
A Philosophy for Software Measurement
�

Albert L. Baker

Department of Computer Science

Iowa State University

Ames, Iowa 50011

James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523

Norman Fentony

Centre for Software Reliability

The City University

Northampton Square

London EC1V 0HB

United Kingdom

David A. Gustafson

Department of Computing and Information Sciences

Kansas State University

Manhattan, Kansas 66506

Austin Meltonz

Department of Computing and Information Sciences

Kansas State University

Manhattan, Kansas 66506

Robin Whitty

Department of Electrical and Electronic Engineering

Polytechnic of the South Bank

Borough Road

London SE1 0AA

United Kingdom

April 4, 1990

to appear in The Journal of Systems and Software

Abstract

We as a group { called the Grubstake Group { are convinced that software measures are es-

sential for \controlling" software. Thus, we are dedicated to producing an environment in which

software measures can be con�dently used by software managers and programmers. However,

we are also convinced that such an environment can only be created if there exists a formal

and rigorous foundation for software measurement. This foundation will not have to be under-

stood by the users of the software measures, but it will have to be understood by those who

de�ne, validate, and provide tool support for the measures. It is this foundation which we are

introducing in this paper.

�Research is supported in part by NATO Collaborative Research Grant 034/88.
yResearch is supported in part by ESPRIT project PDCS and by British Telecom.
zResearch is supported in part by ONR Grant N00014-88-K-0455.

1



1 Basic Position

Since Maurice Halstead developed his software science metrics, software researchers and practition-

ers have sought meaningful software measures. Researchers seek quantitative measures of software

\quality" and \complexity", and practitioners see software measures as tools to control the grow-

ing cost of software development and maintenance. However, the research literature contains many

negative criticisms of software measures research. The �eld of software measurement has been

criticized for poor empirical methodology and for a lack of theoretical foundations.

In spite of the criticism, we believe that software measurement is important, and we further

believe that software measurement can become a trusted and well-respected branch of software

engineering. We want to be able to take meaningful measurements of software documents and the

software production process. We also want to be able to use software measures to make accurate

predictions. Unfortunately, software measurement research is often suspect due to a lack of rigor

and/or unjusti�ed claims. For research results to be meaningful, software measurement must be well

grounded in theory. Further, empirical results must be obtained through well designed experimental

work.

Our philosophy is to use the science of measurement theory [5] for the foundation of software

measurement. Measurement theory, which is the basis for measurement in the physical sciences,

provides a framework for numerically characterizing intuitive properties or attributes of objects

and events. Applying the basic criteria of measurement theory to software measures requires the

identi�cation and/or de�nition of

� attributes of software products and processes. These attributes need to be aspects of software

that have both intuitive and well-understood meanings. For example, the attribute of length

for the product of source code satis�es this whereas coupling of software designs or source

code has a number of di�erent interpretations. However, we believe that a dialogue among

software professionals could lead to a understanding of the term \coupling".

� formal models or abstractions which capture the attributes. For example, one possible model

of source code for capturing the attribute of length is the representation of the source code

in binary form via the 8-bit ASCII code.

� important relationships and orderings which exist between the objects (being modeled) and

which are determined by the attributes of the models. For example, if we understand what

length means and we have a model of length, we can compare two programs in terms of their

relative length. Such comparisons impose a \length order" on the software documents.

� mappings from the models to number systems which preserve the order relationships. This

idea is the basis of the representational theory of measurement. For example, any measure of

length must not contradict the length ordering that our model and our intuitive understanding

of length imposes.

If all the above criteria are satis�ed, then the resulting mapping will be called a software

measure. An arbitrary mapping which does not necessarily satisfy the �rst three requirements is a

metric. This distinction between a software measure and metric is consistent with the interpretation

provided in [6]. We believe that much of the criticism in the professional literature stems from

metrics being presented as measures.

We would also like to be able to use measurement to make valid predictions. For example,

measures of attributes of a software speci�cation could be used to make predictions about attributes

of an implementation. But, in order to predict, we need

2



� two or more measures of attributes. For example, one measure may be of a speci�cation

attribute and the other may be of an implementation attribute.

� a theory that relates the measures. One cannot randomly look for correlations between two

measures. One must have an a priori theory or hypothesis to establish causality.

� an empirical demonstration that the theory holds.

Research on both developing meaningful measures and establishing relationships between mea-

sures is necessary. In order to use software measurements to make predictions, the research emphasis

needs to be on establishing theories relating di�erent measures. We further believe that a measure

need not be a part of a prediction system to be valid and useful.

2 Validation

Numerous software measures are described in the literature. These are designed to measure a

wide range of attributes, and they naturally vary greatly in de�nition and in use. Unfortunately,

for most of these irreconcilable measures, we �nd research reports claiming that they measure or

predict similar attributes such as cost, size, and complexity. This state of a�airs is commonly

attributed to a general lack of validation of software measures. While accepting this reason, we

propose more fundamentally that there is a lack of understanding of the meaning of validation of

software measures.

However, before we discuss validation, we need to be clear about what we are validating. Lit-

erature references to software measures actually refer to two separate concepts:

� Measures which are de�ned on certain objects and characterize numerically some speci�c

attribute of these objects. (This is how we have de�ned software measures.)

� Prediction systems involving a mathematical model and prediction procedures for it.

The software metrics community has generally not di�erentiated between these two concepts

resulting in confusion surrounding the notions of, and obligations for, validation. The two concepts

require di�erent types of validation. In the case of measures we turn to measurement theory for

the notion of validation.

De�nition 2.1 Validation of a software measure is the process of ensuring that the measure is a

proper numerical characterization of the claimed attribute.

This type of validation is central in our use of measurement theory. Practitioners may prefer to

regard this as ensuring the well-de�nedness and consistency of the measure. To stress this where

necessary we may also refer to it as internal validation since it may require consideration of the

underlying models used to capture the objects and attributes.

For prediction systems we have:

De�nition 2.2 Validation of a prediction system is the usual empirical process of establishing the

accuracy of the prediction system in a given environment by empirical means, i.e., by comparing

model performance with known data points in a given environment.

So where does the confusion arise?

It arises out of a basic (and poorly articulated) misconception that a software

measure must always be part of a prediction system.

The misconception is normally presented in something like the following manner:

3



A software measure is only valid if it can be shown to be an accurate predictor of some

software attribute of general interest like cost or reliability.

This misconception is so damaging for scienti�c approaches to software measurement and val-

idation that it is worth dismantling it by formal arguments. (Before we list these arguments,

we should point out that some practitioners use \valid" to mean of worth or reasonable and not

\scienti�cally valid". This di�erence should be kept in mind when reading argument 2 below.)

1. This view of validation is ill-de�ned since it is not known which rigorously measurable software

attributes are directly related to the general interest attributes such as cost and reliability.

2. This view of validation contradicts the very meaning of measurement.

3. A scienti�c approach to the prediction problem requires that any predictive capability of a

measure be stated as a hypothesis. In this case validation is clearly understood, since this is

the case of the proposal of a prediction system.

Let us briey consider an important rami�cation of this measure-predictor misconception:

Suppose that we have some good measures of internal product attributes, like size, struc-

turedness, modularity, functionality, coupling, and cohension. Then it is apparently not

enough that these measures accurately characterize the stated attributes because these

are not considered to be of \general" interest. Since there is generally no speci�c hy-

pothesis about the predictive capabilities of such measures, they are shown to be \valid"

by correlation against any \interesting" measures which happen to be available as data.

For example a measure of coupling might be claimed to be valid or invalid on the basis

of a comparison with known development costs if the latter is the only \data" avail-

able. This would be done even though no claims were ever made about a relationship

between coupling and development costs!

It is conceivable that a measure could be shown to be valid in the sense of its being a component

of a valid prediction system even though no hypothesis existed. For this to occur the \data" which

happens to be available would have to be shown to be consistently related via a formula determined

initially by regression analysis. If such validation does occur, let us call it external validation

of the measure to distinguish it from the (internal) validation which should initially take place to

show that it actually measures some attribute.

De�nition 2.3 External validation of a measure m is the process of establishing a consistent rela-

tionship between m and some available empirical data purporting to measure some useful attribute.

Given our poor understanding of the relationships between various software products and pro-

cesses, external validation seems highly unreliable. And yet we are expected to accept that

this as the major approach to validation!

The reason we are interested in measuring internal attributes like size, structuredness, modu-

larity, control ow complexity, data ow complexity, cohesion, and coupling, is because we believe

that not only are these important concepts in their own right but also because they will necessar-

ily play a role in many types of prediction systems. Indeed in the case of size, we already note

that it is a component of almost all cost and productivity models and prediction systems; at the

very least we should already have ensured that the proposed measures of size capture our intuitive

understanding of size!

4



3 Developing Structural Measures

We usually de�ne an \attribute" or an \aspect" of software documents when we use a particular

abstraction of the software document. For example, the number of linearly independent paths in

a program (also known as the cyclomatic number) is actually de�ned for the owgraph abstraction

of the program. A methodology for de�ning a structural measure is: �rst de�ne an abstraction

of the document, then de�ne an order on the abstraction, and then de�ne an order-preserving map

from the abstraction to the real numbers (or other appropriate number system).

A consideration of di�erent types of orders on the sets of abstractions leads to a hierarchy of

structural measures.

De�nition 3.1 Let D be a set of similar documents; let A be a set of abstractions; let abs: D �! A

be the function which maps each object to its abstraction; �A be a partial order on A; and let

m? : (A;�A) �! (<;�<) be an order preserving map. Then m(D) = m?(abs(D)) is a well-founded

structural measure.

We can de�ne a subset of well-founded structural measures by restricting the nature of the

orders on abstractions. Consider a partial order � which formalizes a notion of containment. For

example in the set of owgraphs, we could have G � G0 exactly when owgraph G is \contained"

in a owgraph G0. For an exact de�nition of � on the set of owgraphs, see [1]. This notion of a

containment-based partial order can be used to de�ne a subset of the set well-founded structural

measures.

De�nition 3.2 Let D be a set of similar documents; let A be a set of abstractions; let abs:

D �! A be the abstraction map; let �A be a containment-based partial order on A; and let

m? : (A;�A) �! (<;�<) be an order preserving mapping. Then m(D) = m?(abs(D)) is a

containment-based structural measure.

The de�nitions of a well-founded structural measure and a containment-based structural mea-

sure suggest a methodology for software measures research. First, when de�ning a measure one

needs to specify precisely the documents and the attribute to be measured. Then an abstraction

or model which captures the attribute and an order which respects the attribute must be given.

Finally an order preserving map from the abstractions or model to a number system is de�ned.

The order-preservation means that the map is indeed capturing the attribute.

4 Immediate and Realistic Uses for Structural Software Mea-

sures

For a valid software measure to be useful it is not necessary that it be part of a prediction system or

that it be a measure of \understandability" or \psychological complexity". Successful measures of

structural properties can be developed when important structural properties can be unambiguously

identi�ed, modeled, and understood.

The software attribute that we examine is the \di�culty" of applying a particular testing

strategy to software. A measurable component of this \di�culty" attribute is the number of test

cases needed. A measure that accurately estimates the number of required tests obviously satis�es

all reasonable intuition concerning the di�culty of using a testing strategy.

Structural measures are most applicable to structural testing strategies. Structural testing

prescribes that particular sets of program paths with certain structural properties be tested. For

example, the criteria proposed by Rapps and Weyuker [4] require testing speci�c sets of paths

5



that follow the ow of data from expressions through assignments to other expressions. The all-

du-paths criterion is the strongest of these criteria. Unfortunately, it may potentially take an

enormous number of tests to satisfy the criterion. In the worst case it takes 2t number of tests,

where t is the number of branches [7].

An alternative to a worst case analysis is to use structural measures to estimate the number of

test cases actually required to satisfy a criterion on speci�c programs. Such measures can simply

count the number of complete paths through a program necessary to meet a criterion. In de�ning

such a measure, we are working with the set of coded programs. The attribute which we want to

measure is the cardinality of a minimal set of test data satisfying test strategy requirements. Our

abstraction is the set of owgraphs annotated with data ow information.

Using such a measurement tool, Bieman and Schultz conducted an investigation to determine

how many test cases are actually needed to satisfy the all-du-paths testing criterion [2, 3]. The

tools developed by Bieman and Schultz identify minimal sets of complete program paths that satisfy

data ow criteria. The cardinality of these minimal sets measures the estimated number of test

cases needed to satisfy the criteria. The measures were used in an empirical study with results

that indicate that the all-du-paths criterion is much more practical than previous analytical results

suggest. In their study of a commercial software system, Bieman and Schultz found that the all-

du-paths criterion can usually be satis�ed by testing fewer than ten complete paths, and units

requiring an exponential number of tests are rare.

This example shows that researchers and practitioners can gain valuable insights when they

focus on the direct implication of a structural measure. A measure that determines the size of a

minimal set of paths necessary to satisfy a structural criterion is quite useful. The number of test

cases needed for a particular testing strategy is clearly a component of the di�culty of using the

strategy. Such a measure can be used to determine the practicability of the criterion. We can also

use such a measure to estimate the required number of test cases and identify hard to test program

units. Such a measure need not predict the elusive \understandability" property to be useful.

5 Conclusions

Software measurement is critical and necessary in order to provide a scienti�c basis for software

engineering. Meaningful software measurements must be well-grounded and measurement theory

is the natural foundation. We, the Grubstake Group, have introduced the application of measure-

ment theory to software measures, described implications of the theory to validation and to the

development of structural measures, and have shown that useful measures can be developed under

the measurement theory framework.

References

[1] A. Baker, J. Bieman, D. Gustafson, and A. Melton. Modeling and measuring the software

development process. Proc. 20th Hawaii International Conference on Systems Sciences (HICSS-

20), II:23{30, January 1987.

[2] J. Bieman and J. Schultz. An empirical evaluation of the all-du-paths testing criterion. sub-

mitted to Software Practice & Experience, 1989.

[3] J. Bieman and J. Schultz. Estimating the number of test cases required to satisfy the all-du-

paths testing criterion. Proc. Software Testing, Analysis and Veri�cation Symposium (TAV3{

SIGSOFT89), pages 179{186, December 1989.

6



[4] S. Rapps and E. J. Weyuker. Selecting software test data using data ow information. IEEE

Trans. Software Engineering, SE-11(4):367{375, April 1985.

[5] F.S. Roberts. Measurement Theory with Applications to Decision Making, Utility, and the Social

Sciences. Addison Wesley, 1979.

[6] V.Y. Shen S.D. Conte and H.E. Dunsmore. Software Engineering Metrics and Models. Benjamin

Cummins Publishing, Inc., 1986.

[7] E. J. Weyuker. The complexity of data ow criteria for test data selection. Information Pro-

cessing Letters, 19:103{109, August 1984.

7



6 Biographies

6.1 Albert L.Baker

Dr. Albert L. Baker is currently an Associate Professor in the Department of Computer Science at

Iowa State University. His software engineering research intertests include speci�cation languages,

software measures, and programming methodologies. His work in software measures has for some

time focused on providing a more rigorous basis for de�nitions and analyses of software measures.

His work in speci�cation languages and methodologies is focused on bringing increased precision to

some of the less formal speci�cation techniques currently in use in production environments, e.g.,

structured analysis (SA) techniques. This research on increasing the precision of SA speci�cations

has been supported in part by Rockwell International Corporation, Cedar Rapids, Iowa.

Dr. Baker also conducts research and development in natural language text analysis systems.

The goal of this research is to produce practical systems that can be used to more systematically

analyze large volumes of textual data, e.g., as might be generated in a large population survey

consisting of open-ended questions requiring verbatim responses.

6.2 James M. Bieman

Dr. James M. Bieman is an Associate Professor of Computer Science at Colorado State University,

Fort Collins, Colorado. He was previously an Assistant Professor at Iowa State University. Dr.

Bieman's research is focused on the structural analysis of software, software measures, software

testing, and executable speci�cation languages. He has developed software measurement tools to

estimate the required number of test cases necessary to meet data ow testing criteria. Results of

a case study of a commercial software system suggest that the strongest of the data ow criteria,

the all-du-paths criterion, is much more practical than the theoretical results indicate. His research

on executable software speci�cations demonstrate that speci�cation assertions can be e�ectively

expressed within executable type expressions. Dr. Bieman (with J. Leszczy lowski) designed the

PROSPER executable speci�cation language.

6.3 Norman E. Fenton

Dr. Norman E. Fenton, PhD, C.Eng, MIEE, AFIMA, is Reader in Software Engineering at the

Centre for Software Reliability, City University, London. His previous positions include being

Director of the Centre for Systems and Software Engineering and Reader in Information Technology

at South Bank Polytechnic and Research Fellow in Mathematics at Oxford University. Dr. Fenton

has published widely on various topics in software engineering and discrete mathematics, with

recent emphasis on theories of structured programming and software metrics. He is currently

concerned with evaluation of both software products and methods for software production and

in the formal foundations of software measurement generally. Dr. Fenton is involved in several

major industrial collaborative projects as researcher or consultant. These include various ESPRIT

projects in software engineering, metrics, and software certi�cation. Dr. Fenton has been a member

of numerous conference organizing committees and software standards bodies committees.

6.4 David A. Gustafson

Dr. David A. Gustafson received the B.Math from University of Minnesota, the BS (Meteorology)

from the University of Utah, and the MS and PhD in Computer Science from the University of

Wisconsin - Madison.

8



He is an Associate Professor in the Computing and Information Sciences Department at Kansas

State University, Manhattan, Kansas. His research interests include the theory and validation of

software measures, software reliability, software testing methods, formal notations for diagrams,

and notations for describing the software development process.

Dr. Gustafson is a member of IEEE, ACM, MAA, Sigma Xi, UPE and Tau Beta Pi.

6.5 Austin C. Melton

Dr. Austin C. Melton is an Associate Professor in the Department of Computing and Information

Sciences at Kansas State University. He has been a Fulbright Fellow in West Germany and a Visiting

Associate Professor at the University of Copenhagen, and he is the founder of the Mathematical

Foundations of Programming Semantics Conference/Workshop Series. His research interests include

software measures, non-normal form databases, and programming semantics.

6.6 Robin Whitty

Dr. Robin Whitty, Ph.D., AFIMA, is currently Reader in Information Technology with the Faculty

of Engineering at South Bank Polytechnic in London. He is Director of the Polytechnic's Centre for

Systems and Software Engineering (CSSE). The CSSE is a research centre specializing in software

measurement methods and tools, with sponsors including IBM, British Telecom, and the EEC.

Dr. Whitty was formally Lecturer in Computer Science at Goldsmiths' College University of

London. During his time there he was a Vacation Fellow at British Telecom in 1987 and was

Site Manager for the UK Alvey Project \Structure-based Software Metrics". He retains a visiting

appointment at Goldsmiths' College as consultant to a 4-year EEC project \Cost management with

Metrics of Speci�cation (COSMOS)". He is also on the Board of Studies in Computer Science of

the University of London.

Dr. Whitty's research interests include software metrics, algorithm design, and graph theory.

He has 20 publications and reports in these areas, is a referee for several journals in software

engineering and discrete mathematics and is a reviewer for Mathematical Reviews. He is a member

of the London Mathematical Society, the European Association for Theoretical Computer Science,

and the Institute of Mathematics and its Applications.

9


