researchers are often guilty of failing to determine, or at least to state, what their
measures quantify | they rarely attach units to measures. Units of measures is the topic of Section
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3. We argue that labeling measures with actual units will help avoid misuse of proposed measures,
increase attention on what is actually being quanti�ed, and support a careful de�nition of composite
document measures. We do not claim that the mathematical perspective presented in this paper will
immediately allow us to attach units to all measures. However, we do feel that well-de�ned and well-
developed abstractions (presented later) can be useful in determining units and in helping to de�ne
composite measures.

3. In general, researchers follow a prevailing paradigm when attempting to validate that a document
measure is in fact a useful complexity measure. However, the assumptions that necessarily underlie
this paradigm are not well-understood and have not been stated explicitly in the published literature.
In Section 4 we describe this common paradigm and its underlying assumptions.

An important assumption inherent in the validation paradigm is the existence of orders of the sets of
documents. Further, document orderings are inherent for any measure of the structure of documents. In
Section 5 we provide useful mathematical de�nitions, and in Section 6 we consider the types of orders
document sets might have. We argue that these orders do not have some of the properties that are often
tacitly assumed in published measures research, and we de�ne a structural complexity measure as a measure
which preserves a given, well-de�ned order.

The importance of orders on sets of software documents becomes critical because a single set of documents
probably has many di�erent orders that could be de�ned on it. A researcher needs to specify what order is
being worked with so that the results of incomparable software measures are not related or compared.

Many published document measures are de�ned for particular abstractions of actual documents. For
example, McCabe's cyclomatic complexity measure [37] is de�ned for 
owgraphs, and 
owgraphs can be
viewed as abstractions of source programs. >From these considerations of the orderings of abstractions of
documents come a hierarchy of types of structural complexity measures. Document measures de�ned on
abstractions of documents and the hierarchy of such measures are presented in Section 7.

Both theoretical and practical bene�ts result from our mathematical perspective on software measures
research. We reduce the likelihood that a document measure will be misrepresented since the property being
measured is clearly speci�ed, and the mathematical perspective provides useful analytical evaluation tech-
niques for structural complexity measures and a general approach to de�ning new document measures. This
mathematical perspective should encourage the careful development and evaluation of structural complexity
measures.

In this paper we are not presenting a complete methodology which can be immediately used to turn
software measures (research) into a mature engineering discipline. We are, however, trying to determine
a foundation upon which a mature discipline can be built. Some of the ideas presented here may seem
well-known to experienced software measures researchers, and this recognition is a con�rmation that we are
on the right track in trying to de�ne a foundation for software measures research. Further, it is important
that these underlying assumptions are clearly stated and explained so that we can build on them.

2 The Perils of Psychological Complexity

Software measures are frequently described by researchers as measures of the \understandability" of a soft-
ware document (usually program code). The underlying assumptions concerning human understanding are
often unstated and not fully justi�ed. A major problem is that software structural complexity may not be
directly related to the di�culty of \understanding" a software document. However, useful results can still
be obtained from the investigation of structural properties of software documents. For example, structural
information can help a programmer construct a set of test cases [39, 23]. A danger lies in equating structural
complexity with psychological complexity. See [18] for a general discussion of the need for software structural
measures.

The following de�nition highlights that our focus is on measures obtainable directly from software docu-
ments:

De�nition 2.1 Let D be a set of similar software documents and let < be the set of real numbers. A
software document measure m is a function from D to <. The mapping m is denoted m : D ! <.
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We do not attempt to rigorously de�ne \similar document." In the software engineering community,
there is no agreement on the speci�c set of software documents that make up a software project. One
software engineer's speci�cation is another software engineer's detailed design, which may be another software
engineer's implementation. The well-versed software engineer is capable of recognizing a large number of
di�erent document types. For example a software engineer can recognize an SADT design [43] or an abstract
model formal speci�cation [2, 43]. Thus, by \similar" documents we mean those recognizable as being of a
similar type.

Our de�nition of a software measure is consistent with the general notion of a measure from measurement
theory [23]. Also, note that a software measure is not a software \metric" because a \metric" is necessarily
a function with two arguments [3].

Many published software document measures have been promoted either explicitly or implicitly as mea-
sures of psychological complexity. For example, Harrison and Magel's scope number [28] is described as
quantifying the di�culty of understanding a decision in a program. However, a psychological complexity

measure requires at least two arguments, including the document and the programmer interacting with the
document [12].

The programmer component in models of psychological complexity is often slighted because human
\understanding" is di�cult to quantify. Halstead acknowledged the signi�cance of a model of the programmer
when he argued that his software document measure E actually quanti�es the number of elementary mental
discriminations [27]. Regardless of the validity of the mental discrimination argument [11, 13], Halstead
models the programmer with a constant { the Stroud number [48].

The replacement of a variable with a constant may have insigni�cant side e�ects in certain mathematics
and engineering applications. However, the side e�ects can be pronounced when programmers are treated as
an invariant component in a psychological complexity measure. A number of researchers have found that the
programmer is the most signi�cant component { programmer performance can vary by orders of magnitude
[5, 9, 14, 44].

The danger of assuming away the programmer component of psychological complexity can be demon-
strated with a simple example. Consider the axioms developed by Prather to de�ne a \proper measure" of
program psychological complexity [38] and Property 5 of Weyuker [49]. Essentially, Prather and Weyuker
assert that a procedure is at least as complex as the sum of the complexity of its parts, and a \proper
measure" should not contradict this intuition. Although the notion of a \proper measure" appears sound,
the intuition is not valid for measures of psychological complexity [46]. The composition of code segments
can result in a larger program that has lower psychological complexity than the original segments. Most
programmers will �nd that a fragment of a well-known algorithm is more di�cult to understand that the
entire implementation. For example, the code fragment in Figure 1 may make less sense to experienced
programmers than the full Shell sort procedure in Figure 2. Researchers have used \schema", \clique",
\chunk", \paradigms", \plans", \frames" etc. to describe the phenomenon that an entire conceptual unit is
easier to understand than its components [17, 22, 41, 46, 47]
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while j > 0 do

if A[j] > A[j + incr] then begin

swap(A[j]; A[j + incr]);
j := j � incr

end

else

j := 0 (* break *)

Figure 1: Pascal Code Fragment

procedure Something( var A : array [1::n] of integer );
var

i; j; incr : integer;
begin

incr:= ndiv2;
while incr > 0 do begin

fori := incr + 1 to n do begin

j :=i� incr;
while j > 0 do

if A[j] > A[j + incr] then begin

swap(A[j]; A[j + incr]);
j := j � incr

end

else

j := 0 (* break *)
end ;

incr := incr div 2
end

end ; (�something�)

Figure 2: Pascal Procedure Using Code from Figure 1

We expect that strong connections exist between the structure of software documents and the psycho-
logical activities of software developers. For the present, however, we concentrate on structural complexity

issues { the complexity that arises from a software document itself, independent of any cognitive issues.
Eventually, with a good understanding of structural complexity, and with the aid of those trained to under-
stand programmer psychology, the relation between structural complexity and psychological complexity can
be investigated with some reasonable expectation of success.

3 What Are We Measuring?

An important component of any measure using interval, ratio, or absolute scales [20] is the unit of measure-
ment [35, 36, 45]. A measure is actually more than a mapping to < as in De�nition 2.1. A measure might
more properly be viewed as a function to a set of ordered magnitudes where a magnitude is a product of
a real number and a unit; the unit distinguishes the magnitudes of di�erent kinds of quantities [36]. For
example, a program may have 40; 000�[line of code] or 4:5�[decision=module] 1. The real number values 4:5
and 40; 000 cannot be directly compared unless there is a meaningful way to compare their units. For a
comparison of di�erent measures to be valid the units must be comparable.

In elementary physics and engineering courses, students are taught that the appropriateness of an answer
can be determined by \calculating the units" [40]. For example, if a calculation is expected to give a result
that is a measure of force, the answer should be in force units. Since Force = mass � acceleration , an answer
with units such as [kg �meter=sec2] is expected. As this example illustrates, many physical science measures

1We use the common convention of using square brackets to denote a unit of measurement
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such as force are combinations of simpler measures. It is hoped that the �eld of software measures can
develop so that software measures can be meaningfully combined.

Software structural measures are usually expressed without units. For example, the cyclomatic complexity
of a 
owgraph is usually expressed simply as an integer value. Yet, cyclomatic complexity is a measure with
units based on the structure of a 
owgraph, namely the number of linearly independent paths [LI-path] from
the start node to the terminal node in a 
owgraph [37]. As in physics, we should be able to combine software
structural measures to form more complex and useful measures. Potentially useful measures de�ned in terms
of cyclomatic complexity include the number of LI-paths through a particular node in a 
owgraph, and the
average number of LI-paths through all nodes. The units of either measure is [LI-path=node]. The meaningful
combination and manipulation of software structural measures requires the combination and manipulation
of the units of measurement.

When units are omitted, the meaning of a measurement is lost, i.e., without units of measurement, the
speci�c property that is being measured is unknown. And if a unit of measure cannot be speci�ed for a
particular measure, the measure is especially suspect.

Consider the Halstead e�ort measure E [27]. E is described as a measure with [mental discriminations]
as its unit of measure. The Halstead volume measure V is also described as a measure with the same units {
[mental discrimination]. The measure V = N log

2
n can be assigned units of [bit]. (N is the total number of

program tokens and n is the size of the vocabulary.) V is the minimum number of bits needed for a binary
encoding of a program. Since both E and V are advertised as having units of [mental discrimination] and
V is actually a software document measure in [bit] units, we expect E to also have [bit] measurement units.
The expression for E used in practice [10] along with a dimensional analysis [36] is

E =
V

L̂
=

�1N2

2�2
V �

�
unique-operators � total-operands

unique-operands
� bit

�

Even with the assumption that unique-operands and total-operands are the same unit, the units of E cannot
be reduced to bit. Thus, it is clear that E produces real numbers of a di�erent kind of quantity than V .

The omission of units of measure can hide the \structuralness" of a software measure that is promoted
as a psychological complexity measure.

4 Validation Paradigm and Document Orderings

A common approach is used by researchers to demonstrate that a software document measure is useful.2

Using this common validation paradigm, a document measure is applied to a sample set of software documents
(usually programs). Independently, a quanti�ed criterion [14] which is not a document measure is applied
to the sample set of programs. A quanti�ed criterion is a \measure" that is intuitively related to desirable
property of a software document. However, the magnitude of a quanti�ed criterion is determined using some
information that is not part of the software document. Example criterion that have been used by researchers
include rankings of documents by experts [25], time or cost to produce or debug [1, 6, 7, 15, 26] number of
errors corrected during development [6, 21, 24], the number of changes made during development [30], etc.
The criterion may be quanti�ed through experiments or case studies. The purpose of the validation is to
determine how well the software document measure can predict the criterion.

We can take a more abstract view of the validation paradigm. Let D be a set of similar software
documents, let m be a software document measure de�ned on D, and let c be a quanti�able criterion that
is an intuitive measure of the psychological complexity of the software documents in D. Note again that c
will use information not contained in D to quantify psychological complexity. The goal of a validation is to
establish the degree to which m can predict c. A validation process takes the following form: choose a �nite
and small subset D0 of D. D0 is the document sample actually used in the validation. Obtain a ranking of
the documents in D0 using c and the other information required by c such as expert opinion, number of bugs,
etc. The measure m is validated to the extent to which it preserves the order on D0 obtained independently
of m by c.

2In this discussion we are not concerned with the problems that result from neglecting or oversimplifying the human

component of psychological complexity.
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Regardless of any de�ciencies with this prevailing validation paradigm [33], there are underlying assump-
tions that are pertinent and signi�cant for software document measures research. These assumptions have
not been stated previously. The �rst assumption is in fact a necessary condition for measurement [34].

Assumption 4.1 There is an order on the abstractions of the documents in D; the order is based on the
relative complexity.

In validation studies, the \correct order" is determined by the criterion that is intended to re
ect psycho-
logical complexity.

Assumption 4.2 A \valid measure" m preserves or carries the \correct order" on D into <. That is, if
two documents d1 and d2 are related by the \correct order", then the images m(d1) and m(d2) are related
in the same relative order in <.

These previously unstated assumptions concerning document orders provide a new perspective on the nature
of software measures. We make use of the notion of document orders to develop mathematical properties of
software document measures.

Our attention is focused on software document measures and not psychological complexity measures.
However, even with software document measures we necessarily assume the existence of document orders.
And a software document measure should preserve a meaningful order. A software document measure
intended to quantify some aspect of the structural complexity of documents must be consistent with some
intuitively sound order of the documents. (\Aspect" and \structural" are more fully developed in Section
6.) We need some formal de�nitions before we can more fully analyze the implications of these fundamental
document order assumptions.

5 Relevant Mathematical De�nitions

We review these �rst few basic mathematical concepts as a convenience to the reader.
Let S be a set. A relation R on S is a subset of the Cartesian product of S with itself. Thus, R � S�S.

De�nition 5.1 Given a set S and a relation R on S, R is

1. re
exive if (x; x)�R for every x�S,

2. antisymmetric if whenever (x; y)�R and (y; x)�R then x = y,

3. transitive if whenever (x; y)�R and (y; z)�R then (x; z)�R.

Consider a directed graph representation of a relation R on a set S where each node represents an element
of S and there is an edge from x to y if and only if (x; y)�R. We can use the correspondence between a
relation R and the associated directed graph G to say:

1. R is re
exive if and only if for each node x in G there is an edge directed from x to itself;

2. R is antisymmetric if and only if G has no cycles of length two; and

3. R is transitive if and only if whenever there is a path from node x to node y there is also an edge from
node x to node y.

4. If R is antisymmetric and transitive then G has no cycles of length greater than one.

The foregoing properties of relations are used to describe orderings:

De�nition 5.2 Given a set S and a relation R on S:

1. R is a pre-order and (S;R) is a pre-ordered set if R is re
exive and transitive.

2. R is a partial order and (S;R) is a partially ordered set if R is re
exive, antisymmetric, and transitive.

3. R is a linear or total order and (S;R) a linearly or totally ordered set if R is a partial order and if for
each pair of elements x and y in S either (x; y) 2 R or (y; x) 2 R.
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Clearly each linearly ordered set is a partially ordered set, and each partially ordered set is a pre-ordered
set.

We use the common notational conventions of S for (S;R); �S or � for the relation R; and x � y for
(x; y) 2�. Consider the following examples.

Example 5.3 Let D be a collection of programs. We can de�ne a relation �L on D so that, given d1�D and
d2�D, d1 �L d2 if and only if d1 does not contain more lines of code than d2. Obviously, �L is re
exive | a
program cannot have more lines of code than itself. The relation is also clearly transitive. Thus (D;�L) is
a pre-ordered set. However, if two di�erent programs in D contain the same number of lines of code, then
�L is not antisymmetric and (D;�L) is not a partially ordered set.

Example 5.4 Let T be a set, and let S be the power set of T (S is the set of all subsets of T ). We can
de�ne a relation � on S so that, given X�S and Y �S, X � Y if and only if X � Y . (S;�) is a partially
ordered set. However, (S;�) is not a linearly ordered set if T has at least two elements.

Example 5.5 Let < represent the set of real numbers, and let �< be the usual order on <. (<;�<) is a
linearly ordered set.

The �rst example shows that software document sets can have pre-orders which are neither partial nor
linear. Our intuition is that partial orders underly such pre-orders of document sets, i.e., we can �nd a
partially ordered structure to document sets. This intuition is formally stated in the following proposition.

Proposition 5.6 Let (S;�S) be a pre-ordered set. There exists a subset ~S � S and a partial order � ~S

such that for any s1� ~S and s2� ~S, s1 � ~S s2 if and only if s1 �S s2.

We provide the intuition supporting the foregoing proposition in terms of the directed graph associated with
(S;�S). If the ordering �S is not partial, it has cycles of length greater than one edge. In fact, there may
be a number of di�erent sets of nodes where each set is such that we can get from any node in the set to
any other node in the set. Sets of nodes with this property are called strongly connected components. We
can construct a subset of S by selecting only one element from each strongly connected component. In other
words, each element in S which is not in a strongly connected component of the graph is included in ~S,
and for each strongly connected component in S exactly one element is included in ~S. We de�ne � ~S by

restricting �S to ~S.
We call ~S a derived partially ordered set and � ~S a derived partial order; more precisely, ( ~S;� ~S) is derived

from (S;�S). Although there may be several partially ordered sets derived from the same pre-ordered set,
each derived partially ordered set is in some sense equivalent. Any two partially ordered sets derived from the
same pre-ordered set can di�er only in that a di�erent element may be included from each strongly connected
component. >From the perspective that the \selected element" is a representative of the strongly connected
component, all partially ordered sets that are derived from the same pre-ordered set are equivalent.

The need to work with functions that preserve speci�c orderings motivates the following de�nition.

De�nition 5.7 Let (P;�P ) and (Q;�Q) be pre-ordered sets and let f be a function from P to Q. The
function f is said to be order-preserving if whenever x �P y then f(x) �Q f(y).

We denote a function f from P to Q with f : P ! Q. To show that a function operates on pre-ordered sets,
we can use f : (P;�P )! (Q;�Q).

6 An Analysis of Document Orders

Recall from Section 4 that when we de�ne software document measures we necessarily assume that the set
of documents being measured is ordered. Of course, a measure will in fact de�ne a particular order. But
we raise the possibility that the aspects of program structure that may be of interest may be represented
by orders not de�ned directly by measures. In other words, if the order of a document set with respect to
some aspect of structural complexity is de�ned by a measure, then the measure is in fact the aspect we are
seeking.

Currently we do not have such measures. Invariably after publication of a new measure a number of
critical letters and articles appear. Criticisms often take one of two forms:
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1. the critic provides examples of distinct documents for which the new measure yields the same value
and the critic argues that the example programs are not \the same", or

2. the critic provides examples of distinct documents for which the new measure yields distinct values
and the critic argues either that they should be the same or that the order implied by the measure is
inappropriate.

Both forms of criticism have been used to motivate de�nitions of new measures. Both forms are based on
observations about preferred or assumed orders on the sets of documents.

What follows is an analysis of possible orderings on the set of abstractions of documents based on the
mathematical notions of order developed in Section 5:

Pre-order: At an intuitive level, if there is not at least a pre-ordering of the document set, then there is no
sense of structure at all. We tacitly assume there exists an ordering �R such that if x �R y and y �R z,
then x �R z. This is a critical point since we are really equating the notion of document structure
with transitivity of an underlying order. If there is no transitive ordering, there is no structure to the
documents in the document set.

We know, from our preceding discussion of orders de�ned by an arbitrary measure m that there is a
pre-order de�ned by m. On the intuitive level, there may be a problem with pre-orders that are not
partial orders. They may not do a very good job of di�erentiating distinct documents. Since a pre-
order does not have the antisymmetry property, there may be \regions" of the relation 3 in which each
document is related to every other document in the region, i.e., the strongly connected components
from Section 5. If there are a small number of large regions of this type, then the order does not \say
much" about document structure. In such a case, there are only a few groups of documents that are
meaningfully distinguished by the order. Some researchers claim that McCabe's cyclomatic complexity
su�ers from exactly this de�ciency [29].

partial order: If the underlying order of the document set is a partial order and not a linear order, then
the potential problem associated with the simple pre-order is eliminated. The antisymmetry property
of a partial order precludes the regions of distinct documents that all �t \in the same place" in the
preorder. However there is another problem associated with partial orders, since, in general, not every
pair of documents is comparable under a partial order. (Since every partial order is also a pre-order,
this is also a problem for orders of document sets that are just pre-orders.)

This is a fundamental problem for software document measures research. Since a measure m maps the
entire set of similar documents to <, all abstractions of documents are comparable under the measure.
But if the underlying order for the document set is a partial order and not a linear order, then the
measure has the e�ect of creating comparabilities. In other words, when we try to de�ne a measure to
preserve a partial order, we loose information about which documents are not comparable in the order.

Consider the following informal example. Assume that we construct Pascal procedure bodies by the
sequencing and nesting of statements. Given two procedure bodies P1 and P2, we have P1 � P2 if and
only if starting with P1 we can derive P2 through a series of sequencing and nesting operations. (Thus
any procedure body consisting of exactly two statements in sequence can be derived from a procedure
consisting of either one of the statements.) Clearly there are many procedure bodies which are not
comparable under this order. A procedure body consisting of a sequence of two while statements is
not comparable with a procedure body that consists of two nested while statements. But any measure
which purports to quantify \nesting complexity" will necessarily compare the sequenced and nested
while statements.

There are, of course, two possibilities in the the simple informal example: either the measure compares
things that are not comparable or we have not identi�ed an appropriate ordering. It is the opinion of
the authors that resolving this comparability issue for software document measures will not be easy.

linear order: This would seem to be the ideal. Let �L be the linear order for a particular aspect of
structural complexity of documents. Every two items are comparable, so, given a measurem, m(d1) �<

3Consider a directed graph representation of the order R as described in Section 5.

8



m(d2) is meaningful for every document d1 and d2. However, linear orders may be too discriminating
to be of practical value. We could not have x =L y even when the abstractions of x and y are only
minutely di�erent. Assume our similar documents set consists of programs in a given programming
language and an abstraction which includes the variable names. A program P1 and a program P2
which di�er only by the spelling of a single variable name could not be equal with respect to L, i.e.,
we could not have P1 =L P2. Thus a linear order would have the 
avor of an exhaustive enumeration
of all the documents.

To emphasize the signi�cance of the pre-order assumption for the notion of the structure of documents,
we provide the following de�nition:

De�nition 6.1 Let D be a document set with pre-order �D and let �< be the usual notion of less than or
equal to for <. A structural complexity measure is an order preserving function m : (D;�D) �! (<;�<).

This de�nition actually suggests a method for software measures research. The de�nition emphasizes the
potential relationship between a measure and an underlying order on the document set. It is simply a
formalization of the Assumptions 4.1 and 4.2 given in Section 4. We note again that any measure will itself
de�ne a pre-order on the document set. However, the emphasis of the de�nition is of practical interest. If for
a given measure m we can show that m preserves a given order R, where R is not de�ned directly by m, then
we have a demonstrable analytical property of m. The value of the property is of course related to the extent
to which m and R are di�erent (so that \not de�ned directly by m" is not just cosmetically concealed). The
value of the property is also related to the extent to which R describes a structural property that has some
practical value. In [3] we develop an order for document sets and show that McCabe's cyclomatic complexity
preserves the de�ned order.

7 A Measures Research Methodology

An important point in the preceding Section is that the notion of document structure relies on the existence
of pre-orders for the document sets. We also refer to \aspect" of document structure, re
ecting the pervasive
belief that software document structure is probably multi-faceted. This implies there may well be a number
of pre-orders of the document sets that are not everywhere consistent, i.e., two documents may be related
in one order but not in another or two documents may be related \oppositely" ( d �1

~d and ~d �2 d) in
di�erent orders. The existence of varied aspects of the structure of programs is apparent. Program size, e.g.,
as measured by Halstead's volume, is not the same as program control 
ow complexity, e.g., as measured by
McCabe's cyclomatic complexity.

We often de�ne an \aspect" of software documents when we use a particular abstraction of the software
document. For example, cyclomatic complexity is actually de�ned for a 
owgraph abstraction of the corre-
sponding program. This adds a new component to de�ning a structural complexity measure: �rst de�ne the
abstraction of the document, and then de�ne a measure on the particular abstraction.

Given particular abstractions of software documents, we can raise questions about orderings of the ab-
stractions analogous to those just considered for documents. But �rst note that any order on the abstraction
will de�ne a pre-order on the original document set, as long as there is a well-de�ned mapping from the
original documents to the abstractions.

For example, let the abstraction of programs be simply the sequence of token types, where token types
are those that might be returned by a lexical analyzer to a parser. We can de�ne a pre-order on the sequences
of token types | a token sequence S1 is \less than" a token sequence S2, S1 �t S2, if and only if S1 has
fewer tokens. This order on token sequences de�nes a preorder on the set of programs, where a program P1
with corresponding token sequence S1 is \less than" program P2 with corresponding token sequence S2 if
and only if S1 �t S2. The \less than" order of the set of programs is a preorder since many programs will
map to the same sequence of token types.

The consideration of di�erent types of orders on the sets of abstractions leads to a hierarchy of structural
complexity measures. Recall that structural complexity measures need only be order preserving functions
from a set of documents to the real numbers.

We de�ne a subset of the set of structural complexity measures by requiring that the measure preserve
a partial order on a particular abstraction:
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De�nition 7.1 Let D be a set of similar documents and A be a set of abstractions. Also let abs: D �! A
and �A be a partial order on A. Finally, let m? be an order preserving mapping, m? : (A;�A) �! (<;�<).
Then m(D) = m?(abs(D)) is a well-founded structural complexity measure.

We can de�ne a subset of well-founded structural complexity measures by restricting the nature of the
orders on abstractions. In particular, partial orders de�ned by speci�c transformations on abstractions can
be used in analyzing the properties of structural complexity measures. For example, consider the 
owgraph
as an abstraction of source programs and the following two transformations on 
owgraphs:

De�nition 7.2 Given a 
owgraph G = (N;E; s; t), then a 
owgraph G0 = (N [ fxg; E0; s; t) is obtained
from G by a node addition transformation (T1) if:

1. x 62 N ,

2. 9(y; z)[(y; z) 2 E ^E0 = (E � f(y; z)g) [ f(y; x); (x; z)g], and

3. the only di�erences between G and G0 are given in 1. and 2.

This �rst transformation allows a new 
owgraph to be generated by adding a node along an existing edge
of a given 
owgraph.

De�nition 7.3 Given a 
owgraph G = (N;E; s; t), then a 
owgraph G0 = (N;E[feg; s; t) is obtained from
G by an edge addition transformation (T2) if e 62 E and e = (x; y), where x 2 N and y 2 N .

This second transformation allows a new 
owgraph to be generated by adding a new edge between existing
nodes in a given 
owgraph.

Now de�ne �F for 
owgraphs G1 and G2 so that G1 �F G2 i� G2 can be obtained from G1 by a �nite
sequence of applications of T1 and T2. The set of transformations and the associated partial order provide
one perspective on the structural complexity of 
owgraphs. In fact, the authors have shown that McCabe's
cyclomatic complexity measure preserves this partial order �F [3].

The partial order �F formalizes a notion of containment for 
owgraphs. A 
owgraph G is contained
in a 
owgraph G0 if and only if G �F G0. This notion of containment can be generalized to arbitrary
document sets and any �nite set of transformations. The transformations must de�ne a partial order on
each document set and the set of transformations must be constructively complete. The transformations
are constructively complete if they are su�cient to construct the entire document set from a given �nite set
of \initial" documents. The trivial 
owgraph with just a start node, a terminal node, and one edge from
the start node to the terminal node is the only initial document needed to construct all 
owgraphs using
De�nition 7.2 and De�nition 7.3.

De�nition 7.4 Let D be a set of similar software documents, A be a set of abstractions where abs: D �! A,
and let:

1. T be a �nite set of relations that map A, and possibly one or more components of the document type,
to A,

2. P be a partial order de�ned on A using T , and

3. T be constructively complete.

Then P is a containment-based partial order.
Of course, what really matters here is what measures say about the document set D. It is just that we

will most often de�ne the containment-based partial order on some abstraction of the document set. The
node in transformation T1 and the edge in transformation T2 are examples of \components of the abstraction
type". One might want to be more precise about de�ning \components of the abstraction type". Such a
development would necessarily be based on the careful de�nition of the representation of the abstraction
type. We choose not to limit the representation of software abstractions of software documents, or the
documents themselves, to sequences (or strings) of characters or some such primitive representation. Thus
we allow for the possibility of abstractions and documents that are two dimensional, e.g., data 
ow diagrams
or 
owgraphs.

This notion of a containment-based partial order can be used in a general de�nition of a subset of
well-founded structural complexity measures:
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De�nition 7.5 Let D be a set of similar documents and A be a set of abstractions. Also let abs: D �! A
and �A be a containment-based partial order on A. Finally, let m? be an order preserving mapping,
m? : (A;�A) �! (<;�<). Then m(D) = m?(abs(D)) is a containment-based structural complexity measure.

Perhaps every well-founded structural complexity measure is a containment-based structural complexity
measure. One might be able to argue that for each partial order there is an appropriate set of transformations
that \de�ne" the partial order. However, the issue here is the extent to which the transformations describe
the structure of the abstraction. In [31] Howatt and Baker develop a containment based partial order
which can be used to analytically evaluate proposed measures of control 
ow nesting complexity in program

owgraphs.

The de�nitions of well-founded structural complexity measure and a containment-based structural com-
plexity measure suggest a methodology for software document measures research. First, in de�ning a doc-
ument measure one needs to specify precisely the documents or abstraction of documents for which the
measure is de�ned. If the measure is for an abstraction of documents, it is essential that the mapping from
documents to the abstraction be carefully de�ned. One might then precisely de�ne the \aspect" of docu-
ment structure to be measured by de�ning a partial order on the documents, or abstractions of documents.
An appropriate measure of this aspect of structure should then be an order preserving mapping from the
documents, or abstractions, to the real numbers.

Note that even if one does not de�ne a measure using a particular ordering, measures can be analytically
evaluated using various known orders for the documents. The authors are �nding value in the methodology
both for de�ning measures and for analyzing existing measures.

As a summary, consider the following method for developing a new structural complexity measure:

1. Specify a set of software documents on which the subsequent steps will be based. While this step seems
obvious, it is not always done. Occasionally, restrictions on the set of documents limit the usefulness
of measures.

2. Specify abstractions for the selected set of documents. It is important that the set of appropriate
abstractions be well-de�ned. As a simple example, it is important for particular tools and measures
that each node in the 
owgraph lie on a path from the start node to the terminal node. In such cases
the additional requirement should be stated explicitly.

3. De�ne a mapping from the document set to the set of abstractions. The basic ideas in a tool or measure
may be sound and original, but it is equally important that others be able to analyze, and possibly
implement, the ideas. When the ideas are based on a particular abstraction of documents, replication
of results and general use of the measure or tool depends on having a well-de�ned mapping to the
abstraction.

4. De�ne an order on the set of abstractions. This is probably the most critical step in the process.
The order on the set of abstractions will, in some sense, de�ne the aspect of structure which we are
considering. The de�ned order can also then be compared with other possible orders to see how the
current \aspect of structure" is related to other de�ned aspects. The formal nature of the order will
reveal possible pitfalls of structural complexity measures that preserve the order, as described in Section
6.

5. De�ne an order preserving function from the abstraction to the real numbers. This will, by de�nition,
give us a well-founded structural complexity measure. The order on the abstraction will often suggest
the units to be associated with the measure. Using this approach, we should have a good idea of what
the measure is actually quantifying and how we might analytically evaluate the measure.

8 Conclusions

The mathematical perspective developed in this paper contributes to the goal of providing a theoretical
basis for software document measures research. Earlier e�orts to provide this basis have centered on the
development of a set of axioms which software document measures ought to satisfy, e.g., [38]. The theoretical

11



basis developed in this paper provides a more generally applicable hierarchy of properties that a software
document measure might satisfy. Our hierarchy includes:

1. software document measure,

2. structural complexity measure,

3. well-founded structural complexity measure, and

4. containment-based structural complexity measure.

Many of the axioms developed in the earlier research e�orts (e.g., [19, 38, 49]) are subsumed by the hierarchy
given above, as long as one interprets these earlier sets of axioms as applying to structural complexity and
not to psychological complexity.

Our mathematical perspective also makes explicit inherent assumptions about the document sets mea-
sured | these document sets are ordered. We also stress the importance of abstractions of document sets
in developing and evaluating software structural complexity measures. A particular abstraction might be
used to show that a given software document measure is a well-founded structural complexity measure. The
nature of the abstraction might well provide insight into what is actually being measured (or to demonstrate
equivalence of two seemingly di�erent measures).

We also suggest that using abstractions of documents and orders on these abstractions will suggest the
units to be associated with a given measure. This should additionally support consideration of various
combinations of units as is common in the physical sciences.

The authors are �nding that the new mathematical perspective does chart new and productive ground
for software document measures research. We are currently making a distinction between abstractions of
documents and the measures de�ned using these abstractions. For example, we are developing data 
ow
abstractions for both imperative [8, 16] and functional programming languages. The data 
ow equivalents of
scope [28], �nite execution path [4], and structuredness [32] appear promising for developing testing strategies
as well as for measuring the structure of programs. We are continuing to develop containment partial orders
which can be used as the basis for analytical evaluation tools of measures of document structural complexity.
We also are hopeful that applying the perspective to di�erent types of documents may yield useful structural
complexity measures for formal speci�cation and detailed design documents.

In summary, the mathematical perspective on software measures research presented in this paper provides
some basic assumptions inherent in the software measures research to date, clari�es what we do and do not
measure, and suggests numerous approaches to the analytical evaluation of proposed structural complexity
measures.
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