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ABSTRACT 
The focus of the paper is on the analysis of performance effects of 
different security solutions modeled as aspects in UML. Aspect 
oriented modeling (AOM) allows software designers to isolate 
and separately address solutions for crosscutting concerns, which 
are defined as distinct UML aspect models, then are composed 
with the primary UML model of the system under development. 
For performance analysis we use techniques developed previously 
in the PUMA project, which take as input UML models annotated 
with the SPT profile, and transform them first into Core Scenario 
Model (CSM) and then into different performance models. The 
contribution of this paper is in performing the composition of the 
aspects with the primary model at the CSM level. The input is 
represented by the primary model and a number of aspect models 
in UML+SPT, which are processed as follows: a) converted 
separately to CSM; b) composed into a single CSM model; c) 
transformed into a Layered Queueing Networks (LQN) model and 
d) analyzed. The proposed approach is illustrated with a case 
study based on two standards, TPC-W and SSL.  

Categories and Subject Descriptors 
C.4 [Performance of Systems]: modeling techniques, 
performance attributes. D.2.4 Software/Program Verification: 
model checking 

General Terms 
Performance, Security, Design. 

Keywords 
Software Performance Engineering, Aspect-Oriented Modeling, 
Security, Model transformations, UML. 

1. INTRODUCTION 
Complex distributed dependable systems, such as web-based 
applications that contain sensitive data and have many users, have 
to meet different – and sometimes conflicting – non-functional 

requirements, such as security and performance. For example, a 
highly secure system may pay a performance price compared to 
an unsecure system, due to the extra security checks it must do. 
System designers need to make choices between competing 
design solutions in order to satisfactorily balance system 
requirements. Tradeoffs between competing requirements often 
come late in the development cycle, and changes can be 
expensive if they are fundamental, such as architectural changes. 
A better approach, enabled by OMG’s Model Driven Architecture 
(MDA), is to start analyzing different non-functional 
requirements from the early stages of the development process, 
based on design models.  
An approach for the analysis of various non-functional properties 
of a UML design model is currently emerging; similar steps are 
followed, regardless of the non-functional property considered: a) 
annotate the UML model with extra-information specific to the 
non-functional property (by using special-purpose UML Profiles); 
b) transform the annotated model in a specific analysis model 
(such as first predicate logic, queuing networks, Petri nets, etc.); 
c) analyze the model with existing tools; d) give feedback to 
designers from the analysis results. 
The authors of the paper are involved in a larger research effort to 
integrate methodologies and tools that support the analysis of 
non-functional requirements, such as security and performance, 
from the early system development phases, based on UML 
models. 
A UML-based approach for verifying whether a design meets 
security properties is presented in [7]. A UML model annotated 
with a specialized profile named UMLsec is converted into a first-
order logic model, which is input to a theorem prover, along with 
a representation of an adversary. The prover determines if the 
system model is secure.  
The Risk-Driven Development (RDD) profile supports the 
Aspect-Oriented Risk Driven Development (AORDD) framework 
[5][6]. The goal of the framework is to assist developers in 
designing cost-effective systems with the desired level of security. 
It is a model-based approach, driven by asset risk management.  
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Aspect-oriented modeling (AOM) is used to specify and integrate 
security risks and solution designs into system models [3][14]. In 
general, AOM allows software designers to isolate and separately 
address solutions for any crosscutting concerns, which are defined 
as separate UML aspect models, then are composed with the 
primary UML model of the system. 
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The first attempt to analyze the performance effects of a security 
mechanism modeled as an aspect is found in [15]. The aspect 
model is composed with the primary model at the UML level; the 
composed model is then transformed into a LQN model according 
to the PUMA approach [18].  
The present paper approaches the problem from [15] in a different 
way. It takes as input a primary model and one or more security 
aspect models in UML+SPT, and processes them as follows: a) 
separately transforms the primary and the aspect models to CSM; 
b) composes them at the CSM level; c) transforms the CSM 
composed model into LQN, and d) analyzes the LQN model.   
The paper is organized as follows: section 2 briefly describes the 
PUMA approach for transforming UML+SPT models into 
performance models; section 3 discusses aspect-oriented 
modeling of security mechanisms and describes the case study 
system based on TPC-W and SSL; section 4 introduces our new 
approach of composing aspects at the CSM level; section 5 
presents the LQN model and some performance results and 
section 6 gives the conclusions and future work.  

2. PERFORMANCE ANALYSIS OF UML 
MODELS 
 To support early performance analysis of software specifications, 
the UML has been extended by the standard SPT Profile ([9], 
currently being revised [10]), which defines annotations for 
performance parameters, resource usage, and workloads. SPT 
focuses on specified scenarios based on important use cases and 
is designed to work with a tool chain like the PUMA tool 
architecture shown in Figure 1. 
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Figure 1. Tool interactions and information flows in the 
PUMA architecture [18]. 

2.1 The PUMA methodology 
A wide variety of approaches can be applied to performance 
modeling of software [1]. PUMA (Performance by Unified Model 
Analysis) [18] unifies the creation of models by an intermediate 
performance metamodel called Core Scenario Model (CSM)[11]. 
As shown in Figure 1, CSM provides a single target for 
transforming from a design model created by any UML tool, and 
from different UML views of system behaviour (e.g. interaction 
diagrams, activity diagrams), and a single source for creating 
different kinds of performance models (e.g. queueing models, 
Petri net models).  
CSM defines operations (called Steps) with precedence 
relationships and resource requirements and demands. Precedence 
patterns include sequence, loop, fork/join, branch/merge, with no 

requirement that a forked or branched path should rejoin into a 
single flow. Resources include processors, other devices, software 
components, processes and logical resources of all kinds, and 
demands describe how many requests are made by a step, or how 
much CPU processing is demanded. Each scenario has a workload 
which defines the arrivals of requests to execute the scenario. 
Examples are given in Section 4 below. 
The process of model derivation from a CSM is described in [18] 
for queueing networks, layered queueing networks (which are 
used in this paper), and stochastic Petri net models. In this paper 
we show that system transformations for the insertion of security 
aspects into the primary model of a system can also be executed 
at the CSM level, to explore alternative approaches. 

3. UML ASPECT-ORIENTED MODELING 
OF SECURITY MECHANISMS 
Aspect-Oriented Modeling (AOM) techniques allow software 
designers to separately conceptualize, describe and communicate 
solutions for crosscutting concerns (such as security, reliability, 
new functional features, etc.) An aspect-oriented architecture 
model produced by AOM consists of a base architecture model 
called the primary model, which reflects core design decisions, 
and a set of aspect models, each reflecting a concern that 
crosscuts the primary model [3]. In order to build the complete 
solution for a system, different aspect models are composed with 
the primary model. 

Figures 2, 3 and 4 show the UML primary model for the TPC-W 
example used in this paper, while Figure 5 shows the SSL aspect 
model. 

3.1 Primary model 
The case study for this paper is based on TPC-W, a transactional 
web benchmark of the Transaction Processing Performance 
Council [17], which models the workload of an on-line bookstore. 
The primary model represents the basic functionality without any 
security mechanisms. SSL secure communication is later added to 
the primary model through aspect composition. 
The components of TPC-W are logically divided into three tiers: 
a) set of emulated web browsers (EB), b) web tier including Web 
Servers, Image Servers and Web Caches and c) persistent storage. 
TPC-W simulates customers browsing and buying products from 
a website.  
The TPC-W specification describes in detail 14 different web 
pages that correspond to typical operations performed by a 
customer of an e-commerce website. The first page to be visited 
by a user is the “Home” page; it includes the company logo, 
promotional items and navigation options to the top best selling 
books, a list of new books, search pages, shopping cart, and order 
status pages. At every page, the user is offered a selection of 
pages that can be visited next; the user will make a random 
choice. The user may browse pages containing product 
information, perform searches with different keys and put items in 
the cart, or may decide to order books by entering secure order 
pages, protected by SSL. In order to make an order, a new 
customer has to fill out a customer registration page; for returning 
customers, the personal information is retrieved from the database 
and filled in automatically. Before ordering, the user may update 
the shopping cart content. When deciding to buy, the user enters 
the credit card information and submits the order.  



 
Figure 2. UML deployment diagram for TPC-W. Figure 2. UML deployment diagram for TPC-W. 
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The system will obtain credit card authorization from a Payment 
Gateway Emulator, PGE, and present the user with an order 
confirmation page. At a later date the user can view the status of 
the last order. Two additional web pages are provided for the 
system administrator. 

The system will obtain credit card authorization from a Payment 
Gateway Emulator, PGE, and present the user with an order 
confirmation page. At a later date the user can view the status of 
the last order. Two additional web pages are provided for the 
system administrator. 
The navigation options provided on every page, lead to an 
access distribution referred to as the “Web Interaction Mix”. 
Thus 80% of the web page accesses are to the Home, New 
Products, Best Sellers and Search pages while the remaining 
20% of the accesses are to the Shopping Cart, Order, Buy and 
Admin web pages. Of the 20% ordering web pages, 5% of the 
accesses are to secure web pages requiring SSL encryption. 

The navigation options provided on every page, lead to an 
access distribution referred to as the “Web Interaction Mix”. 
Thus 80% of the web page accesses are to the Home, New 
Products, Best Sellers and Search pages while the remaining 
20% of the accesses are to the Shopping Cart, Order, Buy and 
Admin web pages. Of the 20% ordering web pages, 5% of the 
accesses are to secure web pages requiring SSL encryption. 
As the purpose of this paper is to illustrate how security aspects 
can be composed with the primary model of a system at CSM 
level, we have not considered the entire functionality of TPC-W 
for the UML primary model. We have selected instead only two 
scenarios that are accessing secure pages: one is a light-weight 
scenario that returns the customer registration page (shown in 
Figure3) and the other a heavy-weight scenario that allows the 
user to buy a product (shown in Figure4). 

As the purpose of this paper is to illustrate how security aspects 
can be composed with the primary model of a system at CSM 
level, we have not considered the entire functionality of TPC-W 
for the UML primary model. We have selected instead only two 
scenarios that are accessing secure pages: one is a light-weight 
scenario that returns the customer registration page (shown in 
Figure3) and the other a heavy-weight scenario that allows the 
user to buy a product (shown in Figure4). 
The primary UML model contains a structural and a behavioural 
view necessary for performance evaluation [12]: 
The primary UML model contains a structural and a behavioural 
view necessary for performance evaluation [12]: 
- Deployment of high-level software components to 

hardware devices (Figure 2) 
- Deployment of high-level software components to 

hardware devices (Figure 2) 
- One or more key performance scenarios annotated with 

performance information according SPT [9], modeled in 
this case as interaction diagrams (Figures 3 and 4). 

- One or more key performance scenarios annotated with 
performance information according SPT [9], modeled in 
this case as interaction diagrams (Figures 3 and 4). 

The deployment diagram shows the software components, their 
corresponding artifacts and the deployment of artifacts on 
processing nodes. The DBProc node is stereotyped with both 
PAhost and PAresource since it has a multiplicity of 5. The 
PAhost stereotype identifies the node as a host, while the 
PAresource stereotype is needed to specify the multiplicity. If 
the multiplicity is not specified, it’s always assumed to be 1. 

The deployment diagram shows the software components, their 
corresponding artifacts and the deployment of artifacts on 
processing nodes. The DBProc node is stereotyped with both 
PAhost and PAresource since it has a multiplicity of 5. The 
PAhost stereotype identifies the node as a host, while the 
PAresource stereotype is needed to specify the multiplicity. If 
the multiplicity is not specified, it’s always assumed to be 1. 
The interaction GetCustRegPage, shown in Figure3, returns 
the registration web page to EB. This scenario is interesting 
because it starts with a non-secure message between EB and 
WebServer, but ends with a secure reply. The User will use 
the returned page to register as a known or new customer in 
another interaction (not shown here). The following operations 
are performed: 

The interaction GetCustRegPage, shown in Figure3, returns 
the registration web page to EB. This scenario is interesting 
because it starts with a non-secure message between EB and 
WebServer, but ends with a secure reply. The User will use 
the returned page to register as a known or new customer in 
another interaction (not shown here). The following operations 
are performed: 
- EB issues a request for the customer registration page; - EB issues a request for the customer registration page; 
- WebServer gets the necessary images (company logo, 

button images, etc) from ImageServer; 
- WebServer gets the necessary images (company logo, 

button images, etc) from ImageServer; 
- WebServer constructs the html customer registration 

page and returns it to EB. 
- WebServer constructs the html customer registration 

page and returns it to EB. 

The scenario GetBuyConfirmPage is described in two 
inetraction diagrams shown in Figure 4. The top interaction 
transfers the shopping cart content into a newly created order for 
the registered customer and executes a full payment 
authorization, then returns a web page containing the details of 
the newly created order to the EB.  

The scenario GetBuyConfirmPage is described in two 
inetraction diagrams shown in Figure 4. The top interaction 
transfers the shopping cart content into a newly created order for 
the registered customer and executes a full payment 
authorization, then returns a web page containing the details of 
the newly created order to the EB.  
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Figure 4. TPC-W UML primary model: scenario GetBuyConfirmPage 



The following operations are performed: 
- EB issues a request to WebServer for “buy confirm page”; 
- WebServer gets the corresponding shopping cart object; 
- With 5% probability, a shipping address is passed from EB.  

 WebServer tries to match the shipping address in 
the corresponding table in the database 

 If no address record is found, insert a new address 
record 

- Invokes the Checkout sub-scenario (as a ref fragment) 
- WebServer gets necessary images from ImageServer 
- WebServer constructs the html code for the buy confirm 

page and returns it to EB. 

The Checkout scenario is represented by the second interaction 
diagram from Figure 4. It creates a new order in database, with all 
the items in the cart turned into order lines. Then an authorization 
is obtained from the Payment Gateway Emulator (PGE) that is an 
external system. Finally the credit card is registered in database 
and the cart is cleared.  
The SPT Profile performance annotations used in this primary 
model are: 

• CPU host demand in milliseconds for operations (applicable 
to execution occurrences and message stereotyped as 
<<PAstep>>) 

• probability PAprob for alt and opt interaction operands 
stereotyped as <<PAstep>> 

• repetition count PArep for loop interaction operands 
stereotyped as <<PAstep>>  

•  PArate in processor operations per millisecond for host 
devices (applicable to nodes stereotyped as <<PAhost>>) 

• PAcapacity for device multiplicity (applicable to nodes 
stereotyped as <<PAresource>>) 

• The operation performed by the PGE external system is 
represented as an SPT “external operation” (a tagged value 
of the stereotype PAstep that indicates the name of the 
external operation and the number of visits [9]). It will be 
represented in the performance model as a new task. 

Please note that we have not given in Figures 3 and 4 the full SPT 
syntax for performance annotations, in order to limit the clutter. 
However, the complete stereotypes and corresponding tagged 
values were defined with the IBM Rational Software Architect 
(RSA) tool used to generate automatically the CSM models 
shown in the next section. An additional performance annotation 
for message size in kilobytes $MSG_SIZE is also shown in 
Figures 3 and 4. (It is used later in Table 2 for computing concrete 
parameter values, such as the number of message fragments).  

3.2 Generic Aspect model  
A generic aspect model describes the solution proposed by the 
aspect in a general way, not related to the specific primary model 
in which will be eventually inserted. According to [3], a generic 
aspect model can be instantiated multiple times to produce 
multiple context-specific aspect models based on different binding 
rules. 
The generic aspect model used in this paper describes the general 
structure and behaviour of the SSL protocol, without any 
reference to the system to which SSL will be applied. SSL is the 

most common authentication protocol used for web-based secure 
transactions [8]. It handles mutual or one-way authentication and 
preserves the integrity and confidentiality of data exchange 
between clients and servers. SSL has two phases: a handshake 
phase and a data transfer phase. Each phase represents a different 
functionality that should be inserted in the primary model at 
different join points. Therefore, each phase is to be modeled as a 
separate aspect model. Due to space limitations, we will describe 
in this paper only the data transfer aspect model. 
The handshake phase allows the server and client to authenticate 
each other and to negotiate an encryption algorithm and 
cryptographic keys to be used during the data transfer phase. The 
encryption mechanisms are different during the two phases: 
public key encryption is used for the handshake, and symmetric 
encryption for data transfer. Symmetric encryption is much faster 
than public key encryption [8]. 
The SSL data transfer is modeled as a generic aspect in Figure 5, 
which shows a deployment diagram describing constraints on the 
structure, as well as an interaction diagram describing the 
behaviour. In this case, the structural constraint is that the SSL 
proxies must be located on the same node as the processes they 
are associated with. All the nodes are generic; they will be bound 
to concrete nodes in the process of instantiating the context-
specific aspects, as described in section 4.2. The interaction 
diagram in Figure 5.b involves four generic roles: |sender (the 
data source), |senderSSL (data source SSL proxy), 
|receiver (data target) and |receiverSSL (data target SSL 
proxy). We use the convention that generic role names start with a 
‘|’, similar to [3]. These roles are to be bound to application 
components when the generic aspect is instantiated to a specific 
context. A message from |sender is first broken into fragments 
by |senderSSL. The number of fragments depends on the 
length of the data to be transferred. For each fragment, the source 
counter is incremented; this is the unique counter for the data 
source. Both the target and source counters are appended to the 
fragment and a digest is created across this string, using a secret 
digest string. The digest is appended onto the fragment and then 
encrypted using the symmetric key exchanged during the 
handshake phase (resulting in a payload). A header is pre-pended 
to this information, which contains the type of the message, the 
length of the fragment and digest, and the SSL version number 
used by the data source. This entire entity is the record that is sent 
to the target; |receiverSSL increments the source counter, 
extracts the header, decrypts the payload using the symmetric 
key, extracts the fragment and digest, and validates the digest 
using the secret digest string. If either the decryption or the digest 
validation fails, the receiving target sends an alert to the data 
source that indicates the failure type. Depending on the overall 
application protocol (which is independent of the SSL protocol), 
the data source may attempt to re-send the record, or terminate. 
It is important to mention that the performance annotations in 
generic aspects use variable placeholders instead of concrete 
values for the tagged values PAdemand, PAprob, etc. These 
variables will be assigned concrete values only after the 
instantiation of the generic aspect to specific contexts (as 
described in section 4.2). 



 
Figure 5. Generic Aspect UML model for SSL Data Transfer: deployment and interaction diagrams 



The description of the SSL data transfer aspect model raises a 
general issue: what level of detail is appropriate for the UML 
model when trying to integrate the analysis of multiple non-
functional properties - in this case, security and performance. The 
interaction diagram from Figure 5.b gives a detailed functional 
description that is necessary for the logical verification of the 
security mechanisms by using a first-order logic model, as in [7]. 
However, for performance analysis a coarser granularity level 
would be more appropriate. For instance, many of the small 
sequential steps could be aggregated into larger steps, which 
would need fewer performance annotations.  
On one hand, it would be preferable to have a different UML 
view of the system under development for each kind of analysis 
we intend to perform. However, the problem is that these different 
views need to be maintained separately as the system evolves, so 
there is a danger that they could get out of synch. Hence, there is 
a strong argument for keeping a single UML model as the input 
for different analysis techniques and tools. The implication is that 
automatic model transformations will be required to raise the 
level of abstraction to an appropriate level for different analysis 
techniques.  
For instance, in the case of performance analysis, the aggregation 
of different steps could be done automatically, under the user’s 
guidance. The user needs to be involved if he/she would have to 
enter performance annotations only for the coarser-granularity 
steps obtained by aggregation. 

3.3 Aspect Composition 
Before composing the aspect with the primary model, we need to 
instantiate the generic aspect model for a given application con-
text by binding the roles to application-specific values. As already 
mentioned, a generic aspect model can be instantiated multiple 
times to produce multiple context-specific aspect models based on 
different binding rules.  
Because SPT annotations are necessary for performance analysis, 
the binding rules have two parts: one for binding generic roles to 
components/nodes from the primary model, and the other for 
giving concrete values to the performance parameters, as 
described in section 4.2. 
The composition of the aspect models with a primary model can 
be performed at different levels: UML, CSM or LQN. There are 
many papers in the literature focused on the composition at the 
UML level. For instance, in [3][14], the generic aspect models are 
defined by using the concept of UML templates. The context-
specific models are obtained from generic models by binding the 
parameter templates to values from the primary model context. 
The advantage of composing at the UML level is that the resulting 
model is also in UML; therefore, it may be further visualized, 
developed or analyzed with tools that operate directly on UML 
models. A disadvantage is that the UML metamodel is very 
complex; this has a direct impact on any composition algorithms. 
In this paper we propose for the first time to perform the aspect 
composition at the CSM level. One advantage is that CSM was 
defined to be a unique target for transformation from many UML 
versions and diagrams, and a source to many performance 
models. For instance, we are able to compose aspects with 
primary models even if they are originally defined in different 
UML behaviour diagrams (i.e., any mix of activity, sequence, 
communication, and interaction overview diagrams can be 

handled at the CSM level). Another advantage is that the CSM 
metamodel is much simpler than the UML metamodel, and 
therefore the composition algorithms are easier to design and 
implement. An obvious disadvantage is that CSM, which is 
designed to model scenarios, is much more restricted in scope and 
usage than UML.  
Composing at LQN model is also possible, but we have not 
considered this level for aspect composition yet. 

4. CSM ASPECT COMPOSITION 
4.1 CSM Generic Aspect Model 
The CSM models are automatically generated from UML+SPT 
models created with the IBM Rational Software Architect (RSA). 
The CSMGenerator is an Eclipse-based RSA plug-in that 
traverses Sequence Diagrams and generates CSM Scenarios for 
every diagram.  
UML scenarios with a PAworkload generate top-level CSM 
Scenarios while UML scenarios without a workload annotation 
generate CSM sub-scenarios. Lifelines in the interaction diagram 
generate CSM Components which can have host associations with 
CSM ProcessingResources that are specified as nodes in UML 
deployment diagram.  
 

 
Figure 6. CSM GetBuyConfirmPage primary model  

 

Figure 6 shows the CSM top-level scenario for the TPC-W 
GetBuyConfirmPage primary model, as well as the 
Checkout sub-scenario, both shown in Figure 4. The top-level 
scenario shows the CSM Steps corresponding to the execution 
occurrences stereotyped as <<PAstep>> in the interaction 
diagram as well as explicit ResourceAcquire and ResourceRelease 
elements for the resources corresponding to the lifelines.  
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Figure 7. Generic Aspect CSM model: SSLTransfer  

execution first stars. A ResourceRelease is generated whenever a 
lifeline sends an asynchronous call message or whenever 
execution finishes. 
Opt and loop combined fragments are shown as CSM complex 
steps with the loop
complex steps. The interaction operand details are shown as CSM 
sub-scenarios. For the GetBuyConfirm top-level scenario, the 
opt combined fragment for setting the shipping address is shown 
as the OPT_SetShippingAddr complex step with a corresponding 
refinement as the OPT_SetShippingAddress sub-scenario (not 
shown). Similarly in the Checkout scenario, the loop 
combined fragment that inserts the order details is shown as the 
LOOP_InsertOrder complex step and its corresponding sub-
scenario (not shown). 
Figure 7 shows the complete CSM scenario for the generic 
SSLtransfer aspect intr
For the SSLtransfer example, the loop step and the corresponding 
sub-scenario are both called LOOP_Fr
combined fragments are shown as matched Branch and Merge 
constructs with complex steps for every alternate interaction 
operand.  
The details of the interaction operands are shown as separate sub-
scenarios 
ALT_DecryptOK, ALT_DecryptFail, ALT_DigestOK, and 
ALT_DigestFail. 
Par combined fragments are treated similarly to alt combined 
fragments. They g
with complex steps for every parallel interaction operand. The 
details of the interaction operands are then shown as sub-scenario 
refinements for the complex steps. The lifelines from the 
sequence diagram correspond to generic CSM Components that 
retain the role names. The generic components either have no host 
associations if the roles have no deployment constraints, or have 
host associations to CSM ProcessingResources that correspond to 
nodes in any constraining UML deployment diagrams. 

4.2 CSM Context-Specific Aspect Model 
Generic aspect models are transformed into conte
aspect models by binding the resource roles to actual res
and then assigning context-specific performance values to step 
processing demands, branching probabilities, optional 
probabilities, and loop repetition counts. 
The first step in transforming the generic aspect model into a 
context-specific aspect model involve
resource roles GR to context-specific resources SR. These context-
specific resources can be either existing resources PR from the 
primary model, or new resources required by the aspect. 
The resource binding algorithm is: 
for all GRi: 
  if GRi has a correspondi

i j
  else 
    SRj = instantiate( GRi )  

 



In the TPC-W GetBuyConfirmPage example, the generic 
SSLtransfer aspect is bound to two different context-specific 
aspects; a context-specific SSLcall aspect for the EB calling the 
WebServer, and a different context-specific SSLreply aspect for 
the WebServer replying to the EB. The resource bindings for 
the context-specific aspects are given in Table 1. 

Table 1. Context-specific aspect resource bindings 

Generic Aspect Context-Specific Aspect 

SSLtransfer SSLcall SSLreply 

|sender eb webserver 
|senderSSL ebSendSSL (new) webSendSSL (new) 
|receiverSSL webRcvSSL (new) ebRcvSSL (new) 
|receiver webserver eb 
|senderProc ClientProc ServerProc 
|receiverProc ServerProc ClientProc 

 
The next step in getting a context-specific aspect model is to 
assign values to the performance annotations: execution demands, 
branching probabilities, etc. The concrete annotations can be 
either values or expression (for instance, the number of loop 
repetitions depends on the message size, which depends on the 
join point into the primary model).  
The values for the performance annotations used in the SSLcall 
and SSLreply top-level scenarios are given in Table 2. The step 
service demands have literal values, while the repetition count for  
LOOP_Fragments is an expression indicating that the repetition 
count is equal to the message size divided by the fragment size  
(512 bytes) and rounded up to the nearest integer. 
 

Table 2. Performance values for the top-level scenario in both 
SSLcall and SSLreply context-specific aspect models 

Step Service Demand 

sslSend 0.1 

message 0.1 

msgComplete 0.1 

sslMessage 0.1 

Loop Repetition Count 

LOOP_Fragments ceiling( $MSG_SIZE / 512 ) 
 
The performance values are the same for both the SSLcall and 
SSLreply context-specific aspects because the two aspects are 
symmetrical in this example.  This is not always the case, and it 
may be possible to have different context-specific aspects based 
on the same generic aspect that have different performance values 
(e.g., different service demands for encryption and decryption due 
to using different encryption algorithms). 
It is worth mentioning that the communication between the 
WebServer and PGE taking place in the Checkout sub-
scenario must be secure, as well. This would require the 
instantiation the SSL generic aspects to another context. 
However, in this paper we have not done this instantiation and 
comp ead 
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4.3 CSM Composed Model 
The CSM composed model is generated by weaving the context-
specific aspect models into the primary mode
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Figure 8. Composed CSM

Figure 8 shows the CSM composed model for 
GetBuyConfirmPage with SSL data transfer between EB and 
WebServer. For this example, the join point for the SSLcall 
aspect is the call step, while the join point for the SSLreply aspect 
is the reply step.  The weaving is done by replacing the join point 
steps with complex steps – call and reply are replaced with osition for the sake of simplicity. We have assumed inst



SSLcall and SSLreply – and using the context-specific aspects as 
refinements for those complex steps. 
As part of the resource context reconciliation during weaving, the 

t was used to replace simple non-secure messages in the 
rimary model. This allowed us to substitute simple CSM steps 

 

which also acts as a client to the ,  and 
tasks. The co SendSSL and 

L. 

 more accurate results for complex models, 

SSLcall aspect loses the ResourceAcquire:eb element at the 
beginning since EB is already acquired in the primary model 
before SSLcall is invoked as well as the ResourceRelease: 
webserver at the end, since it is already released in the primary 
model after the aspect completes. Similarly, the SSLreply aspect 
loses the first ResourceAcquire: webserver and the last Resource 
Release: eb. 
The aspect composition is straightforward in this case because the 
SSL aspec
p
with one input and one output with composed steps with one input 
and one output. In the general case, an aspect may require more 
than a single input and/or output, which leads to a more complex 
composition. Such an example is when an aspect model contains 
alternative or parallel behaviours, where the respective branches 
need to be “attached” to the primary model in different input or 
output points.  
A more general composition approach involves defining aspect 
join contexts instead of just join points. Instead of being simple 
steps, join contexts are either CSM path fragments (i.e. sequences 
of steps with single beginnings and single ends) or combinations 
of CSM path fragments. Those path fragments are then used to 
generate sub-scenarios and are replaced by complex steps using 
those sub-scenarios as refinements. The aspects can be composed 
into the model either as sub-scenario replacements or in 
combination with the existing sub-scenarios. More research is 
necessary for developing algorithms for more complex 
compositions cases such as these. 

5. LQN PERFORMANCE ANALYSIS  
The CSM primary and composed models are automatically 
transformed into LQN models using the Csm2Lqn generator. 
Csm2Lqn is an Eclipse-based tool that implements the Scenario to 
Performance (S2P) algorithm described in [12]. 

5.1 LQN Primary and Composed Models 
Figure 9 shows both the primary and the composed LQN models 
for the TPC–W GetBuyConfirmPage example. For 
simplicity, the entries and activities are hidden in these diagrams, 
only tasks are shown in rectangular boxes. Tasks added as a result 
of aspect composition are shown with a gray background. Call 
relationships between tasks are denoted by arrows: a) solid arrows 
represent synchronous calls; b) open arrows represent 
asynchronous calls; c) solid arrows with dashed lines represent 
forwarding calls. Ovals represent processors or hardware devices, 
while lines between tasks and processors show deployment 
relationship between software and hardware resources. 
The primary model has a simple tiered client-server architecture 
with the eb task making a synchronous call to the webserver task, 

database  imageserver, pge 
mposed model introduces the eb

webRcvSSL tasks between the eb and webserver, as well as the 
webSendSSL and ebRcvSSL tasks from the webserver back to the 
eb. The simple synchronous interaction between the eb and 
webserver tasks from the primary model is replaced with a 
forwarding chain from eb to ebSendSSL, webRcvSSL, webserver, 

webSendSSL, and finally ebRcvSSL. In this model the eb task still 
blocks waiting for a reply, but the reply is generated by the last 
task in the forwarding chain, ebRcvSS

5.2 Performance Results 
The LQN performance model can be solved by either the 
analytical solver LQNS or simulation solver LQSim [19]. LQNS 
solves models mathematically, and is faster than LQSim. It works 
very well for models with synchronous messages, but does not 
handle as well models having a mix of synchronous with a lot of 
asynchronous messages. LQSim takes a longer time to solve a 
model, but gives
especially those containing a lot of forwarding/ asynchronous 
interactions mixed with synchronous ones. In our case, the LQN 
models for GetCustRegPage (which are smaller) were solved 
with LQNS, and the models for GetBuyConfirmPage with 
LQSim.  

refTask 
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InfiniteProc
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ClientProc

 

(a) 

refTask 

webserver 

imageserver pge database

ServerProc

DBProc

eb 

ebRcvSSL ebSendSSL 

ClientProc

(b) 

database

webserver 

webSendSSL

webRcvSSL 

imageserver pge 

ServerProc 

DBProc

Figure 9. LQN model for GetBuyConfirmPage  
a) primary model; b) composed model  

The performance results obtained from the solvers include 
throughputs and service times (including queuing delays) for 
software resources, and utilization of both hardware and software 
resources. The simulator also gives the confidence intervals for all 
the results. The response times obtained from LQSim for the 



GetBuyConfirmPage scenario are accurate within ± 2-3% at 
95% confidence level. 

Figure 10 shows the response times for the two scenarios studied 
in this paper, each giving the results for the respective primary 

the SSLtransfer aspect on the 

ands introduced by the aspect itself are much larger 
than the demands of the original scenario. The bottleneck occurs 
in the webSendSSL task, which has a utilization of 97%. This task 
is introduced by the security aspect, and is responsible for 
encrypting and sending messages from webserver to eb. 

and composed model. The impact of 
scenario performance is noticeably different for the 
GetCustRegPage and the GetBuyConfirmPage cases.  

The GetCustRegPage is a light-weight scenario, which simply 
creates the content for a small webpage and returns it to the EB 
client. Therefore, as shown in Figure 11.a, the primary model for 
GetCustRegPage has a response time of less than 5ms and does 
not saturate even with more than 500 simultaneous users. 
Additional experiments show that the primary model can support 
2000 users executing light-weight scenarios without saturation. 
However the composed model with SSL saturates with 350 users. 
The strong performance impact is due to the fact that the extra 
resource dem

(a) Response Time for Get Customer Registration Page
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 security 
solutions can help the designers to make tradeoffs between 
security and performance solutions, in order to satisfactorily 
balance competing system requirements.  

6. CONCLUSIONS 
This paper proposes a novel approach for composing aspects with 
the primary model at the Core Scenario Model (CSM) level. 
Aspect oriented modeling (AOM) allows software designers to 
separately address solutions for crosscutting concerns. We are 
applying AOM to enhance a system with security solutions; then 
we analyze the performance effects of these solutions on the 
overall system performance. Previous work has been done to 
compose aspects with the primary model at the UML level. Doing 
the composition at the CSM level has the following advantages: 
a) simpler composition algorithms due a much simpler CSM 
metamodel compared to UML; b) the ability to compose scenario
defined in UML with a mixture of behaviour diagrams (activity, 
sequence, communication, interaction overview).  

This paper is a step toward the longer term goal of integrating 
security solution tradeoff analysis and performance analysis in the 
same development process. Integration of these techniques will 
enhance the current ability of analyzing separately security and 
performance of the same UML model, with the capability of 
cross-analyzing the effects of security mechanisms on system 
performance, and vice versa. This will allow designers to make 
tradeoffs between security and performance solutions. Another 
goal of the current research is to develop automated tool support 
for an integrated process, starting from the existing separate tools.    
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