
Inheritance Tree Shapes and Reuse
�

Appeared in Proc. IEEE-CS Fourth Int. Software Metrics Symposium (Metrics’97), pp. 47-52, April 1995

Byung-Kyoo Kang
Switching Technology Division

Electronics & Telecommunications Research Institute
161 Kajong-Dong Yusong-Gu

Taejon, 305-350 KOREA
bkkang@nice.etri.re.kr

James M. Bieman
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523 USA

bieman@cs.colostate.edu

Abstract

The shapes of forests of inheritance trees can affect the
amount of code reuse in an object-oriented system. Design-
ers can benefit from knowing how structuring decisions af-
fect reuse, so that they can make more optimal decisions.
We show that a set of objective measures can classify forests
of inheritance trees into a set of five shape classes. These
shape classes determine bounds on reuse measures based on
the notion of code savings. The reuse measures impart an
ordering on the shape classes that demonstrates that some
shapes have more capacity to support reuse through inher-
itance. An initial empirical study shows that the applica-
tion of the measures and demonstrates that real inheritance
forests can be objectively and automatically classified into
one of the five shape classes.

Index terms — software measurement and metrics,
object-oriented software, inheritance, software reuse.

1. Introduction

Object-oriented development encourages reuse because
of the use of abstraction and encapsulation. Composition or
instantiation (“part-of” relations) and inheritance (“is-a” re-
lations) are the two key mechanisms for reusing components
in object-oriented software. In this paper, we explore the ef-
fect of the structure of inheritance trees on inheritance reuse.�

Research partially supported by NASA Langley Research Center grant
NAG1-1461. c

�
1997 IEEE. Personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or re-
distribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

Inheritance structure can be quantified in various ways.
Chidamber and Kemerer define two measures of inheritance
from the perspective of individual classes: distance of a
class from the root of its inheritance tree (DIH), number of
children of a class (NOC) [5]. We are interested in quantify-
ing the inheritance structure of entire inheritance hierarchies
rather than individual classes. The mean and median of the
measures for individual classes provides enough informa-
tion to roughly characterize the use of inheritance in entire
object-oriented systems [4]. Such measures have been used
to evaluate optimizing compilers [6]. Measures that focus
on properties of entire systems — forests of inheritance trees
— should provide information that can better answer ques-
tions about the system as a whole.

Reuse in object-oriented systems can be measured from
a variety of perspectives [1, 2, 3]. We focus on measuring
internal reuse [7] from the perspective of an entire system.
We want our measures to quantify the amount of reuse that
occurs in an entire system.

First, we define reuse measures that indicate the degree of
code savings in an object oriented system. The code savings
measure quantifies the amount of code that does not have to
be rewritten due to the use of inheritance. Then we define
a set of measures that classifies a forest of inheritance trees
into one of five classes. We analytically show that the shape
classes can be ranked in terms of the effect of a shape on pos-
sible code savings. Finally, we demonstrate the application
of the reuse and shape measures.

2. Measuring System-level Inheritance Reuse

System-level inheritance reuse can be simply measured
in terms of capacity which quantifies the information that is
available to clients, sub-classes, through inheritance. Reuse
can be expressed as code savings, which are measures based

on the number of functions that would be required to imple-
ment the same functionality without inheritance.

A subclass inherits all methods and instance variables of
its super-classes. Those methods and instance variables can
be redefined in the subclass, and new methods and instances
variables can be added. To implement the same functional-
ity without inheritance, additional functions must be written
to replace those that would be inherited.

2.1. Measuring Capacity

A class has functionality that is defined both locally and
in its superclasses. The total amount of functionality, ex-
pressed as a count of the number of methods that can be ac-
cessed through its interface, is the capacity of a class.

Definition 1 The capacity, Cap(c) of a class c is total num-
ber of methods which are accessible locally and through
inheritance by � :

Cap(c) � the number of methods in c�
the number of all inherited methods

Capacity is similar to the response for a class (RFC)
measure defined by Chidamber and Kemerer [5]. However,
RFC is defined as a measure of communication between ob-
jects, and includes methods called in other classes that are
linked through non-inheritance mechanisms. Capacity in-
cludes only methods accessed directly or through inheri-
tance.

Capacity can also be defined for an entire inheritance tree
or a collection or forest of trees that make up an object-
oriented system.

Definition 2 The capacity of a tree or forest of trees t in a
system is the sum of the capacity of the individual classes:���
	���
���� � �� � ��� ���
	�
 � � �
where n is total number of classes in tree(s)

�
.

2.2. Measuring Reuse Through Inheritance (Code
Savings)

A saved method is a method that does not have to be writ-
ten because it is inherited. We can easily define a measure
of inheritance reuse based on the number of saved methods.

Definition 3 The code savings (CS) of an inheritance tree
or forest of trees in a system is the total number of saved
methods in the tree(s):��� � ���
	���
���������
where

�
is total number of methods explicitly implemented

in the inheritance tree or forest of trees.

We can define a measure of the relative amount of code
savings by normalizing the code savings measure in terms
of the total number of methods.

Definition 4 The relative degree of code savings (RDCS)
of an inheritance tree or forest of trees is the total number
of saved methods per the total number of methods in the
tree(s): !�" ��� � ����#$�
where

�
is total number of methods explicitly implemented

in the inheritance tree(s).

RDCS values range from zero to values greater than 1.
RDCS has a value of zero when no methods are inherited,
and values greater than 1 when the number of descendent in-
heritors of methods is greater than the total number of meth-
ods that are explicitly implemented.

2.3. Examples

Figure 1 shows the calculation of the reuse measures for a
simple inheritance tree consisting of two classes, a subclass
and a superclass. The superclass has five public and three
private methods; the subclass modifies one of its inherited
methods and adds two new methods.

T

Superclass
5 public methods
3 private methods
Cap(Superclass) = 8

Subclass
Modifies 1 superclass method
Adds 2 new methods
Cap(Subclass) = 7

Cap (tree) = 15, CS = 4, RDCS = .36

Figure 1. A Simple Example of Reuse Mea-
surement Calculations

Our reuse measures are based on a comparison between
the implementation that uses inheritance, and the structure
of an equivalent implementation without inheritance. To
implement the functionality of the classes in Figure 1 the
(former) superclass would still have five methods, while
the (former) subclass would need to implement seven rather
than three methods. Thus, the code savings, the number of
methods that do not have to be re-implemented is 4 meth-
ods. We normalize our code savings measure by dividing
code savings by the number of methods in the tree giving
the RDCS value of .36, which indicates that 36% of the to-
tal functionality in all of the classes were inherited and not
written locally.

2

Figure 2 shows the calculation of the reuse measures for
a system with 13 classes. The classes are configured into an
inheritance tree with 10 classes with a maximum depth of
inheritance of four. Three classes are not part of any inheri-
tance tree. This system might represent a portion of a realis-
tic system. This example shows that very high RDCS values
are possible. The system has an RDCS value of .9, which in-
dicates that the system has nearly as many inherited methods
as explictly implemented methods.

(3,0)

(0,1) (0,1) (0,1)

(4,0) (1,0)

(4,0)

(5,0) (4,0)

(2,2) (3,1)

(6,0) (m, n): m is the number of new(2,0)

public methods and n is the

number of redefined methods.

Total number of methods = 40

TCap (System) = 76

Total code savings CS = 36

RDCS = 0.9

Figure 2. Capacity and Code Savings in an
Example System

3. Classifying Tree Shapes

We assume that it is not possible to represent all general
shapes of inheritance trees with a single ordinal measure.
We doubt that we can classify all shapes, and we doubt that
we can impart an ordering on shapes to constitute an empir-
ical relation system [7, 9]. The development of a single or-
dinal shape measure would be similar to the difficult, if not
impossible task, of finding a single complexity measure [8].

Rather than develop an ordinal measure, we classify
trees into a set of nominal shape classes. Our classification
scheme is based on objective, measurable properties of trees
that intuitively relate to the notion of tree shape.

We do not use overall size measures such as average or
maximum depth or width of the tree, or the average number
of children of classes. The concept of “shape” implies how
a tree appears regardless of its size. Rather we classify tree
shape using a measure of the mean growth rate (MGR) of
trees and the average widths of a three part partition of a tree,
three average widths (TAW).

3.1. Measuring the Mean Growth Rate (MGR) of
Trees

The MGR indicates how fast an inheritance tree grows
or shrinks as the depth of a tree increases. It is based on
the increase or decrease from one inheritance level to the

next. The increase at a single inheritance level can be de-
fined as the average number of children at that level. The
mean growth rate of the entire system can be quantified by
averaging the number of children at all levels.

Definition 5 The mean growth rate MGR of a tree (or forest
of trees) is the arithmetic mean of the number of children at
each level: %'& ! �)(+*-, �. �0/�132 �4
657�8
where

8
is the maximum depth of the tree, 132 �4
657� �9;:=<?>9;: , and 2 . is the number of classes at depth

5
. ANC rep-

resents the average number of children at depth
5
.

Figure 3 shows example trees and computed MGR val-
ues. We see that when a shape of one tree is repeated in an-
other, the MGR value of both trees is the same. If the growth
rate in a tree is consistent at each level, we can accurately
guess the shape of the tree without considering the size of
the tree.

MGR alone cannot completely characterize the shape of
a tree. As Figure 4 shows, MGR does not distinguish be-
tween trees with varying growth rates (ANC values) at dif-
ferent portions of the trees. This is because MGR represents
the average growth rate of an entire tree or forest of trees.
We clearly need additional information to classify trees into
shape classes. We need to quantify the differences between
the shapes at different parts of a tree.

MGR = 2 MGR = 2

Figure 4. MGR does not distinguish between
trees with inconsistent growth rates

3.2. Measuring Three Average Widths (TAW) of
Trees

To indicate the changing growth rates, we divide an in-
heritance tree into three components and measure the aver-
age widths of the trees of each component. A measure based
on three components can be relatively descriptive when the
inheritance hierarchy does not get very deep. Then, each
component is not being averaged over many levels. We use
three components as an approximation, in part, because of

3

MGR = 2 MGR = 2

MGR = 1.5 MGR = 1.5

MGR = 1 MGR = 1

MGR = 0.5 MGR = 0.5

Figure 3. Example Mean Growth Rate (MGR) Calculations

empirical evidence that inheritance hierarchies do not tend
to have great depth [4].

Definition 6 The three average widths (TAW) of an inher-
itance tree or forest of trees is a 3-tuple, where each com-
ponent is a real number that indicates the mean number of
classes at each level of depth in one third of the tree:� 13@ �
�A�BDC=A3EFC=AHGI�
where

AJB
,
A3E

, and
A3G

are, respectively, the mean widths of
the section 1, section 2, and section 3 of the tree. Section 1
represents the top one third of the levels of the tree, starting
at level 0. Section 2 represents the middle third of the tree
levels, and Section 3 represents the deepest levels.

Figure 5 shows the calculation of TAW for five systems.
Inheritance trees are shown in the left column, the widths at
each level are shown in the middle column. and the widths
of the three sections of TAW are shown in the right column.
The examples in Figure 5 show that TAW roughly represents
how the measured trees grow or shrink.

3.3. A Tree Shape Measure

We use the three TAW measures to classify inheritance
trees or forests of trees into five classes. These five classes
represent a nominal scale measure with five elements.

Definition 7 The shape, Shape(t), of a tree or forest of trees
is either a (1) triangle, (2) rectangle, (3) diamond, (4) in-
verted triangle, or (5) sand glass. The classification depends
on the value of TAW(t) = (w1,w2,w3):

1. Triangle:
AJBLKMA3E4NMAHG

or
A�BLNMAOE4KMAHG

.

2. Rectangle:
AJB � A3E � AHG

3. Diamond:
A�BLPQA3E4NMA3G

4. Inverted Triangle:
A�B�RMA3E4PQAHG

or
AJBLPMA3E4RMAHG

5. Sand Glass:
A�BLNQA3E4PQAHG

These five shape classes give an description of an approx-
imate shape. We can automate the shape classification, since
it is defined in terms of objectively measured attributes. We
could improve the accuracy of our classification scheme by
increasing the number of sections in the TAW measure. The
TWA, MGR, and tree height can all be used to represent tree
shape.

4. Analysis of the Relation between Capacity
and Tree Shapes

Intuition suggests that deep inheritance trees with many
classes located in deep parts of the tree will reuse many su-
perclass methods and will have relatively high code sav-
ings values. Here we analyze the relationship between tree
shapes and inheritance reuse as measured by RDCS.

In our analysis we assume that all classes have the same
number of methods, and that no methods are redefined. This
assumption is needed in order to evaluate the general ca-
pacity of different shaped trees. For inheritance trees with
classes with varying numbers of methods, our analysis will
underestimate the tree capacity and RDCS when classes
with many descendents have more locally defined meth-
ods than those with few or no descendants. The analysis

4

section

section

section

section

section

width

width

width

width

width width

width

width

width

depth

depth

depth

depth

depth

width

1.

2.

3.

4.

5.

3

4

2

4

2
1

2

4
5

1
2

4

TAW = (3, 3, 3)

TAW = (4, 3, 2)

TAW = (1, 2, 4)

TAW = (4.25, 2, 3.5)

TAW= (1.5, 4, 1.5)

Figure 5. Three Average Widths (TAW) Calcu-
lations

will overestimate capacity and RDCS when classes with
few or no descendents have more locally defined meth-
ods than classes with many descendents. Although real
object-oriented systems have varying numbers of methods
in classes, this analysis provides good insight into the rela-
tionship between shape and reuse.

Theorem 1 Let n be the total number of classes in an inher-
itance tree or collection of trees, and assume that all classes
have the same number of methods and no methods are re-
defined. For each inheritance tree shape, the tree capacity���S	 �

and RDCS have the following tight bounds

UTL�

:

1. Triangle:
���
	 �
���� � TV
�W�XZYD[�W;�

and
!�" ��� �TV
�X\Y-[�W;�

.

2. Inverted Triangle:
���
	 �
���� � TV
6W;�

and
!�" ��� �TV
6]I�

.

3. Diamond:
���
	 �
���� � TV
�W�X\Y-[^W;�

and
!�" ��� �TV
�X\Y-[�W;�

.

4. Sand Glass:
���S	 �
6��� � TV
6WOX\Y-[_W;�

and
!O" ��� �TV
�X\Y-[�W;�

.

5. Rectangle:
���
	 �
���� � TV
6W�`ba�c
�

and
!�" ��� �TV
�W � a�c �

.

Proof: For the following proof let n be a total number of
classes of the tree(s), Let

W
be the number of classes in the

tree and d be the number of methods of each class,
8

be
maximum depth of the tree(s) and e be the mean growth rate
(MGR value) of the tree(s). Now we look at each case:

1. Triangle: e NfB
by the definition of MGR.W � e / � e � �hgigjgS� e *� e *-, � �QBe �QB8 � X\Y-[Dk�
=
 e �QB
�lW � B
�� TV
�X\Y-[_W;�

From the definition of
���
	 �

:���S	 �
6��� � �� � ��� �4
 � � �� d �� � �;� �4
 �
� �d� d *� � �;�
�m � e
�
, � �� don
 8 � B$� e *e �QB � e *Sp � �MB
 e �QB
� crq

Since (*� ��� e � �
 e *
p � �MB$�=#7
 e �MB$� .
By differentiating both sides, (*� �0/
6m � e � � �
 8 �B
� e * #7
 e �QB$�;�M
 e *Sp � �MB$�=#7
 e �MB$� c���
	 �
���� � TV
 8 e * �s�tTV
 e * �� TV
�W�XZYD[�W;�s�tTV
�W;�� TV
�W�XZYD[�W;�
From the definition of RDCS:!�" ��� �
u���
	v�w
����s� d � W;��#I
 d � W;�� TV
�W�XZYD[�W;�=#DTV
�W;�� TV
�X\Y-[�W;�

2. Inverted Triangle: e PfB
by the definition of MGR.W � e * � e *-, � �hgigjgS� e /� e *-, � �MBe �MB8 � X\Y-[?k^
=
 e �MB$�UW � B$�� TV
6XZYD[�W;�

From the definition of
���
	 �

:���
	 �
���� � �� � ��� �4
 � � �
5

� d �� � ��� �4
 �
� �d� d *� � ���
�m � e *Sp
�
, � �� d *� � ���
�m � e * � e
�
, � �� dxe * *� � �;�
�m � e

�
, � �

Since (fy� ���
�m � e � � �+e #7
=Bz� e �lc .���
	v�w
���� � T nId{e * � e
�Bz� e � c�q� TV
 e * �� TV
�W;�
From the definition of RDCS:!�" ��� �
U���
	v�w
����s� d � W;�=#7
 d � W;�� TV
6W;�=#DTV
�W;�� TV
u]?�

3. Diamond: A diamond consists of a triangle (upper
part) and an inverted triangle (lower part). Let e � and���
	v� �
���� be the growth rate (MGR) and the Capacity
of the triangle part, and e c and

���
	 � c
6��� be the growth
rate and the Capacity of the inverted triangle.

Since the shape is diamond, e c � B
e � and e � N|B
:W �
 e /� � e �� �+gjgigS� e * a�c� � � E�
 e * a�c , �� �QB
� � Ee � �QB8 � E � X\Y-[k >
=
 e � �QB
�lW;#}E � B$�� TV
�X\Y-[_W;����
	v�_
���� � ���
	v� �
6��� � ���
	�� c
�������S	�� �
���� � TV
 W E X\Y-[W E �� TV
�W�X\Y-[�W;����S	 � c
���� � ��� �H~ � p � �4
 �

� �
� d ��� � ~ � p �

�4
 � � �d
� d � �� � ���
�
�m � 8 #}E?� � e * a�c� � e �c �

� d � e * a�c� � � �� � ���
=
6m � 8 #}ED� � e
�c �

(1)

Since (y� ���
�m � e � � �he #I
=BH� e � c :���
	v� c
���� � TV
 e * �� TV
�W;����
	���
���� � ���
	v� �
6��� � ���S	�� c
����� TV
�W�X\Y-[�W;� � TV
6W;�� TV
�W�X\Y-[�W;�
Form the definition of RDCS:!�" ��� �
u���
	 �
����s� d � W;��#I
 d � W;�� TV
�W�XZYD[�W;�=#DTV
�W;�� TV
�X\Y-[�W;�

4. Sand Glass:

A sand glass shape consists of an inverted triangle
(upper part) and a triangle (lower part). Let e � and���
	 � �
6��� be the MGR and the Capacity of the inverted
triangle part, and e c and

���
	 � c
6��� be the MGR and the
Capacity of the triangle part.

Since the shape is sand glass, e � � B
e c and e � P|B
:W �
 e /c � e �c �hgigjgS� e * a�cc � � E�
 e * a�c , �c �QB
� � Ee c �QB8 � E � X\Y-[Ik �
=
 e c �MB$�UW;#}E � B
�� TV
6XZYD[�W;����S	 �
6��� � ���
	 � �
���� � ���
	 � c
�������
	 � �
6��� � TV
 W E �� TV
6W;����
	 � c
6��� � ��� � � a�c p � �4
 �

� �
� d ��� � � a=c p �

�4
 � � �d� d * a�c� � � c
=
�m � 8 #-ED� � e
�
, �c �

� d��
 8 � B
� e *ce c �QB � e *
p �c �MB
 e c �MB$� c��� d � 8 E � e � p �c �QBe c �MB
6

Since (�*� ��� e � �
 e *
p � �MB$�=#I
 e �QB
� .
By differentiating both sides, (*� �0/
�m � e � � �
 8 �B
� e * #I
 e �QB
���M
 e *
p � �MB$�=#I
 e �QB
� c���
	 � c
6��� � TV
 8 e *c �s�tTV
 e *c � � TV
 e *c �� TV
6W�XZYD[�W;����
	 �
6��� � ���
	 � �
���� � ���
	 � c
6���� TV
6W;� � TV
�W�XZYD[�W;�� TV
6W�XZYD[�W;�
From the definition of RDCS,!�" ��� �
U���
	 �
����s� d � W;�=#7
 d � W;�� TV
6W�XZYD[�W;�=#DTV
�W;�� TV
6XZYD[�W;�

5. Rectangle: Let
8

and
A

be the height and width of the
rectangle: W � A � 88 � TV
l� W;�
From the definition of

���
	 �
:���
	 �
6��� � �� � ��� �4
 � � �� d �� � ��� �4
 �

� �d� d *� � ���
�A � m=�� d � A � *� � ��� m� d � A � 8
 8 � B
�E� d � W � W� TV
6W `ba�c �
From the definition of RDCS:!�" ��� �
U���
	 �
����s� d � W;�=#7
 d � W;�� TV
6W�XZYD[�W;�=#DTV
�W;�� TV
6XZYD[�W;� �

We can also show that there is an ordering of the shapes
based on their capacities.

Theorem 2 Assume that we have a set of inheritance trees
or forest of trees in each of the five shapes and that each

tree or forest in each shape has the same total number
of classes. Let

���
	 �
�� e m=� be the capacity of the triangle
shaped tree(s),

���
	v�_
 e$�
� � is the capacity of the rectan-
gle shaped tree,

���S	���
U�i�?W�57�
is the capacity of the sand

glass shaped tree,
���
	v�_
65Dml� d � is the capacity of the di-

amond shaped tree,
���
	v��
6mUW0� �Se ��� is the capacity of in-

verted triangle shaped tree. We also assume that each
tree has the same depth and total number of classes, and
that each class has the same number of methods. Then���
	 �
6� e mU�?W��F� � ��N ���
	 �
 e$�S� � � ���S	 �
U�i�?W�57� ����
	 �
u5-ml� d �wN����
	 �
�mUW0� �ie ���
Proof: This theorem is easily proved through an analysis
of diagrams. First, examine the “Triangle and Diamond”
diagram in Figure 6. Since both inheritance trees have the
same number of classes, the triangle and the diamond have
the same area. The area common to both the triangle and
the diamond has the same capacity. The area of triangle that
is not part of the diamond is located deeper in the tree than
the part of the diamond that is not in the triangle. Since
the capacity of the class which is located deeper in a tree is
greater than the capacity of the class which is located closer
to the tree root (assuming all classes have the same num-
ber of methods), and since these two disjoint areas have the
same number of classes, the capacity of the triangle shaped
inheritance tree(s) is greater than that of the diamond shaped
inheritance tree(s), i.e.,

���
	 �
�� e m=��N����
	 �
 e$�
� � .
We can use a similar argument with the “Rectangle and

Diamond” diagram in Figure 6 to show that
���
	v�_
 e$�
� � ����
	v��
u5-ml� d � ; using the “Diamond and Sand glass” diagram

we can show that
���S	 �
U�S�DW�57� � ���
	 �
65Dml� d � , and “In-

verted triangle and Diamond” diagram we can show that���
	 �
u5-ml� d �wN����
	 �
�mUW0� �ie ��� .
Therefore

���S	���
6� e m=�3Nf���
	���
 e$�
� � � ���S	���
U�i�?W�57� ����
	v��
u5-ml� d �wN����
	v�_
�mUW0� �ie ��� holds.
�

Corollary 3 The tight bounds
T

in Theorem 1 and the or-
derings of Theorem 2 also apply to code savings CS and
RDCS.

Proof: CS is computed by subtracting the number of
methods in a tree

�0
from Cap

�
and RDCS is computed

by dividing Cap
�

by
��

. Since
��

is held constant by the
assumptions of Theorems 1 and 2, the results hold for CS
and RDCS.

�
Theorem 1 and Theorem 2 show roughly how fast the ca-

pacity and the RDCS of an inheritance tree(s) with a specific
shape increases as the depth of the tree(s) increases. The the-
orems show that when other certain factors are fixed, trian-
gle shaped inheritance trees exhibit the greatest contribution
to code saving, while the inverted triangle shaped trees ex-
hibit the least contribution to code savings. However this
does not mean that triangle shaped inheritance trees always

7

2. Rectangle and Diamond

1. Triangle and Diamond C = 14*m

C = 12*m

C = 10*m C = 10*m

C = 14*m

C = 17*mT T

T T

T T

TTC = 11*m4. Inverted triangle and Diamond

C = 12*m

3. Diamond and Sandglass

Figure 6. Comparison of shapes and exam-
ples used to prove Theorem 2.

contribute more to code saving than the inverted triangle
shaped trees. Other factors affect code savings including the
rate of increase or decrease in the average number of chil-
dren at each depth of the tree(s). The MGR measure quan-
tifies these rates.

5. Applying The Measures

We applied the reuse and shape measures to a sample of
14 C++ systems collected from a variety of public domain
sources. The software includes language tools (compilers,
assemblers, etc), GUI toolkits and applications, thread soft-
ware, and other miscellaneous applications.

We developed a shape and reuse analyzer by adapting a
tool developed by Josephine Xia Zhao to analyze some char-
acteristics of inheritance trees [4]. This tool was originally
designed to analyze class associations and it does not record
the local and inherited methods. For this initial study, we es-
timate the capacity and RDCS values by assuming that every
class has the same number of methods.

Table 1 shows the data computed by analyzing 14 differ-
ent systems. The data are ordered by the increasing number
of classes in each system. For each system, Table 1 shows

the total number of classes, the maximum depth of inher-
itance trees, the estimated capacity (Cap), estimated rela-
tive degree of code savings (RDCS), the actual mean tree
growth rate (MGR), and the three width measures (TAW).
The shapes of each system is derived from the three TAW
values.

We are especially interested in the value of RDCS, since
a key use of inheritance is to promote code reusability and
code saving. The other measures represent these reuse at-
tributes indirectly. The table shows that trees with greater
depth and MGR show larger estimated RDCS values. TAW
provides additional insight and allows us to classify the trees
into shapes. Most of trees in our data set are classified as in-
verted triangles. Inverted triangle is the shape class that, ac-
cording to Theorem 2, is least capable of supporting method
reuse. Thus, in these cases, inheritance is not used in a man-
ner to optimally support method reuse as indicated by our
code savings measures.

Although the systems with the highest RDCS are inverted
triangle shaped systems, they are also the systems with the
deepest inheritance trees. Tree depth appears to be more im-
portant than shape in the preliminary data. Systems 1 and
2, and 11 and 12 have very similar numbers of classes. For
each pair the “inverted triangle” shaped system has a greater
tree depth and a higher RDCS value. From Theorem 2, we
know that if the number of classes and the depth of two sys-
tems are the same, then the “inverted triangle” shaped sys-
tems will have a lower RDCS. Thus we conclude that inher-
itance depth is a significant factor in the RDCS values.

6. Conclusions

We have derived measures of reuse through inheritance
and measures that depict the shapes of inheritance trees. We
have also shown that inheritance tree shape determines, in
part, the ability of a system to support method reuse.

The inheritance reuse measures indicate the amount of in-
ternal reuse that is due to method inheritance. The capac-
ity measure indicates the amount of information available to
a class locally and through inheritance. The tree capacity
measure, Cap

�
, represents the amount of information avail-

able to clients through access to all classes in the tree. Code
savings (CS) is the number of methods in a system that do
not need to be written because of reuse through inheritance.
The relative degree of code savings, RDCS, normalizes code
savings by tree size to allow us to compare systems of dif-
fering sizes.

The tree shape measures focus on the layout of classes
in the tree and are independent of the size of a system as
indicated by the number of classes. The mean growth rate
(MGR) of a tree represents how fast an inheritance tree
grows or shrinks as the depth of a tree increases. The three
average widths (TAW) measure is used to classify inheri-

8

Table 1. Applying the Reuse and Shape Measures to Selected C++ Systems
No. of Tree

System Classes Depth Cap ��� RDCS � MGR TAW Shape
1 13 1 13 0 0 (13, 13, 13) rectangle
2 13 2 16 0.23 0.30 (10, 6.5, 3) inverted triangle
3 18 2 22 0.22 0.29 (14, 9, 4) inverted triangle
4 25 3 48 0.92 0.89 (9, 9, 7) inverted triangle
5 26 4 49 0.88 0.57 (10, 7.5, 2) inverted triangle
6 33 5 95 1.89 1.18 (7.8, 5.2, 6.8) sand glass
7 46 5 90 0.96 0.76 (19, 4.6, 4) inverted triangle
8 69 2 83 0.20 0.25 (55, 34.5, 14) inverted triangle
9 73 3 101 0.38 0.45 (53, 12, 8) inverted triangle
10 75 4 151 1.01 0.82 (24.25, 26, 6) diamond
11 121 5 302 1.50 1.07 (38, 28.8, 9.4) inverted triangle
12 126 3 250 0.98 1.05 (37, 54, 35) diamond
13 223 6 522 1.34 0.60 (61, 45, 5.5) inverted triangle
14 506 10 2244 3.43 0.84 (76.6, 73.4, 14.1) inverted triangle� Estimated Cap � & RDCS calculations. Estimates assume all classes have the same number of methods.

tance trees, or systems of trees, into five shape classes: Tri-
angle, Inverted Triangle, Diamond, Sand Glass, and Rect-
angle.

We found direct relationships between inheritance tree
shape and reuse as indicated by Cap

�
, code and RDCS.

Tight bounds determine the order of growth of Cap
�

, CS,
and RDCS for each shape as the number of classes are in-
creased. Cap

�
, CS, and RDCS impart an ordering on the

shape classes, assuming we are comparing systems of equal
size and with an equal maximum inheritance tree depth.

We have applied the inheritance reuse measures and
shape measures to 14 sample C++ systems. We found that
most of the systems are of the “inverted triangle” shape,
which is the shape least capable of supporting private reuse
through inheritance. Our empirical results suggest that the
maximum depth of inheritance trees may be more important
than the shapes in determining the measured forms of reuse.

Our results show that developers can increase internal in-
heritance reuse by optimally shaping inheritance trees. In
future work we plan to study the effect of inheritance depth
on the measured forms of reuse, refine the shape measures,
seek additional analytical connections between shape and
other measurable properties, and conduct empirical studies
to discover additional relationships.

References

[1] J. Bieman. Metric development for object-oriented soft-
ware. In A. Melton, editor, Software Measurement:
Understanding Software Engineering, pages 75–92. Int.
Thompson Computer Press, 1996.

[2] J. Bieman and S. Karunanithi. Measurement of lan-
guage supported reuse in object oriented and object

based software. The Journal of Systems and Software.,
28(9):271–293, September 1995.

[3] J.M. Bieman. Deriving measures of software reuse
in object-oriented systems. In T. Denvir, R. Herman,
and R. Whitty, editors, Formal Aspects of Measurement.
(Proc. BCS-FACS Workshop on Formal Aspects of Mea-
surement), pages 79–82. Springer-Verlag, 1992.

[4] J.M. Bieman and J.X. Zhaox. Reuse through inher-
itance: A quantitative study of c++ software. Proc.
ACM Software Reusability Symp. (SRS’94), pages 47–
52, April 1995. Reprinted in ACM Software Engineer-
ing Notes, August 1995.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Software Engineer-
ing, 20(6):476–493, June 1994.

[6] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and
C. Chambers. Vortex: An optimizing compiler for
object-oriented languages. Proc OOPSLA’96, October
1996.

[7] N. Fenton and S.L. Pfleeger. Software Metrics - A Rig-
orous and Practical Approach Second Edition. Int.
Thompson Computer Press, London, 1997.

[8] A.C. Melton, D.A. Gustafson, J.M. Bieman, and A.L.
Baker. A mathematical perspective for software
measures research. Software Engineering Journal,
5(5):246–254, 1990.

[9] H. Zuse. Software Complexity Measures and Methods.
W. de Gruyter, Berlin, 1991.

9

