
Performance Analysis of Security Aspects in UML Models
D.C. Petriu, C.M. Woodside,

D.B. Petriu, J. Xu, T. Israr
Carleton University

Systems & Computer Eng. Dept.
Ottawa, ON, Canada, K1S 5B6

{petriu | cmw | dorin | xujing}
@sce.carleton.ca

Geri Georg, Robert France,
James M. Bieman

Colorado State University
Department of Computer Science

Fort Collins, CO 80523, USA

{georg | france | bieman}
@cs.colostate.edu

Siv Hilde Houmb
Norwegian Univ. of Science & Tech.

sivhoumb@idi.ntnu.no

Jan Jürjens
TU Munich, Dept. of Informatics

juerjens@in.tum.de

ABSTRACT
The focus of the paper is on the analysis of performance effects of
different security solutions modeled as aspects in UML. Aspect
oriented modeling (AOM) allows software designers to isolate
and separately address solutions for crosscutting concerns, which
are defined as distinct UML aspect models, then are composed
with the primary UML model of the system under development.
For performance analysis we use techniques developed previously
in the PUMA project, which take as input UML models annotated
with the SPT profile, and transform them first into Core Scenario
Model (CSM) and then into different performance models. The
contribution of this paper is in performing the composition of the
aspects with the primary model at the CSM level. The input is
represented by the primary model and a number of aspect models
in UML+SPT, which are processed as follows: a) converted
separately to CSM; b) composed into a single CSM model; c)
transformed into a Layered Queueing Networks (LQN) model and
d) analyzed. The proposed approach is illustrated with a case
study based on two standards, TPC-W and SSL.

Categories and Subject Descriptors
C.4 [Performance of Systems]: modeling techniques,
performance attributes. D.2.4 Software/Program Verification:
model checking

General Terms
Performance, Security, Design.

Keywords
Software Performance Engineering, Aspect-Oriented Modeling,
Security, Model transformations, UML.

1. INTRODUCTION
Complex distributed dependable systems, such as web-based
applications that contain sensitive data and have many users, have
to meet different – and sometimes conflicting – non-functional

requirements, such as security and performance. For example, a
highly secure system may pay a performance price compared to
an unsecure system, due to the extra security checks it must do.
System designers need to make choices between competing
design solutions in order to satisfactorily balance system
requirements. Tradeoffs between competing requirements often
come late in the development cycle, and changes can be
expensive if they are fundamental, such as architectural changes.
A better approach, enabled by OMG’s Model Driven Architecture
(MDA), is to start analyzing different non-functional
requirements from the early stages of the development process,
based on design models.
An approach for the analysis of various non-functional properties
of a UML design model is currently emerging; similar steps are
followed, regardless of the non-functional property considered: a)
annotate the UML model with extra-information specific to the
non-functional property (by using special-purpose UML Profiles);
b) transform the annotated model in a specific analysis model
(such as first predicate logic, queuing networks, Petri nets, etc.);
c) analyze the model with existing tools; d) give feedback to
designers from the analysis results.
The authors of the paper are involved in a larger research effort to
integrate methodologies and tools that support the analysis of
non-functional requirements, such as security and performance,
from the early system development phases, based on UML
models.
A UML-based approach for verifying whether a design meets
security properties is presented in [7]. A UML model annotated
with a specialized profile named UMLsec is converted into a first-
order logic model, which is input to a theorem prover, along with
a representation of an adversary. The prover determines if the
system model is secure.
The Risk-Driven Development (RDD) profile supports the
Aspect-Oriented Risk Driven Development (AORDD) framework
[5][6]. The goal of the framework is to assist developers in
designing cost-effective systems with the desired level of security.
It is a model-based approach, driven by asset risk management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP’07, February 5-8, 2007, Buenos Aires, Argentina.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Aspect-oriented modeling (AOM) is used to specify and integrate
security risks and solution designs into system models [3][14]. In
general, AOM allows software designers to isolate and separately
address solutions for any crosscutting concerns, which are defined
as separate UML aspect models, then are composed with the
primary UML model of the system.

bieman
Typewritten Text
Preprint of paper published in Proc. Sixth Int. Workshop on Software Performance (WOSP2007), pp. 91-102, 2007.

bieman
Typewritten Text

bieman
Typewritten Text

The first attempt to analyze the performance effects of a security
mechanism modeled as an aspect is found in [15]. The aspect
model is composed with the primary model at the UML level; the
composed model is then transformed into a LQN model according
to the PUMA approach [18].
The present paper approaches the problem from [15] in a different
way. It takes as input a primary model and one or more security
aspect models in UML+SPT, and processes them as follows: a)
separately transforms the primary and the aspect models to CSM;
b) composes them at the CSM level; c) transforms the CSM
composed model into LQN, and d) analyzes the LQN model.
The paper is organized as follows: section 2 briefly describes the
PUMA approach for transforming UML+SPT models into
performance models; section 3 discusses aspect-oriented
modeling of security mechanisms and describes the case study
system based on TPC-W and SSL; section 4 introduces our new
approach of composing aspects at the CSM level; section 5
presents the LQN model and some performance results and
section 6 gives the conclusions and future work.

2. PERFORMANCE ANALYSIS OF UML
MODELS
 To support early performance analysis of software specifications,
the UML has been extended by the standard SPT Profile ([9],
currently being revised [10]), which defines annotations for
performance parameters, resource usage, and workloads. SPT
focuses on specified scenarios based on important use cases and
is designed to work with a tool chain like the PUMA tool
architecture shown in Figure 1.

D esign
m odel w ith

perfo rm ance
anno tations

Any
perform ance

m odel

Core
Scenario

M odel
(C SM)

Perfo rm ance
results and design

advice

Tool to
convert C SM to
this perform ance
m odel language

Tool to
extract a C SM

from this
design too l

E xplore
solution

space

Feedback

Any U M L
or other

design too l

Figure 1. Tool interactions and information flows in the
PUMA architecture [18].

2.1 The PUMA methodology
A wide variety of approaches can be applied to performance
modeling of software [1]. PUMA (Performance by Unified Model
Analysis) [18] unifies the creation of models by an intermediate
performance metamodel called Core Scenario Model (CSM)[11].
As shown in Figure 1, CSM provides a single target for
transforming from a design model created by any UML tool, and
from different UML views of system behaviour (e.g. interaction
diagrams, activity diagrams), and a single source for creating
different kinds of performance models (e.g. queueing models,
Petri net models).
CSM defines operations (called Steps) with precedence
relationships and resource requirements and demands. Precedence
patterns include sequence, loop, fork/join, branch/merge, with no

requirement that a forked or branched path should rejoin into a
single flow. Resources include processors, other devices, software
components, processes and logical resources of all kinds, and
demands describe how many requests are made by a step, or how
much CPU processing is demanded. Each scenario has a workload
which defines the arrivals of requests to execute the scenario.
Examples are given in Section 4 below.
The process of model derivation from a CSM is described in [18]
for queueing networks, layered queueing networks (which are
used in this paper), and stochastic Petri net models. In this paper
we show that system transformations for the insertion of security
aspects into the primary model of a system can also be executed
at the CSM level, to explore alternative approaches.

3. UML ASPECT-ORIENTED MODELING
OF SECURITY MECHANISMS
Aspect-Oriented Modeling (AOM) techniques allow software
designers to separately conceptualize, describe and communicate
solutions for crosscutting concerns (such as security, reliability,
new functional features, etc.) An aspect-oriented architecture
model produced by AOM consists of a base architecture model
called the primary model, which reflects core design decisions,
and a set of aspect models, each reflecting a concern that
crosscuts the primary model [3]. In order to build the complete
solution for a system, different aspect models are composed with
the primary model.

Figures 2, 3 and 4 show the UML primary model for the TPC-W
example used in this paper, while Figure 5 shows the SSL aspect
model.

3.1 Primary model
The case study for this paper is based on TPC-W, a transactional
web benchmark of the Transaction Processing Performance
Council [17], which models the workload of an on-line bookstore.
The primary model represents the basic functionality without any
security mechanisms. SSL secure communication is later added to
the primary model through aspect composition.
The components of TPC-W are logically divided into three tiers:
a) set of emulated web browsers (EB), b) web tier including Web
Servers, Image Servers and Web Caches and c) persistent storage.
TPC-W simulates customers browsing and buying products from
a website.
The TPC-W specification describes in detail 14 different web
pages that correspond to typical operations performed by a
customer of an e-commerce website. The first page to be visited
by a user is the “Home” page; it includes the company logo,
promotional items and navigation options to the top best selling
books, a list of new books, search pages, shopping cart, and order
status pages. At every page, the user is offered a selection of
pages that can be visited next; the user will make a random
choice. The user may browse pages containing product
information, perform searches with different keys and put items in
the cart, or may decide to order books by entering secure order
pages, protected by SSL. In order to make an order, a new
customer has to fill out a customer registration page; for returning
customers, the personal information is retrieved from the database
and filled in automatically. Before ordering, the user may update
the shopping cart content. When deciding to buy, the user enters
the credit card information and submits the order.

Figure 2. UML deployment diagram for TPC-W. Figure 2. UML deployment diagram for TPC-W.

sd: GetCustRegPage

<<PAresource>>
:EB

<<PAresource>>
:WebServer

getCustRegPage()

customerRegPage

getCustRegImgs
MsgSize: 0.5KB

MsgSize: 2KB

CPU: 0.5ms

CPU: 1ms

<<PAresource>>
:ImageServer

Figure 3. TPC-W UML primary model: scenario GetCustRegPage Figure 3. TPC-W UML primary model: scenario GetCustRegPage

The system will obtain credit card authorization from a Payment
Gateway Emulator, PGE, and present the user with an order
confirmation page. At a later date the user can view the status of
the last order. Two additional web pages are provided for the
system administrator.

The system will obtain credit card authorization from a Payment
Gateway Emulator, PGE, and present the user with an order
confirmation page. At a later date the user can view the status of
the last order. Two additional web pages are provided for the
system administrator.
The navigation options provided on every page, lead to an
access distribution referred to as the “Web Interaction Mix”.
Thus 80% of the web page accesses are to the Home, New
Products, Best Sellers and Search pages while the remaining
20% of the accesses are to the Shopping Cart, Order, Buy and
Admin web pages. Of the 20% ordering web pages, 5% of the
accesses are to secure web pages requiring SSL encryption.

The navigation options provided on every page, lead to an
access distribution referred to as the “Web Interaction Mix”.
Thus 80% of the web page accesses are to the Home, New
Products, Best Sellers and Search pages while the remaining
20% of the accesses are to the Shopping Cart, Order, Buy and
Admin web pages. Of the 20% ordering web pages, 5% of the
accesses are to secure web pages requiring SSL encryption.
As the purpose of this paper is to illustrate how security aspects
can be composed with the primary model of a system at CSM
level, we have not considered the entire functionality of TPC-W
for the UML primary model. We have selected instead only two
scenarios that are accessing secure pages: one is a light-weight
scenario that returns the customer registration page (shown in
Figure3) and the other a heavy-weight scenario that allows the
user to buy a product (shown in Figure4).

As the purpose of this paper is to illustrate how security aspects
can be composed with the primary model of a system at CSM
level, we have not considered the entire functionality of TPC-W
for the UML primary model. We have selected instead only two
scenarios that are accessing secure pages: one is a light-weight
scenario that returns the customer registration page (shown in
Figure3) and the other a heavy-weight scenario that allows the
user to buy a product (shown in Figure4).
The primary UML model contains a structural and a behavioural
view necessary for performance evaluation [12]:
The primary UML model contains a structural and a behavioural
view necessary for performance evaluation [12]:
- Deployment of high-level software components to

hardware devices (Figure 2)
- Deployment of high-level software components to

hardware devices (Figure 2)
- One or more key performance scenarios annotated with

performance information according SPT [9], modeled in
this case as interaction diagrams (Figures 3 and 4).

- One or more key performance scenarios annotated with
performance information according SPT [9], modeled in
this case as interaction diagrams (Figures 3 and 4).

The deployment diagram shows the software components, their
corresponding artifacts and the deployment of artifacts on
processing nodes. The DBProc node is stereotyped with both
PAhost and PAresource since it has a multiplicity of 5. The
PAhost stereotype identifies the node as a host, while the
PAresource stereotype is needed to specify the multiplicity. If
the multiplicity is not specified, it’s always assumed to be 1.

The deployment diagram shows the software components, their
corresponding artifacts and the deployment of artifacts on
processing nodes. The DBProc node is stereotyped with both
PAhost and PAresource since it has a multiplicity of 5. The
PAhost stereotype identifies the node as a host, while the
PAresource stereotype is needed to specify the multiplicity. If
the multiplicity is not specified, it’s always assumed to be 1.
The interaction GetCustRegPage, shown in Figure3, returns
the registration web page to EB. This scenario is interesting
because it starts with a non-secure message between EB and
WebServer, but ends with a secure reply. The User will use
the returned page to register as a known or new customer in
another interaction (not shown here). The following operations
are performed:

The interaction GetCustRegPage, shown in Figure3, returns
the registration web page to EB. This scenario is interesting
because it starts with a non-secure message between EB and
WebServer, but ends with a secure reply. The User will use
the returned page to register as a known or new customer in
another interaction (not shown here). The following operations
are performed:
- EB issues a request for the customer registration page; - EB issues a request for the customer registration page;
- WebServer gets the necessary images (company logo,

button images, etc) from ImageServer;
- WebServer gets the necessary images (company logo,

button images, etc) from ImageServer;
- WebServer constructs the html customer registration

page and returns it to EB.
- WebServer constructs the html customer registration

page and returns it to EB.

The scenario GetBuyConfirmPage is described in two
inetraction diagrams shown in Figure 4. The top interaction
transfers the shopping cart content into a newly created order for
the registered customer and executes a full payment
authorization, then returns a web page containing the details of
the newly created order to the EB.

The scenario GetBuyConfirmPage is described in two
inetraction diagrams shown in Figure 4. The top interaction
transfers the shopping cart content into a newly created order for
the registered customer and executes a full payment
authorization, then returns a web page containing the details of
the newly created order to the EB.

sd: Checkout

<<PAresource>>
:Database

<<PAresource>>
:WebServer

checkout ()

insertOrderRecord ()

loop [I=1,$N]
insertOrderLineRecord ()

updateItemStock ()

createOrder()

getAuthorization()

buildAuthorizationRequest()

sendRequstToPGE()

authorization()

extractAuthID ()

createCreditCardRecord ()

clearShoppingCart ()

 CPU: 1ms

 CPU: 5ms

CPU: 1ms

CPU: 1ms

CPU: 1ms

CPU: 1ms

CPU: 0.5ms

 CPU: 1ms

 CPU: 5ms

 CPU: 5ms

MsgSize: 1KB

 MsgSize: 0.5KB

MsgSize: 0.5KB

MsgSize: 1KB

ExternalOp: 30ms

 sd: GetBuyConfirmPage

<<PAresource>>
:ImageServer

<<PAresource>>
:Database

<<PAresource>>
:EB

<<PAresource>>
:WebServer

buyConfirmPage

getBuyConfirmImgs

getBuyConfirmPage (PayInfo, ShippingInfo)

getShoppingCart()

setShippingAddr()

opt
insertAddrRecord ()

ref Checkout

opt

 CPU: 1ms

 CPU: 2ms

CPU: 0.5ms

 CPU: 1ms

CPU: 0.5ms

MsgSize: 8.2KB

MsgSize: 2.9KB

 P=0.05

 P=0.5

MsgSize: 1KB

MsgSize: 0KB

MsgSize: 1KB

MsgSize: 0.5KB

matchAddrRecord ()

Figure 4. TPC-W UML primary model: scenario GetBuyConfirmPage

The following operations are performed:
- EB issues a request to WebServer for “buy confirm page”;
- WebServer gets the corresponding shopping cart object;
- With 5% probability, a shipping address is passed from EB.

 WebServer tries to match the shipping address in
the corresponding table in the database

 If no address record is found, insert a new address
record

- Invokes the Checkout sub-scenario (as a ref fragment)
- WebServer gets necessary images from ImageServer
- WebServer constructs the html code for the buy confirm

page and returns it to EB.

The Checkout scenario is represented by the second interaction
diagram from Figure 4. It creates a new order in database, with all
the items in the cart turned into order lines. Then an authorization
is obtained from the Payment Gateway Emulator (PGE) that is an
external system. Finally the credit card is registered in database
and the cart is cleared.
The SPT Profile performance annotations used in this primary
model are:

• CPU host demand in milliseconds for operations (applicable
to execution occurrences and message stereotyped as
<<PAstep>>)

• probability PAprob for alt and opt interaction operands
stereotyped as <<PAstep>>

• repetition count PArep for loop interaction operands
stereotyped as <<PAstep>>

• PArate in processor operations per millisecond for host
devices (applicable to nodes stereotyped as <<PAhost>>)

• PAcapacity for device multiplicity (applicable to nodes
stereotyped as <<PAresource>>)

• The operation performed by the PGE external system is
represented as an SPT “external operation” (a tagged value
of the stereotype PAstep that indicates the name of the
external operation and the number of visits [9]). It will be
represented in the performance model as a new task.

Please note that we have not given in Figures 3 and 4 the full SPT
syntax for performance annotations, in order to limit the clutter.
However, the complete stereotypes and corresponding tagged
values were defined with the IBM Rational Software Architect
(RSA) tool used to generate automatically the CSM models
shown in the next section. An additional performance annotation
for message size in kilobytes $MSG_SIZE is also shown in
Figures 3 and 4. (It is used later in Table 2 for computing concrete
parameter values, such as the number of message fragments).

3.2 Generic Aspect model
A generic aspect model describes the solution proposed by the
aspect in a general way, not related to the specific primary model
in which will be eventually inserted. According to [3], a generic
aspect model can be instantiated multiple times to produce
multiple context-specific aspect models based on different binding
rules.
The generic aspect model used in this paper describes the general
structure and behaviour of the SSL protocol, without any
reference to the system to which SSL will be applied. SSL is the

most common authentication protocol used for web-based secure
transactions [8]. It handles mutual or one-way authentication and
preserves the integrity and confidentiality of data exchange
between clients and servers. SSL has two phases: a handshake
phase and a data transfer phase. Each phase represents a different
functionality that should be inserted in the primary model at
different join points. Therefore, each phase is to be modeled as a
separate aspect model. Due to space limitations, we will describe
in this paper only the data transfer aspect model.
The handshake phase allows the server and client to authenticate
each other and to negotiate an encryption algorithm and
cryptographic keys to be used during the data transfer phase. The
encryption mechanisms are different during the two phases:
public key encryption is used for the handshake, and symmetric
encryption for data transfer. Symmetric encryption is much faster
than public key encryption [8].
The SSL data transfer is modeled as a generic aspect in Figure 5,
which shows a deployment diagram describing constraints on the
structure, as well as an interaction diagram describing the
behaviour. In this case, the structural constraint is that the SSL
proxies must be located on the same node as the processes they
are associated with. All the nodes are generic; they will be bound
to concrete nodes in the process of instantiating the context-
specific aspects, as described in section 4.2. The interaction
diagram in Figure 5.b involves four generic roles: |sender (the
data source), |senderSSL (data source SSL proxy),
|receiver (data target) and |receiverSSL (data target SSL
proxy). We use the convention that generic role names start with a
‘|’, similar to [3]. These roles are to be bound to application
components when the generic aspect is instantiated to a specific
context. A message from |sender is first broken into fragments
by |senderSSL. The number of fragments depends on the
length of the data to be transferred. For each fragment, the source
counter is incremented; this is the unique counter for the data
source. Both the target and source counters are appended to the
fragment and a digest is created across this string, using a secret
digest string. The digest is appended onto the fragment and then
encrypted using the symmetric key exchanged during the
handshake phase (resulting in a payload). A header is pre-pended
to this information, which contains the type of the message, the
length of the fragment and digest, and the SSL version number
used by the data source. This entire entity is the record that is sent
to the target; |receiverSSL increments the source counter,
extracts the header, decrypts the payload using the symmetric
key, extracts the fragment and digest, and validates the digest
using the secret digest string. If either the decryption or the digest
validation fails, the receiving target sends an alert to the data
source that indicates the failure type. Depending on the overall
application protocol (which is independent of the SSL protocol),
the data source may attempt to re-send the record, or terminate.
It is important to mention that the performance annotations in
generic aspects use variable placeholders instead of concrete
values for the tagged values PAdemand, PAprob, etc. These
variables will be assigned concrete values only after the
instantiation of the generic aspect to specific contexts (as
described in section 4.2).

Figure 5. Generic Aspect UML model for SSL Data Transfer: deployment and interaction diagrams

The description of the SSL data transfer aspect model raises a
general issue: what level of detail is appropriate for the UML
model when trying to integrate the analysis of multiple non-
functional properties - in this case, security and performance. The
interaction diagram from Figure 5.b gives a detailed functional
description that is necessary for the logical verification of the
security mechanisms by using a first-order logic model, as in [7].
However, for performance analysis a coarser granularity level
would be more appropriate. For instance, many of the small
sequential steps could be aggregated into larger steps, which
would need fewer performance annotations.
On one hand, it would be preferable to have a different UML
view of the system under development for each kind of analysis
we intend to perform. However, the problem is that these different
views need to be maintained separately as the system evolves, so
there is a danger that they could get out of synch. Hence, there is
a strong argument for keeping a single UML model as the input
for different analysis techniques and tools. The implication is that
automatic model transformations will be required to raise the
level of abstraction to an appropriate level for different analysis
techniques.
For instance, in the case of performance analysis, the aggregation
of different steps could be done automatically, under the user’s
guidance. The user needs to be involved if he/she would have to
enter performance annotations only for the coarser-granularity
steps obtained by aggregation.

3.3 Aspect Composition
Before composing the aspect with the primary model, we need to
instantiate the generic aspect model for a given application con-
text by binding the roles to application-specific values. As already
mentioned, a generic aspect model can be instantiated multiple
times to produce multiple context-specific aspect models based on
different binding rules.
Because SPT annotations are necessary for performance analysis,
the binding rules have two parts: one for binding generic roles to
components/nodes from the primary model, and the other for
giving concrete values to the performance parameters, as
described in section 4.2.
The composition of the aspect models with a primary model can
be performed at different levels: UML, CSM or LQN. There are
many papers in the literature focused on the composition at the
UML level. For instance, in [3][14], the generic aspect models are
defined by using the concept of UML templates. The context-
specific models are obtained from generic models by binding the
parameter templates to values from the primary model context.
The advantage of composing at the UML level is that the resulting
model is also in UML; therefore, it may be further visualized,
developed or analyzed with tools that operate directly on UML
models. A disadvantage is that the UML metamodel is very
complex; this has a direct impact on any composition algorithms.
In this paper we propose for the first time to perform the aspect
composition at the CSM level. One advantage is that CSM was
defined to be a unique target for transformation from many UML
versions and diagrams, and a source to many performance
models. For instance, we are able to compose aspects with
primary models even if they are originally defined in different
UML behaviour diagrams (i.e., any mix of activity, sequence,
communication, and interaction overview diagrams can be

handled at the CSM level). Another advantage is that the CSM
metamodel is much simpler than the UML metamodel, and
therefore the composition algorithms are easier to design and
implement. An obvious disadvantage is that CSM, which is
designed to model scenarios, is much more restricted in scope and
usage than UML.
Composing at LQN model is also possible, but we have not
considered this level for aspect composition yet.

4. CSM ASPECT COMPOSITION
4.1 CSM Generic Aspect Model
The CSM models are automatically generated from UML+SPT
models created with the IBM Rational Software Architect (RSA).
The CSMGenerator is an Eclipse-based RSA plug-in that
traverses Sequence Diagrams and generates CSM Scenarios for
every diagram.
UML scenarios with a PAworkload generate top-level CSM
Scenarios while UML scenarios without a workload annotation
generate CSM sub-scenarios. Lifelines in the interaction diagram
generate CSM Components which can have host associations with
CSM ProcessingResources that are specified as nodes in UML
deployment diagram.

Figure 6. CSM GetBuyConfirmPage primary model

Figure 6 shows the CSM top-level scenario for the TPC-W
GetBuyConfirmPage primary model, as well as the
Checkout sub-scenario, both shown in Figure 4. The top-level
scenario shows the CSM Steps corresponding to the execution
occurrences stereotyped as <<PAstep>> in the interaction
diagram as well as explicit ResourceAcquire and ResourceRelease
elements for the resources corresponding to the lifelines.

A ResourceAcquire is generated whenever a lifeline first receives
a synchronous or asynchronous call message or whenever

 interaction operands as refinements for those

oduced in Figure 5.

agments. The alt

for every operand. In Figure 7 the alternatives are:

enerate matched CSM Fork and Join constructs

xt-specific
ources

s binding the generic

ng PRj then
 SR = PR

Figure 7. Generic Aspect CSM model: SSLTransfer

execution first stars. A ResourceRelease is generated whenever a
lifeline sends an asynchronous call message or whenever
execution finishes.
Opt and loop combined fragments are shown as CSM complex
steps with the loop
complex steps. The interaction operand details are shown as CSM
sub-scenarios. For the GetBuyConfirm top-level scenario, the
opt combined fragment for setting the shipping address is shown
as the OPT_SetShippingAddr complex step with a corresponding
refinement as the OPT_SetShippingAddress sub-scenario (not
shown). Similarly in the Checkout scenario, the loop
combined fragment that inserts the order details is shown as the
LOOP_InsertOrder complex step and its corresponding sub-
scenario (not shown).
Figure 7 shows the complete CSM scenario for the generic
SSLtransfer aspect intr
For the SSLtransfer example, the loop step and the corresponding
sub-scenario are both called LOOP_Fr
combined fragments are shown as matched Branch and Merge
constructs with complex steps for every alternate interaction
operand.
The details of the interaction operands are shown as separate sub-
scenarios
ALT_DecryptOK, ALT_DecryptFail, ALT_DigestOK, and
ALT_DigestFail.
Par combined fragments are treated similarly to alt combined
fragments. They g
with complex steps for every parallel interaction operand. The
details of the interaction operands are then shown as sub-scenario
refinements for the complex steps. The lifelines from the
sequence diagram correspond to generic CSM Components that
retain the role names. The generic components either have no host
associations if the roles have no deployment constraints, or have
host associations to CSM ProcessingResources that correspond to
nodes in any constraining UML deployment diagrams.

4.2 CSM Context-Specific Aspect Model
Generic aspect models are transformed into conte
aspect models by binding the resource roles to actual res
and then assigning context-specific performance values to step
processing demands, branching probabilities, optional
probabilities, and loop repetition counts.
The first step in transforming the generic aspect model into a
context-specific aspect model involve
resource roles GR to context-specific resources SR. These context-
specific resources can be either existing resources PR from the
primary model, or new resources required by the aspect.
The resource binding algorithm is:
for all GRi:
 if GRi has a correspondi

i j
 else
 SRj = instantiate(GRi)

In the TPC-W GetBuyConfirmPage example, the generic
SSLtransfer aspect is bound to two different context-specific
aspects; a context-specific SSLcall aspect for the EB calling the
WebServer, and a different context-specific SSLreply aspect for
the WebServer replying to the EB. The resource bindings for
the context-specific aspects are given in Table 1.

Table 1. Context-specific aspect resource bindings

Generic Aspect Context-Specific Aspect

SSLtransfer SSLcall SSLreply

|sender eb webserver
|senderSSL ebSendSSL (new) webSendSSL (new)
|receiverSSL webRcvSSL (new) ebRcvSSL (new)
|receiver webserver eb
|senderProc ClientProc ServerProc
|receiverProc ServerProc ClientProc

The next step in getting a context-specific aspect model is to
assign values to the performance annotations: execution demands,
branching probabilities, etc. The concrete annotations can be
either values or expression (for instance, the number of loop
repetitions depends on the message size, which depends on the
join point into the primary model).
The values for the performance annotations used in the SSLcall
and SSLreply top-level scenarios are given in Table 2. The step
service demands have literal values, while the repetition count for
LOOP_Fragments is an expression indicating that the repetition
count is equal to the message size divided by the fragment size
(512 bytes) and rounded up to the nearest integer.

Table 2. Performance values for the top-level scenario in both
SSLcall and SSLreply context-specific aspect models

Step Service Demand

sslSend 0.1

message 0.1

msgComplete 0.1

sslMessage 0.1

Loop Repetition Count

LOOP_Fragments ceiling($MSG_SIZE / 512)

The performance values are the same for both the SSLcall and
SSLreply context-specific aspects because the two aspects are
symmetrical in this example. This is not always the case, and it
may be possible to have different context-specific aspects based
on the same generic aspect that have different performance values
(e.g., different service demands for encryption and decryption due
to using different encryption algorithms).
It is worth mentioning that the communication between the
WebServer and PGE taking place in the Checkout sub-
scenario must be secure, as well. This would require the
instantiation the SSL generic aspects to another context.
However, in this paper we have not done this instantiation and
comp ead

l. The weaving
involv mary
model behaviour and inserting the context-specific aspects at
t As part of s resource
co be rec ith the prima source
co n point. e woven asp pected
f emaining ormance annotati be further
r

 model

that the latency of the external operation that accesses PGE
includes the overhead for SSL transfer.

4.3 CSM Composed Model
The CSM composed model is generated by weaving the context-
specific aspect models into the primary mode

es identifying the appropriate join points in the pri

hose join points. the weaving, an aspect’
ntext must also
ntext at the joi

onciled w
Finally, th

ry model re
ects are ins

or any r perf ons that can
esolved.

Figure 8. Composed CSM

Figure 8 shows the CSM composed model for
GetBuyConfirmPage with SSL data transfer between EB and
WebServer. For this example, the join point for the SSLcall
aspect is the call step, while the join point for the SSLreply aspect
is the reply step. The weaving is done by replacing the join point
steps with complex steps – call and reply are replaced with osition for the sake of simplicity. We have assumed inst

SSLcall and SSLreply – and using the context-specific aspects as
refinements for those complex steps.
As part of the resource context reconciliation during weaving, the

t was used to replace simple non-secure messages in the
rimary model. This allowed us to substitute simple CSM steps

which also acts as a client to the , and
tasks. The co SendSSL and

L.

 more accurate results for complex models,

SSLcall aspect loses the ResourceAcquire:eb element at the
beginning since EB is already acquired in the primary model
before SSLcall is invoked as well as the ResourceRelease:
webserver at the end, since it is already released in the primary
model after the aspect completes. Similarly, the SSLreply aspect
loses the first ResourceAcquire: webserver and the last Resource
Release: eb.
The aspect composition is straightforward in this case because the
SSL aspec
p
with one input and one output with composed steps with one input
and one output. In the general case, an aspect may require more
than a single input and/or output, which leads to a more complex
composition. Such an example is when an aspect model contains
alternative or parallel behaviours, where the respective branches
need to be “attached” to the primary model in different input or
output points.
A more general composition approach involves defining aspect
join contexts instead of just join points. Instead of being simple
steps, join contexts are either CSM path fragments (i.e. sequences
of steps with single beginnings and single ends) or combinations
of CSM path fragments. Those path fragments are then used to
generate sub-scenarios and are replaced by complex steps using
those sub-scenarios as refinements. The aspects can be composed
into the model either as sub-scenario replacements or in
combination with the existing sub-scenarios. More research is
necessary for developing algorithms for more complex
compositions cases such as these.

5. LQN PERFORMANCE ANALYSIS
The CSM primary and composed models are automatically
transformed into LQN models using the Csm2Lqn generator.
Csm2Lqn is an Eclipse-based tool that implements the Scenario to
Performance (S2P) algorithm described in [12].

5.1 LQN Primary and Composed Models
Figure 9 shows both the primary and the composed LQN models
for the TPC–W GetBuyConfirmPage example. For
simplicity, the entries and activities are hidden in these diagrams,
only tasks are shown in rectangular boxes. Tasks added as a result
of aspect composition are shown with a gray background. Call
relationships between tasks are denoted by arrows: a) solid arrows
represent synchronous calls; b) open arrows represent
asynchronous calls; c) solid arrows with dashed lines represent
forwarding calls. Ovals represent processors or hardware devices,
while lines between tasks and processors show deployment
relationship between software and hardware resources.
The primary model has a simple tiered client-server architecture
with the eb task making a synchronous call to the webserver task,

database imageserver, pge
mposed model introduces the eb

webRcvSSL tasks between the eb and webserver, as well as the
webSendSSL and ebRcvSSL tasks from the webserver back to the
eb. The simple synchronous interaction between the eb and
webserver tasks from the primary model is replaced with a
forwarding chain from eb to ebSendSSL, webRcvSSL, webserver,

webSendSSL, and finally ebRcvSSL. In this model the eb task still
blocks waiting for a reply, but the reply is generated by the last
task in the forwarding chain, ebRcvSS

5.2 Performance Results
The LQN performance model can be solved by either the
analytical solver LQNS or simulation solver LQSim [19]. LQNS
solves models mathematically, and is faster than LQSim. It works
very well for models with synchronous messages, but does not
handle as well models having a mix of synchronous with a lot of
asynchronous messages. LQSim takes a longer time to solve a
model, but gives
especially those containing a lot of forwarding/ asynchronous
interactions mixed with synchronous ones. In our case, the LQN
models for GetCustRegPage (which are smaller) were solved
with LQNS, and the models for GetBuyConfirmPage with
LQSim.

refTask

eb

InfiniteProc

InfiniteProc

ClientProc

(a)

refTask

webserver

imageserver pge database

ServerProc

DBProc

eb

ebRcvSSL ebSendSSL

ClientProc

(b)

database

webserver

webSendSSL

webRcvSSL

imageserver pge

ServerProc

DBProc

Figure 9. LQN model for GetBuyConfirmPage
a) primary model; b) composed model

The performance results obtained from the solvers include
throughputs and service times (including queuing delays) for
software resources, and utilization of both hardware and software
resources. The simulator also gives the confidence intervals for all
the results. The response times obtained from LQSim for the

GetBuyConfirmPage scenario are accurate within ± 2-3% at
95% confidence level.

Figure 10 shows the response times for the two scenarios studied
in this paper, each giving the results for the respective primary

the SSLtransfer aspect on the

ands introduced by the aspect itself are much larger
than the demands of the original scenario. The bottleneck occurs
in the webSendSSL task, which has a utilization of 97%. This task
is introduced by the security aspect, and is responsible for
encrypting and sending messages from webserver to eb.

and composed model. The impact of
scenario performance is noticeably different for the
GetCustRegPage and the GetBuyConfirmPage cases.

The GetCustRegPage is a light-weight scenario, which simply
creates the content for a small webpage and returns it to the EB
client. Therefore, as shown in Figure 11.a, the primary model for
GetCustRegPage has a response time of less than 5ms and does
not saturate even with more than 500 simultaneous users.
Additional experiments show that the primary model can support
2000 users executing light-weight scenarios without saturation.
However the composed model with SSL saturates with 350 users.
The strong performance impact is due to the fact that the extra
resource dem

(a) Response Time for Get Customer Registration Page

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

No. of Users

R
es

po
ns

e
Ti

m
e

(m
s)

Primary model Composed model s

(b) Response Time for Get Buy Confirm Page

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90

No. of Users

R
es

po
ns

e
Ti

m
e

(m
s)

 Primary model Composed model

Figure10. P ge and b)

ows that webserver is the bottleneck in

 security
solutions can help the designers to make tradeoffs between
security and performance solutions, in order to satisfactorily
balance competing system requirements.

6. CONCLUSIONS
This paper proposes a novel approach for composing aspects with
the primary model at the Core Scenario Model (CSM) level.
Aspect oriented modeling (AOM) allows software designers to
separately address solutions for crosscutting concerns. We are
applying AOM to enhance a system with security solutions; then
we analyze the performance effects of these solutions on the
overall system performance. Previous work has been done to
compose aspects with the primary model at the UML level. Doing
the composition at the CSM level has the following advantages:
a) simpler composition algorithms due a much simpler CSM
metamodel compared to UML; b) the ability to compose scenario
defined in UML with a mixture of behaviour diagrams (activity,
sequence, communication, interaction overview).

This paper is a step toward the longer term goal of integrating
security solution tradeoff analysis and performance analysis in the
same development process. Integration of these techniques will
enhance the current ability of analyzing separately security and
performance of the same UML model, with the capability of
cross-analyzing the effects of security mechanisms on system
performance, and vice versa. This will allow designers to make
tradeoffs between security and performance solutions. Another
goal of the current research is to develop automated tool support
for an integrated process, starting from the existing separate tools.

7. REFERENCES
[1] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.,

development: a s ns on Software
Engineering, Vol 30, No

Non-Functional Properties for Quantitative Analysis," in

erformance results for: a) GetCustRegPa
GetBuyConfirmPage

The situation is different for GetBuyConfirmPage where the
primary model has a much heavier workload. As shown in Figure
11.b, both the primary and composed model start to saturate at a

rather low number of users (less than 20). An analysis of the
performance results sh
both models. The security aspect adds even more workload to the
bottleneck task and thus increases the response time, but does not
move the bottleneck elsewhere. The increase in response time due
to the SSLtransfer aspect is of about 16% for 70 users and 36%
for 80 users.

The experiments show that the performance effect of the
SSLtransfer aspect on a light-weight scenario is more dramatic
than on a heavy-weight scenario. If the aspect increases the
demand on a resource that is already the bottleneck, then it
increases the bottleneck level and makes it appear earlier. If it
increases the demand on a resource that is not a bottleneck, then
the bottleneck may move from other resources to this one.

We are planning on carrying out a more comprehensive
performance analysis of the impact of SSL on TPC-W. For this, it
is necessary to model in UML all the TPC-W scenarios, compose
the primary model with both SSL aspects (handshake and data
transfer) and study the performance of the whole system under the
workload mix prescribed by the standard.

Gaining insight into the performance effects of different

"Model-based performance prediction in software
urvey", IEEE Transactio

.5, pp.295-310, May 2004.
[2] Espinoza, H., Dubois, H., Gerard, S., Medina, J., Petriu,

D.C. and Woodside M., "Annotating UML Models with

MoDELS 2005 Workshops (Jean-Michel Bruel, Ed.), LNCS
3844, pp. 79-90, Springer-Verlag, 2006.

[3] France, R., Ray, I., Georg, G. and Ghosh, S., "An Aspect-
Oriented Approach to Early Design Modeling," IEE
Proceedings - Software, Special Issue on Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture
Design, 151(4):173-185, August 2004.

p 81-

06.

ay/June 2003.
chedulability, Performance, and

[11]
L Designs”, in

[12] ance
,

[13] rmance Analysis
G.

[14] , J.

n A.
riented

-

ew York, NY, 1990.
c.org.

[18] srar, T.,
is

Software and

[19]
ww.sce.carleton.ca/rads/lqn/lqn-documentation/

[4] Franks, G., "Performance Analysis of Distributed Server
Systems", Ph.D. Thesis, Carleton University, Systems and
Computer Engineering, Report OCIEE-00-01, Jan. 2000.

[5] Houmb, S.H. and G. Georg, G., “The Aspect-Oriented Risk-
Driven Development (AORDD) Framework”, In O.
Benediktsson et al., editor, Proc. of the International
Conference on Software Development (SWDC.REX), p
91, Reykjavik, Iceland, 2005. Gutenberg.

[6] Houmb S.H., Jürjens, J., Georg, G., France, R. An integrated
security verification and security solution trade-off analysis,
In Integrating Security and Software Engineering: Advances
and Future Vision. Mouratidis, H. and Giorgini, P. (eds).
Idea Group Inc. To be published in 20

[7] Jurjens, J., Secure systems development with UML. Springer-
Verlag, Berlin Heidelberg, 2004.

[8] Menascé, D., “Security Performance”, IEEE Internet
Computing, vol. 7, nb. 3, pp 84-87, M

[9] OMG, UML Profile for S
Time, (formal/05-01-02), January, 2005.

[10] OMG, UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) RFP, realtime/05-02-06,
2005.

 Petriu, D.B. and Woodside, C.M., “A Metamodel for
Generating Performance Models from UM
Proc UML 2004, LNCS 3273, pp. 41-53, Springer 2004.

 Petriu, D.B. and Woodside, C.M., “Software Perform
Models from System Scenarios”, Performance Evaluation
Volume 61 , Issue 1, pp.65-89, Elsevier 2005

 Petriu, D.C. and Woodside, C.M, "Perfo
with UML," in UML for Real, (B. Selic, L. Lavagno, and
Martin, eds.), pp. 221-240, Kluwer, 2003.

 Reddy, Y. R., Ghosh, S., France, R. B., Straw, G., Bieman
M., McEachen, N., Song, E., Georg, G., “Directives for
Composing Aspect-Oriented Design Class Models”, i
Rashid, and M. Aksit (eds). Transactions on Aspect-O
Software Development I, LNCS 3880, pp 75-105, Springer,
2006.

[15] Shen, H., Petriu, D.C., "Performance Analysis of UML
Models using Aspect Oriented Modeling Techniques", In
Model Driven Engineering Languages and Systems,
(L.Briand and C. Williams, Eds). LNCS Vol. 3713, pp.156
170, Springer, 2005.

[16] Smith, C.U., Performance Engineering of Software Systems,
Addison-Wesley Publishing Co., N

[17] Transaction Processing Performance Council, www.tp
 Woodside, C.M, Petriu, D.C., Petriu, D.B., Shen, H, I
and Merseguer, J., "Performance by Unified Model Analys
(PUMA)", In Proc. 5th Int. Workshop on
Performance WOSP'2005, pp. 1-12, Palma, Spain, 2005.

 −, LQN Online Documentations,
http://w

	INTRODUCTION
	PERFORMANCE ANALYSIS OF UML MODELS
	The PUMA methodology

	UML ASPECT-ORIENTED MODELING OF SECURITY MECHANISMS
	Primary model
	Generic Aspect model
	Aspect Composition

	CSM ASPECT COMPOSITION
	CSM Generic Aspect Model
	CSM Context-Specific Aspect Model
	CSM Composed Model

	LQN PERFORMANCE ANALYSIS
	LQN Primary and Composed Models
	Performance Results

	CONCLUSIONS
	REFERENCES

