
Managed Evolution of a Model Driven Development
Approach to Software-based Solutions

Dan Matheson, Robert France, James Bieman, Roger Alexander, James DeWitt,
Nathan McEachen

Computer Science Department
Colorado State University

Fort Collins, Colorado 80523
dan.matheson@comcast.net

{france, bieman, rta, dewittj, mceachen}@cs.colostate.edu

OOPSLA & GPCE Workshop 2004 : Best Practices for Model Driven Software Development

Abstract

The growing complexity of software systems has led to interest in model-based
development techniques that raise the level of abstraction at which systems are
conceived and implemented. The Model Driven Architecture (MDA) initiative
from the Object Management Group (OMG) is a well-known example. This
approach results in a series of related models. In order to effectively manage
the evolution of the abstract models from the early design phases to the more
concrete models that can be used to generate code an approach for recording
the intermediate models and the transformations is needed. The capture of the
models at different stages in the design evolution also provides a place to
associate the rationale behind the design decisions. This paper develops a set
of requirements and proposes an architecture and design for capturing the
evolution snap-shots of the models in Model Driven Development (MDD).

1 Introduction

Modern software systems are increasingly pervasive and open-ended, and are
expected to deliver critical services in a dependable manner. Software
development approaches that raise the level of abstraction at which software
systems are conceived, implemented and evolved can be used to better manage
the complexity of developing modern software systems. Work on model-based
development approaches that support the use of models as the primary artifacts
of software development is based on this premise.

In industry, work on model-based approaches is exemplified by software
development tools and techniques that claim to support the Object Management
Group’s (OMG) vision of model-based development as framed by the Model
Driven Architecture (MDA) [MDA2001]. The MDA advocates an approach in
which models of software that abstract over technology-specific details are
systematically transformed to deployable technology-specific implementations.

1

bieman
To appear in Proc. OOPSLA & GPCE Workshop 2004: Best Practices for Model Driven Software Development.

bieman

The transformations (e.g., refinement and refactoring transformations) are
embodiments or collections of design decisions or technology specific bindings.
While the models have specific relationships between them, the transformation
steps are often a discontinuous jump forward rather than a specifiable
mechanical transformation. The discontinuous jump is most noticeable in the
early stages of design refinement and solution exploration where fundamental
decisions are made by the software engineer in order to satisfy solution
requirements.

One of the main strengths of any model-based approach is the ability to
investigate the possible solution space of a problem with a low investment of
time and effort. One can see similar processes at work when an architect
designs a building. Rough sketches are used at first to gather and communicate
back to the owner the fundamental building requirements. The sketches are
refined and supplemented with other models to reaffirm the fundamental
requirements, as well as to create more detailed specifications. Eventually a set
of blueprints, materials lists, and a construction timeline is produced that allows
the craftsmen to build the structure. As a change occurs a specific model or
specification is affected and to a greater or lesser extent corresponding changes
are propagated to other models and specifications. The building architects and
general contractors have well defined mechanisms and processes for tracking
changes and their impacts.

Just as the building architect must keep track of all the models and decisions,
productive use of MDA and other model-based approaches require support for
tracking and managing changes to models. The tracking mechanism needs to
be independent of the models since it records the context of the evolution. The
evolution context is the set of transformations, decisions, tool instructions and
process steps that move one or more source models to target models. The
tracking mechanism is effectively implemented via a repository containing the
model artifacts, the evolution context and the relationships.

One of the characteristics of a good engineer is to learn from the experiences of
his fellow engineer. In this spirit we look to the experiences of mechanical and
electrical engineers in their product development exercises. These discrete
manufacturing (DM) industries have faced similar problems related to evolving
both single part designs and assembly designs. The solution developed for this
industry and automated from established manual activities is a repository
approach called Product Data Management (PDM) [PDM2000, STEP1999]. If
the models of a MDD approach are looked upon as assemblies of solution
elements then many of the principles and ideas of PDM can be applied to the
MDD model evolution problem.

Section 2 gives a more detailed description of some of the problems and
situations a MDD approach generates and extracts some of the important the
requirements that need to be addressed. Section 3 proposes a repository
design that addresses the requirements. Section 4 concludes with an overview
of how we plan to extend and implement the ideas presented in this paper.

2

2 Model Driven Development

This section describes several different MDD approaches and illustrates the
many common problems and requirements they have. Experiences from actual
manual application of both MDA and Aspect-Oriented Modeling (AOM)
approaches are also cited. At the end of this section related work is presented.

2.1 Model Driven Architecture

Systematic support for model transformations is considered to be key to the
success of MDA. A transformation defines changes that are applied to a source
model to produce a target model [Judson2003]. The changes defined by a
transformation can be classified as being vertical or horizontal
[FranceBieman1992]. Design refinement and detailing of model elements are
examples of vertical model transformations. In a vertical transformation the
source model is either more abstract or more specific than the target model.
Changing a model to correct a design error or to enhance design quality provide
examples of horizontal model transformations. In a horizontal transformation the
source and target models are at the same level of abstraction. The MDA
emphasizes vertical model transformations in which models describing designs
in platform independent terms are systematically transformed to platform specific
designs. Each refinement step is a binding or decision to utilize a particular
construction technique or technology in the solution.

The refinement of the models takes place over a period of time. If the entire
solution or product lifecycle is considered, the time frame can be decades,
involve several technology revolutions, major functional extensions and people
turnover. A product that one of the authors started designing in 1982 is still in
production today. The ability to retain abstract models of the design for
education of new software engineers or the ability to show when, where and why
a particular design decision was made or a certain technology was applied for
maintenance purposes is highly valuable.

Experience Applying MDA

A recent attempt (started in 2002 and still ongoing) to apply MDA ideas to a
product design problem revealed a number of shortcomings in tools, process
and communication of understanding between the software engineers. The
problem was a re-design of common data models across a suite of cooperating,
but independent system and network management products. A major complaint
of many customers was the need to re-enter essentially the same data when an
additional product was installed. The goal was to align and normalize the
common data across the product line with minimum disruption to the release
schedules and version compatibility.

3

The UML tools used for creating design models, primarily UML class models,
were effective for producing a single model at one point in time. Trying to
compare a refined model with its more abstract predecessor required the use of
two computers and two projectors and a text based narrative of the design
change rationale. This was possible in the face-to-face meetings, but as travel
became more restrictive alternate techniques were necessary,such as the
creation of larger documents. In addition the shared source code tool was
inadequate for handling the binary output of some of the tools.

The individual processes and the team processes required extra effort. In part
the extra effort was because of tool shortcomings listed earlier. A larger part of
the extra process effort was because several disjoint tools needed to be used to
document both the model and the changes proposed. The processes, mostly ad
hoc, included education tasks, many of which were discovered only as mis-
communication was uncovered. The education tasks covered UML basics, UML
documentation and diagram conventions, MDA concepts and domain knowledge
exchange. Often these tasks needed repeating as team membership fluctuated.

Uneven experience and skill with UML modeling, design intent communication,
and domain knowledge were the major sources of the communication problems.
Since the UML models were distributed via email over a space of nine time
zones, the comments and improvement suggestions became uncoordinated. An
additional factor was the focus of different R&D teams on the parts of the model
that most concerned them. The result was that teams and engineers were often
reviewing out-of-date models or comparing models with different sets of
changes.

Requirements from the MDA Experience

There are several actions and tools that would have prevented or reduced the
problems encountered during the attempt to use MDA as described above.

To help with coordinating the many models that needed to be developed a
central repository that could be accessed across all the time zones is needed. A
repository would eliminate the email distribution, provide tracking of access and
allow development of the different models at different speeds. There are several
requirements on such a repository (including, but not limited to):

• Store and retrieve several different types of information, from UML
models to text and code.

• Store and retrieve several different formats of information, including
binary.

• Relate the different types of information.
• Control access to subsets of the information.
• Record who made a change.
• Record why a change was made.
• Notify that a change was made.

4

• Propagate a change.
• Use different tools on the same information.
• Maintain several versions during solution exploration.

2.2 Aspect-Oriented Modeling (AOM)

Aspect-Oriented Modeling (AOM)[Clark1999][France2004] is a design approach
that allows developers to focus on addressing design concerns separately. AOM
can be seen as one variety of a MDD approach. These solutions are composed
to create a comprehensive design. In the AOM approach that we developed, an
aspect-oriented design consists of a primary model that describes the primary
functional structure of a design, and a set of aspects that each describes a
crosscutting solution that addresses a design concern [France2004]. UML
diagrams are used to describe solution views specified by primary models and
aspects. Composing aspects and a primary model together result in an
integrated view of the design.

Aspects and primary models are developed separately and thus composition
involves mapping concepts described by aspects to concepts in the primary
model’s application domain [France2004]. The mappings are not properties of
any of the models being composed. It can be viewed as part of the composition
context.

After the models are composed, the result is tested and analyzed. There are
often emergent properties that are discovered as a result of the model
composition. Some of these properties are acceptable and some require a
redesign of either the aspect or the primary model. In some cases the
composition directives need reworking. After making the changes the models
are composed and again tested and analyzed.

AOM can be viewed as an MDA approach that adds support for separation of
concerns that are non-orthogonal to the concerns used to determine the
functional structure of a design. These non-orthogonal concerns are said to
crosscut the primary design structure.

Requirements from an AOM Approach

The ability to manage several models along with composition directives and keep
them properly synchronized is a primary requirement for a successful AOM
approach. There is a need to be able to version each of the components
separately while still maintaining the synchronization.

The management of the related models and the composition mapping is
effectively implemented via a repository containing the models and the
composition context. While it was not described above it is fair to assume that

5

multiple people are involved in a design approach using AOM. The requirements
supporting an AOM approach include:

• Storing and retrieve several models and composition information.
• Relate several different information types.
• Control access to subsets of the information.
• Record who made a change.
• Record why a change was made.
• Notify that a change was made.
• Propagate a change.
• Maintain multiple versions of the models and composition directives.

2.3 Related Work

A small number of researchers are currently developing AOM approaches. In
the approach proposed by Clarke et al. [Clarke1999] a design, called a Theme,
is created for each system requirement. A comprehensive design is a
composition of subjects. Subjects are expressed as UML model views, and
composition merges the views provided by the subjects. As part of the Early
Aspects initiative, Moreira et al. have targeted multi-dimensional separation
throughout the software cycle [Rashid2003]. This work supports modularization
of broadly scoped properties at the requirements level to establish early trade-
offs, provide decision support and promote traceability to artifacts at later
development stages.

The Query View Transformation (QVT) work in OMG is aimed at defining a
specification for the transformation of one model into another model
[OMGAD040401]. The QVT RFP seeks a standard solution for model
manipulation. Queries take as input a model, and select specific elements from
that model. Views are models that are derived from other models.
Transformations take as input a model and update it or create a new model. It is
important to note that queries, views and transformations can be split into two
distinct groups. Queries and transformations take models and perform actions
upon them, resulting in a new or changed model in the case of a transformation.
In contrast, views themselves are models and are inherently related to the model
from which they are created. Queries and transformations may possibly create
views, but views themselves are passive.

The OVT work will need storage capabilities that maintain the relationships and
data. Our repository work should be able to support a QVT environment.

3 A Repository Centric Solution
It is clear that the control and manipulation of multiple models in a MDD or AOM
approach requires a structure outside the models in which to store the
relationships and constraints between the models. In this section we give an

6

overview of the repository approach. There are many common requirements
between the MDA example and the AOM work described above. There are also
a few differences. The repository approach should be flexible enough to cover
all the requirements as well as future requirements.

3.1 Deficiencies of Current Approaches
The current IDE (Integrated Development Environment) like approaches to
model development are centered on a single closed model and have evolved
from a code development cycle (edit, compile, debug). The code development
cycle is deeply embedded into the IDE interaction model and architecture. This
approach was often seen in early Mechanical Computer Aided Design (MCAD)
tools, but changed over time as the restrictions of processes embedded in the
tool became obvious and a hindrance.

Several current products that claim to support MDA have a repository
component. However, the repository is tightly coupled to the tool and
unavailable to other independent tools. Several of the products have interfaces
for extension of the repository, but only in the fixed context of that product.

A major strength of our repository approach is the ability to record and manage
the different roles a model and model components play in a tool neutral format.
The model information is recorded in fine granularity in the repository greatly
enhancing reuse. The repository also supports extensibility as a basic capability
so that new relationships and information can be added independently from the
current model definitions.

3.2 The Repository Design

The repository design starts with a responsibility architecture that describes the
fundamental components and their relationships to each other. Each component
is described in terms of responsibilities, constraints and abilities. The repository
responsibility architecture is shown in Illustration 1.

7

The major components of the responsibility architecture are the Repository, the
Tools, the Artifact Clusters, the Artifacts, the artifact Relationships and the Event
Notification Facility. Each of these is explained in detail in the following sections.

The Repository

The primary responsibility of the repository is to provide the basic persistence
and integrity of the stored artifacts. The ACID (atomicity, consistency, integrity,
durability) properties of the CRUD (create, retrieve, update, delete) actions on
the artifacts must be supported.

As there is a requirement to communicate with several different tools, both
current and future, a data exchange mechanism is needed. Experience from
IGES (Initial Graphics Exchange Specification) [IGES1995] and STEP (Standard
for the Exchange of Product Model Data)[STEP] standardization efforts has
shown that a standard neutral format, covering syntax and semantics, is very
effective for a multi-product open tool environment. The current suggestion for
this is XML Metadata Interchange (XMI)[XMI2003] for UML model artifacts.

8

Illustration 1 Repository Responsibility Architecture

Repository

Tool

Artifact Cluster
Artifact

Relationship

Inter-cluster
Relationship

Artifact

Eve
nt

Noti
fic

ati
on

Fac
ilit

y

However, XMI does not cover all the data to be stored in the repository. Using
XML and XML Schema as a standard along with a mechanism for
transformations will fill the requirement. As the other data to be stored is defined
the need to support additional standards will appear. An alternative is extension
of the XMI standard for some of this data or the development of new more
specific data exchange standards.

As the purpose is to support model evolution the repository needs support at a
fundamental level for versioning of artifacts. There is a need for maintaining
several active versions of an artifact. The PDM Enablers specification
[PDM2000] specifies a model for achieving this requirement and will be
explained in more detail later in this section.

The relationships between artifacts must be maintained with the same integrity
as the artifacts themselves. Versioning of relationships and the existence of
several types of relationships between artifacts in parallel must be maintained.

It is a goal of this approach to work with as broad a spectrum of tools as
possible. In order to achieve this the repository will need to support several
different communication protocols to the tool applications.

Both for effective initial incremental development and to keep the repository
viable for the future it is necessary that some basic extension mechanisms be
built into the repository solution. A partial list of extensions that will need to be
supported are:

• New artifacts
• New artifact clusters
• Changing a cluster or artifact
• Changing inter-cluster relationships
• Adding and modifying data transformations
• Adding and modifying data integrity rules

In order to meet the requirements on the repository in a manner that provides
flexibility for development and maintenance the repository is split into two major
sets of responsibilities, a Persistence Core and an Interface Layer. The
persistence core encapsulates the capabilities related to persisting the artifacts
and is easily seen as a type of database. The interface layer contains
capabilities for communicating via a variety of protocols with the tool
applications.

Artifact

The artifact is the atomic building block of the repository. The artifact represents
a set of data or attributes so tightly related that it makes no sense to further
decompose it. This does not mean that all values that could be present in the

9

artifact are set. The repository needs to support the ability to have incomplete,
but stable artifacts so that interruptibility of work is possible. The interruption of
work comes from extended development tasks, as well as from goals that require
the use of several tools and decisions to complete. A partial list of artifacts
includes:

• UML class
• System requirement
• Use case
• Java source code
• MDA PIM to PSM mapping
• AOM composition rules

Relationships need to be built between artifacts. For effective extensibility any
kind of relationship can be built. However, the data integrity rules and access
control rules might prevent when and how the relationship between two artifacts
is created, updated or deleted.

There is a complex artifact. A complex artifact is a higher level artifact
representing a number of simple artifacts in a specific relationship. For example
a UML model is a complex artifact with simple artifacts for the classes,
associations between class and the repository links bonding the simple artifacts
together. A partial list of complex artifacts includes:

• UML class model
• UML sequence model
• Java source code and code analysis

Artifact Cluster

The artifact cluster collects a set of artifacts and relationships between the
artifacts that satisfies a logical relationship requirement. The artifact cluster is a
collecting or organizing entity that allows higher level abstractions and groupings
of artifacts to be created. It is one of the fundamental extension mechanisms of
the persistence core.

At first glance there is similarity between the artifact cluster and a complex
artifact. The intent is different. The artifact cluster is intended to be used for a
human view of some collection or organization of artifacts, while the complex
artifact is intended for real composite structures. For example an auto would be
a complex artifact, while the auto dealership would be a artifact cluster.

To maintain the integrity of a artifact cluster or a set of artifact clusters a set of
data integrity rules are needed. These rules go far beyond the low level ACID
types of integrity checking, in that they can involve data other than that being
changed and complex calculations.

10

A partial list of artifact clusters includes:
• Project representation
• Tests and test results
• A person's work
• A solution design experiment

Relationships

The relationships between artifacts whether inter-complex-artifact, intra-cluster or
inter-cluster are handled with the same data integrity goals as the artifacts.
There are manual, dependency and structural relationships. The structural
relationships are formed when creating or storing an entity with structure into the
repository such as a UML class model.

The manual relationships are the ones that have been explicitly created by a
user or via a tool application. The manual relationship could be the
consequence of a higher level action that reflects a dependency relationship
such as MDA refinement or relating an analysis result to a specific version of a
model. There can be many types of manual relationships and the type plays a
role in the propagation of changes.

The dependency relationships are created when storing the results of some tool
into the repository. For example an AOM composition tool composes an aspect
model with a primary model and the resulting composed model is stored in the
repository. In this case a dependency relationship could be created between the
input artifacts and the output artifacts. There could be a number of dependency
relationships created depending on the granularity needed.

Event Notification Facility

The Event Notification Facility receives events from the repository and distributes
them to interested parties. An action (Create, Retrieve, Update, Delete) to any
artifact potentially generates an event. There are administrative controls that can
limit the actual event generation to keep volume to a reasonable size. This
facility exists to fulfill the notification and change propagation requirements.

An event from a model update action might cause various analysis tools to be
run to check the model or to propagate the change to other artifacts in the
repository. The decisions and the steps in the process are evaluated outside the
repository. This gives the greatest amount of flexibility and makes the event
response actions and processes orthogonal to the repository and tools.

11

Tool

The tool represents any software application that creates, deletes, updates or
reads data from the repository. Some possible tools are a UML modeling tool
like ArgoUML, an AOM composition tool, a UML model analysis tool, a UML to
programming code translation tool, a viewer (browser-based), etc.

A tool can access any combination of artifacts that make sense for it to do its job.
It could access all or part of the artifacts, an entire artifact cluster or all or some
of the artifacts from multiple artifact clusters. The access mode could be
read/write or read-only. The amount of data involved is controlled by the
granularity of the artifact requested, data integrity rules of the interface layer and
the type of access action. In most cases accessing the highest encapsulation of
a structure involves all the components of the structure.

Tools are not part of the repository, but rather interact with it. It might make
sense to have a representation of a tool in the repository so that it can be
associated with a particular artifact. For example there could be a representation
of two different Java compliers to be associated with different byte code results.

Tool Repository Interaction

At the highest logical view the tool repository interaction is message based. The
tool sends a message to the repository with the action desired and the data
necessary to carry out that action. Interpretation of the action takes place in the
Repository Interface Layer. Illustration 2 shows a more detailed view of the
interaction.

12

The tool sends an action request to the repository with the data needed. The
data consists of an XML or XMI document and a pointer (URL) to the XML
Schema describing the document.

The first action of the Repository Interface Layer is to validate the input and the
second to parse the data and retrieve the schema. This information is sent to a
transformation function for the third step.

The transformation function has the incoming data, usually in XMI format, along
with the XMI schema which it combines with the repository internal schema and
an XSLT transformation to produce repository artifacts and tool specific data
chunks. The tool specific data chunks are related to the repository artifacts.
Additional integrity checks can be performed after the transformation.

The output of the transformation is passed onto the action routine to carry out
the requested action. Output and status of the action might be transformed on
the way back to the tool. To provide for future extensions the full input is saved
so that re-parsing after adding a new application is possible.

Repository Object Meta-Structure

Illustration 3 shows a high level view of the principle types of data entities within
the repository. This is the highest level of abstraction for the principle entities,

13

Illustration 2 Tool Repository Interaction

Internal
schema

Repository
Artifact

Tool
Specific
Data

Tool

Repository

Interface
Layer
Transform

action(data)
XML

XML
schema

XSLT

Full Input
Stream

administrative entities are ignored for clarity at this time. The various artifacts
and artifact-relationships will need to be created, managed and searched.

For each artifact there is an artifact type. The artifact type represents the
prototype for creating a new instance of that type of artifact. The artifact type
can also be combined with a Finder capability, so that the Factory-Finder
becomes a well-known object. The abstract artifact structure discussion reflects
a creation approach that uses the Prototype pattern from Gamma
[Gamma1995].

To achieve the extensibility requirements new artifact types need to be created.
The pattern used to create artifact from artifact types can be repeated. There
will be a well known object, Artifact-Type_Factory, that is a factory-finder for
the creation of new artifact types. The prototype factory pattern is used here
also. This object is also a principle object in implementation of the query
capability.

14

Illustration 3 Abstract Artifact Structure

Artifact
Type

Artifact

Repository

1

n n
1

Artifact-Relationship
Type Artifact-Relationship

1

n

Contains

Contains

Manages

Manages

n1

11

2

Relates

Relates

2

Artifact
Cluster

Contains

Contains

n n

n

Illustration 4 represents the factory and finder relationships between classes
needed to support the creation and management of artifacts, as well as the
basis for extensions.

The basic CRUD actions on each of the entities is listed in Illustration 4. The
notation like Retrieve() : artifact_type_list indicates the return type of the method.
The Artifact_Type_Factory is a well-known object that always exists. A factory
object uses the Prototype factory pattern to instantiate the instances it manages.

Structure and Versioning

There are requirements to support both the versioning of an artifact to track
changes and the structuring of artifacts to create complex artifacts. The
modeling solution ideas picked to support both of these goals come from OMG
PDM Enablers specification[PDM2000]. Illustration 5 shows the core interface
pattern from the PDM Enablers that is used to support versioning and

15

Illustration 4 Factory Pattern Structure

Artifact
Type

Artifact Instance

n

1

Manages

Artifact Type
Factory

Manages

n

1

Create (artifact_type_spec)
Retrieve () or Query () : artifact_type_list
Update (artifact_type_factory_spec)
Delete (artifact_type)

Create (artifact_spec)
Retrieve () : artifact_list
Update (artifact_type_spec)
Delete (artifact)

Create (sub-artifact_spec)
Retrieve () : artifact_data
Update (artifact_spec)
Delete (sub-artifact_spec)

Actions on the objects

structuring. Attributes and methods are not shown to emphasize the
relationships.

Each artifact, whether simple or complex, will be mapped onto this structure.

The PartMaster interface represents the unchanging attributes and
characteristics of a part (artifact). This does not mean that some of the attribute
values will not change over time.

The PartRevision interface reflects the controlled or approved changes to the
part (artifact) definition.

The PartDataIteration interface is used to hold the definition of a simple part
(artifact). The multiple iterations under a revision allow for the saving work-in-
progress or design explorations.

The PartStructureIteration encapsulates the structure of a complex part
(complex artifact or artifact cluster). The structure iterations under a revision
serve the same purpose as with the PartDataIteration.

The Usage association class allow the role of the sub-part in the assembly to be
qualified.

The PartRevision, PartDataIteration, and PartStructureIteration interfaces
match the composition pattern from Design Patterns by Gamma [Gamma1995].

16

Illustration 5 Basic Part Structure

PartMaster

PartRevision

 PartStructureIterationPartDataIteration

Usage

1
1..*

*

11

* 0..*

1..*

assembly

component

Experience by 3 of the authors applying commercial PDM products in a variety of
solutions gives us confidence that the concepts can be successfully applied to a
repository of software and model artifacts. The details of applying the PDM
concepts, especially those beyond versioning, are beyond this paper. We will
report on those experiences in a future paper.

4 Conclusions and Future Research

The similarities between the problems faced by the discrete manufacturing
industry in managing the electronic information about parts and assemblies and
the problems facing a model driven design approach are obvious. By leveraging
the experience of our engineering colleagues and applying the lessons learned
to our software technology environment many problems we face can be
overcome.

There are many advantages to a PDM based repository approach for managing
the model evolutions.

 Many of the basic questions in managing model changes can be
answered.

 The structures provide many extension possibilities.
 The repository ensures the integrity of the models via its ACID (atomicity,

consistency, integrity, dependability) capabilities.
 Allows for access to the model at different levels of abstraction or detail.
 Tool neutrality.
 Building upon existing solution experience.

Future Research

There remains work to be done. Through the construction of use cases or
scenarios the desired extensions to the basic repository artifact structure can be
explored. Some of the use cases are listed below:

 Store refinement decisions and rules for MDA to record the rationale.
 Indicate the role played by an element of an aspect and an element of the

primary model.
 The AOM composition rules to be used in a specific case.
 Tracing capabilities to decompose situations where an aspect changes a

property of a method, like public to private or a property of an association
like the cardinality.

 The structure pattern and the indicators for an analysis tool to store
suggested changes.

 Tagging of entities and values to distinguish between human selected
changes and tool constructs for limiting propagation of changes.

17

What is the best granularity and representation for the atomic entities in the
repository? An approach to solving this question is to experiment with different
construction and analysis tools operating on the information. This should lead to
the forms that require the fewest transformations from the repository format to
the tool format. These experiments should help determine the optimum
granularity for the atomic entities, such as class or association.

What is the best repository structure to support other UML models such as
interaction diagrams and state diagrams? The answer to this question should be
derived from both construction process activities, as well as an analysis
activities.

There are questions about what traceability data is needed to explain the
rationale behind a particular design decision.

We will attempt to answer these questions in our future work via a prototype
currently under development.

References

[Clarke1999] S. Clarke, W. Harrison, H. Ossher, P. Tarr. Separating Objectives
Throughout the Development Lifecycle. In Proceedings of the 3rd ECOOP
Aspect-Oriented Programming Workshop, Springer, 1999.

[FranceBieman2002] R. B. France, J. Bieman, Multi-View Software Evolution: A
UML-based Framework for Evolving Object-Oriented Software, Proceedings of
the International Conference on Software Maintenance 2001, 2001.

[France2004] R. B. France, I. Ray, G. Georg, S. Ghosh, An Aspect-Oriented
Approach to Design Modeling, to be published in IEE Proceedings - Software,
Special Issue on Early Aspects: Aspect-Oriented Requirements Engineering and
Architecture Design, 2004.

[Georg2002] Geri Georg, Indrakshi Ray, Robert France. Using Aspects to Design
a Secure System. In Proceedings of the International Conference on
Engineering Complex Computing Systems (ICECCS 2002), Greenbelt, MD, ACM
Press. December 2002.

[Ghezzi2003] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software
Engineering, 2nd Edition, Prentice Hall, 2003.

[MDA2001] www.omg.org/mda

[PDM2000] OMG Product Data Management Enablers formal specification
http://www.omg.org/cgi-bin/doc?formal/2000-11-11

18

[STEP1999] STEP and OMG Product Data Management Specification, A guide
for Decision Makers http://www.omg.org/cgi-bin/doc?mfg/99-10-04

[Gamma1995] E. Gamma, R. Helm, R. Johnson and J. Vlissides Design
Patterns: Elements of Reusable Object-Oriented Software, Prentice Hall, 1995.

[Judson2003] Sheena Judson, Robert France, Doris Carver, Supporting
Rigorous Evolution of UML Models, to be published in the Proceedings of the
International Conference on Engineering Complex Computer Systems
2004 (ICECCS 2004), 2004.

[Rashid2003] Awais Rashid, Ana Moreira, João Araújo, “Modularization and
composition of aspectual requirements”, Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development (AOSD 2003), 2003.

[IGES1995] Initial Graphics Exchange Specification 5.3, www.uspro.org/ or
www.nist.gov/iges/

[STEP] Standard for the Exchange of Product Model Data, ISO 10303,
www.uspro.org/

[XMI2003] XML MetaData Interchange Specification version 2.0, OMG
formal/03-05-02, May 2003

[OMGAD040401] Revised submission to the QVT RFP, access limited to OMG
members.

19

