
Abstract
Object-oriented programs cause a shift in focus from
software units to the way software classes and
components are connected. Thus, we are finding that we
need less emphasis on unit testing and more on
integration testing. The compositional relationships of
inheritance and aggregation, especially when combined
with polymorphism, introduce new kinds of integration
faults, which can be covered using testing criteria that
take the effects of inheritance and polymorphism into
account. This paper demonstrates, via a set of
experiments, the relative effectiveness of several
coupling-based OO testing criteria and branch
coverage. OO criteria are all more effective at detecting
faults due to the use of inheritance and polymorphism
than branch coverage.

1. Introduction

The emphasis in object-oriented languages is on
defining abstractions (e.g. abstract data types) that model
aspects of a problem [11]. These abstractions are
implemented as user-defined types that have both state
and behavior. Although abstract data types can help
achieve a higher quality design, their use may affect how
software is tested. A major factor is that shifting from
procedure-oriented to object-oriented software often
changes where the complexity resides. Instead of
procedures that have complicated control structures,
object-oriented software often has simple procedures,
with the complexity being in how the procedures and
components are connected. Thus, testers are finding that
less emphasis is needed on unit testing and more on
integration testing.

 The inherent complexity of the relationships found
in object-oriented languages [6] also affects testing. The
compositional relationships of inheritance and
aggregation, combined with the power of polymorphism,

can make it harder to detect faults in the way components
are integrated. This is because component integration is
different in object-oriented languages [5].

 The primary distinction among the types of
languages discussed in this paper is in the mechanisms
used for abstraction. Procedure-oriented languages use
procedures and functions as their primary abstraction
mechanism, whereas object-oriented languages use data
abstraction. In addition, object-oriented languages use
the integration mechanisms of inheritance and
polymorphism (dynamic binding), both of which can
strongly affect component integration. Inheritance differs
from aggregation in that a new type can have access to
the internal representation of the ancestor types. When a
call is made to a polymorphic method, which version is
executed depends on the type of the object [11]. Thus
inheritance and polymorphism provide two forms of
integration that must be dealt with when testing object-
oriented software, neither of which has a procedure-
oriented counterpart.

This paper presents results from an ongoing research
project that has the goal of improving the quality of
object-oriented software. One previous paper [13]
derives fault models for OO software based on the
inheritance and polymorphism relationships in object-
oriented software. Another prior paper [3] defines new
coverage criteria, which allow routine aspects of testing
at the integration level to be formalized. This paper
evaluates the effectiveness of the criteria at detecting
faults that result from the use of inheritance and
polymorphism.

2. Background

The test adequacy criteria evaluated in this paper are
based on our previous work in the area of coupling-based
testing [2, 3, 10]. The following presents a brief
overview of this work, beginning with concepts on
object-orientation and the notion of the coupling
sequence. The formal definitions of the criteria are then
presented.1 This work is supported in pary by the US National Science Foun-

dation under grants CCR-98-04111 and CCR-0098282 to George
Mason University.

Fault Detection Capabilities of Coupling-based OO Testing1

Roger T. Alexander
Colorado State University

Department of Computer Science
Fort Collins, Colorado 80523

rta@cs.colostate.edu

Jeff Offutt
George Mason University

ISE Department
Fairfax, Virginia 22030

ofut@gmu.edu

James M. Bieman
Colorado State University

Department of Computer Science
Fort Collins, Colorado 80523

bieman@cs.colostate.edu

bieman
To Appear in Proc. Int. Conf. Software Reliability Engineering (ISSRE 2002) pp. 207--218, 2002.

2.1. OO concepts

The fundamental building block in object-oriented
programming is the class, which is the mechanism by
which new types are defined. A class encapsulates state
information in a collection of variables, referred to as
state variables, and also has a set of behaviors that are
represented by a collection of methods that operate on
those variables. A class defines a type that all of its
objects share. Further, a class defines a family of types
(type family) that includes itself and all of its
descendants.

There are two types of relationships that can be used
to compose class types to form new types. The first,
aggregation, is the traditional notion of one type
containing instances of another type as part of its internal
state representation. The second form of compositional
relationship is inheritance. Inheritance allows the
representation of one type to be defined in terms of the
representation of a set of other types. When this occurs,
the type being defined is said to inherit the properties of
its ancestors (i.e. behavior and state). The definition of
the ancestors becomes part of the definition of the new
descendant type.

Polymorphism permits variable instances to be bound
to references of different types according to the structure
of the inheritance hierarchy. Dynamic binding permits
different method implementations to execute. Which one
executes depends on the actual type of an instance that is
bound to a particular reference; this actual type is
independent of its declared type [11].

Behavior in an object-oriented program is manifested
through method calls, which can occur in two
circumstances: (1) with respect to some instance
(object), or (2) where there is no instance. Instance
methods are called with respect to instance variables,
and class methods have no instance. Instance methods
can make the instance explicit, as in o.m(), or implicit, as
in p(). For the call o.m(), m() executes in the context of
the instance that is bound to the reference o. For
convenience, we say that m() executes in the context of
o, and we refer to o as m()'s instance context.

An object (instance) o is defined (i.e. assigned a
value) when one of the variables of the object is defined
(i.e. assigned a value). An indirect definition occurs
when a method m defines one of o's variables. Similarly,
an indirect use occurs when m references the value of
one of o's variables.

2.2. Coupling sequences

Although one of the motivating goals of object-
oriented design and programming was to reduce the
amount of coupling between software components, the
new language features also introduce new ways for
components to be coupled. To handle these couplings in
analysis techniques, the idea of a coupling sequence was
previously introduced [2]. A coupling sequence is a

sequence of method calls between a method under test m
and an object o that m references that establishes a data
coupling. The objective is not to determine if o is correct,
but rather to determine if m is using o correctly. Coupling
sequences represent those locations in the text of m
where faults are likely to occur with respect to o.

Intra-method coupling sequences are defined by pairs
of method calls made within the context of a particular
method, referred to as the coupling method. When a
method m is called through an object o (i.e. o.m()), we
say that m executes in the instance context provided by o
(referred to as the context variable). The two method
calls of an intra-method coupling sequence are made
through the same context variable, so they share a
common instance context. Further, there is at least one
path between the two method calls that is definition-clear
with respect to the context variable and to at least one
state variable that is defined by the first method and used
by the second. Such a path is referred to as a coupling
path. The intra-method coupling sequence is similar to a
def-use pair [9], and serves to relate a definition of a state
variable to a corresponding use across a procedural
boundary in the context of a particular object and
method. On the surface, it might appear that testing one
such path is sufficient to test the class of object bound to
o. However, it is not the class that is being tested, but
rather the method that makes use of the object and the
corresponding methods.

An example of an intra-method coupling sequence is
illustrated in Figure 1. Method f, the coupling method,
contains a single coupling sequence, sj,k, that starts at
node j with a call to o.m (the antecedent method) and
extends through paths that end at node k where the
sequence ends with a call to o.n (the consequent method).
The nodes containing the antecedent method and
consequent method are called the antecedent node and
consequent node of sj,k. Note that there must be at least
one path between the call sites that is definition clear
with respect to o and to the state variable definitions
made in the antecedent method that have corresponding
uses in the consequent method.

Figure 1. Example coupling sequence sj,k

i

j

k

definition of o

def-clear with respect to o

o.m()

o.n()

def - clear with respect to and
defs() uses() { }

o
o.m() o.r() o.v∩ =

Indirect definitions here
Reach indirect uses here defs(o.m()) = {o.v,o.s}

i-uses(o.r()) = {o.v, o.q}

f()

Coupling
Sequence

sj,k

Transmission
Paths

A coupling sequence sj,k is defined with respect to a
set of state variables that are defined by the antecedent
method and used by the consequent method. This set of
variables is referred to as the coupling set of sj,k,
and each member of this set is a coupling variable. The
coupling set for the sequence sj,k shown in Figure 1 is:

where the subscript type(o) is the declared type of the
context variable o, and this vtype(o) is a state variable
contained in the definition of o’s declared type.
contains the state variables referenced through o that are
defined by the antecedent method and used by the
consequent method in the coupling sequence sj,k.

The coupling paths of sj,k start at nodes in the
antecedent method that have last definitions of a
particular coupling variable, and end at nodes in the
consequent method that have corresponding first uses of
the same coupling variable.1 Note that for a given
coupling sequence, the methods that are executed as a
result of a call through the antecedent or consequent
nodes depend on the type of the instance that the
sequence's context variable is bound to. If the context
variable is of type T, any instance of any class that is a
member of the type family of T may be bound to the
context variable.

2.3. Coupling criteria

This paper evaluates three object-oriented coupling
criteria for integration testing: All-Coupling-Sequences,
All-Poly-Classes, and All-Poly-Coupling-Defs-Uses. In
the following subsections, represents the set of test
cases for coupling sequence sj,k.

2.3.1. All-Coupling-Sequences (ACS). Ideally, during
integration testing, at least every coupling sequence in
every method of every class should be covered. Here,
coverage means that each coupling sequence is executed
by at least one test case. The All-Coupling-Sequences
requires that every coupling sequence be covered by at
least one test case.

Definition All-Coupling-Sequences: For every coup-
ling sequence sj,k in method f, there is at least one test
case such that when f is executed using t, there
is a path p in the coupling paths of sj,k that is a subpath
of the execution trace of f.

2.3.2. All-Poly-Classes (APC). The All-Poly-Classes
criterion strengthens All-Coupling-Sequences by consid-
ering inheritance and polymorphism. This is achieved by
ensuring there is at least one test for every class that
could provide an instance context for each coupling
sequence. The idea is that the coupling sequence should
be tested with every possible type substitution that can
occur in a given coupling context. The All-Poly-Classes
criterion requires that for every coupling sequence sj,k in
a method f, and for every class c in the type family
defined by the context of sj,k, there is at least one test that
covers every feasible combination of c and sj,k for f. The
combination (c, sj,k) is feasible if and only if c is the
same as the declared type of the context variable for sj,k,
or c is a child of the declared type and it defines an over-
riding method for the antecedent or consequent method.
Thus, only classes that override the antecedent and con-
sequent methods are considered.

Definition All-Poly-Classes: For every coupling se-
quence sj,k in method f, and for every class in the family
of types defined by the context of sj,k, there is at least one
test case t such that when f is executed using t, there is a
path p in the coupling paths of sj,k that is a subpath of the
trace of f.

2.3.3. All-Poly-Coupling-Defs-and-Uses (APDU). In
addition to inheritance and polymorphism, the criterion
All-Poly-Coupling-Defs-and-Uses takes the effects of
definitions and uses into account. All-Poly-Coupling-
Defs-and-Uses requires that all coupling paths be exe-
cuted for every member of the type family defined by the
context of a coupling sequence.

Definition All-Poly-Coupling-Defs-and-Uses: For ev-
ery coupling sequence sj,k in method f, and for every
class in the family of types defined by the context of sj,k,
and for every coupling variable v of sj,k and every node
m having a last definition of v and every node n having a
first-use of v, there is at least one test case t such that
when f is executed using t, there is a path p in the
coupling paths of sj,k that is a subpath of the trace of f.

3. Experimental Design

This experiment evaluated the three coupling-based
test adequacy criteria. Branch Coverage is used as the
control to determine if the other criteria are effective at
detecting faults. Branch testing is a unit-level white box
testing technique, and seeks to “execute enough tests to
assure that every branch alternative has been executed at
least once” [4].

3.1. Subject programs

Each subject program used in these experiments
consists of a collection of classes that are integrated with

1 A last-definition of a variable v is a node n along some path of a meth-
od, where n is the last node that defines v prior to the exit node of the
method [10]. Similarly, a first use of v is the first node n along some
path that begins with the entry node a method, such that there is no
other node that uses v before the use of n.

Tsj k,

Θsj k,
vtype o(){ }=

Tsj k,

Tsj k,

t Tsj k,
∈

a client method, the method under test. Each of these
classes includes at least one method having one or more
coupling sequences with respect to a particular class
hierarchy, referred to as the subject hierarchy.

Table 1 summarizes the subject programs used in
these experiments. The column labeled f identifies the
method under test and is the number of coupling
sequences contained within f. Each coupling sequence
has a context variable whose declared type T defines a
family of types that are descendants of T. The column
labeled gives the number of classes in this type
family (inheritance hierarchy) for the corresponding
program.1 The column labeled Description indicates the
source from which each program was obtained. Five
programs (P1, P2, P3, P5, and P6) were examples created
specifically to ensure that all of the subject faults were
tested by at least one experiment. Of the remaining five
subject programs, 1 was developed by a graduate student
(P4), and 2 were developed by a professional pro-
grammer having 15 years of experience (P7 and P8). The
remaining two are open source products: ANTLR (a
parser generator) and JMK (a build system, similar to
make).2

3.2. Test data

The test data used in the experiments were drawn
randomly according to a uniform distribution. The data
itself was produced from custom test data generators

developed in Perl for each of the test adequacy criteria.
In all cases, sufficient data was generated to achieve
100% coverage for a given criterion. The actual structure
of each test case varied from simple scalar type inputs
and references to objects, to a Java program (for
ANTLR) and a make file (for JMK).

The strategy used to select test cases is similar to a
typical way test cases are selected for Branch Coverage.
For each coupling sequence, the path expression [4]
necessary to execute the sequence was identified. These
expressions were then used to create Perl programs that
would generate the test data necessary to execute the set
of sequences for the method under test. A similar
procedure was followed for testing the state space
interactions between antecedent and consequent
methods. These path expressions ensured that the
required coupling paths were covered. Table 3
summarizes the number of test cases for each
combination of subject program and test adequacy
criterion. For ACS, the number of test cases is
determined by the number of coupling sequences and
control flow paths present in the method under test. For
APC, the number of test cases is also determined by the
size of the type family for the coupling variable. Finally,
for APDU, the number of test cases is determined by
adding the number of control flow paths in the
antecedent and consequent methods to the test cases for
APC and ACS.

3.3. Injected faults

Each subject program P was seeded by injecting
faults into the bodies of the antecedent and consequent
methods for each member of each type family induced
by the declared type of the coupling sequences in P. The
types of faults injected into each unit under test are
described in detail in our previous work [13], and
summarized in Table 2. The number of faults was

determined by the syntactic characteristics of a particular
subject program and the syntactic properties necessary
for the manifestation of a failure for a given fault type.
The details of the latter are described in Alexander’s

1 The term program includes f (the method under test), the class that
specifies f, and all classes in the type family specified by the context
variable of each coupling sequence.

Table 1: Subject program characteristics

f Description

P1 4 4 Polymorphic Example

P2 5 5 Polymorphic Example

P3 1 5 Polymorphic Example

P4 1 4 Student Developer

P5 3 4 Polymorphic Example

P6 3 5 Polymorphic Example

P7 6 4 Professional Developer

P8 20 5 Professional Developer

P9 11 16 Open Source (ANTLR)

P10 7 9 Open Source (JMK)

2 ANTLR is available from http://www.antlr.org/ and JMK from http:/
/sourceforge.net/projects/jmk.

sf

FSf

sf FSf

Table 2: Faults due to inheritance and polymorphism

Acronym Fault

SDA State Definition Anomaly
(possible postcondition violation)

SDIH State Definition Inconsistency (due to
variable hiding)

SDI State Defined Incorrectly (possible post-
condition violation)

IISD Indirect Inconsistent State Definition

IC Incomplete Construction

dissertation [1]. Table 4 summarizes both the number
and type of faults that were injected.

4. Conduct of Experiments

The testing and evaluation procedure consists of four
steps: (1) test oracle derivation, (2) fault injection, (3)
test execution, and (4) result evaluation. The first step
creates a test oracle that can be used to evaluate the
results of subsequent tests. For the second step each
subject program is injected with faults that yield a seeded
version. This seeded version is used as the primary
experimental subject. The third step executes each
subject program using the test cases and records the
outcome. The final step uses the test oracle to determine
if the outcome of each execution for the corresponding
test case detects a fault. The actual procedures in some of
these steps vary according to the test adequacy criterion
being evaluated.

The testing and evaluation procedure is discussed in
detail in the following subsections. The steps of the
procedure that are specific to particular criteria are
labeled with the names of the applicable criteria in
parentheses at the beginning of each step. Those steps
not having this list are applicable to all of the subject
criteria.

4.1. Test oracle derivation

To derive the test oracle for a particular combination
of test adequacy criterion C and subject program f, we
executed f against test cases drawn from the test data sets
described in Section 3.2. For each combination (f,C) and
each coupling sequence sj,k in f, the following procedure
was used:

1. Execute f using at least one test case drawn

from the test set SC,f, such that the context variable o
of sj,k is bound to an instance of the declared type of
o.

2. Record this result and add it to the test oracle for f,

3. For the All-Poly-Classes and All-Poly-Def-Uses:
Execute f with at least one test case for each
combination of (t,v,dv,uv,p), where t is a descendant of
the declared type of the context variable of sj,k, v is a
variable in sj,k’s coupling set, dv is a last definition of
v by the antecedent method of sj,k, uv is a first use of v
in the consequent method of sj,k, and p is a definition
clear path from dv to uv.

4. For All-Poly-Classes and All-Poly-Def-Uses criteria:
Record the combination of t and v in Also, for
All-Poly-Def-Uses, include the state of the instance
bound to the context variable after execution of the
antecedent method and immediately after each first-
use in the consequent method.

4.2. Fault injection

The following steps were used to inject faults into
each subject program f: for each coupling sequence sj,k in
f, and each type t that is a subtype of the declared type T
of sj,k’s coupling variable:

1. Inject faults into each method of t that overrides
either the antecedent or consequent methods of sj,k.
This yields the fault-seeded type (also a subtype of
T) and results in a shadow inheritance hierarchy
rooted at T, as illustrated in Figure 2. The shadow

Table 3: Number of test cases

f ACS APC APDU BC

P1 2 4 6 1

P2 2 5 320 2

P3 2 5 80 2

P4 1 3 3 1

P5 2 5 75 1

P6 2 5 105 1

P7 1 2 64 1

P8 4 2 42 4

P9 6 15 95 6

P10 4 9 27 4

c SC f,∈

Table 4: Number of injected faults

f SDA IC SDI IISD SDIH

P1 9 0 6 3 3

P2 39 6 39 0 39

P3 36 3 33 0 36

P4 24 0 24 0 18

P5 36 3 36 0 36

P6 18 0 18 0 18

P7 0 0 55 0 30

P8 0 0 76 0 30

P9 42 0 42 12 42

P10 27 0 27 6 27

Ωf.

c SC f,∈

Ωf..

t′

hierarchy mirrors the original hierarchy in structure
below the root, but is seeded with faults.

2. For All-Poly-Def-Uses: For each coupling variable in
sj,k, inject corresponding faults into the antecedent
and consequent methods, yielding the fault seeded
type (also a subtype of T). This results in a
shadow inheritance hierarchy rooted at T, as illus-
trated in Figure 3.

4.3. Test execution

The following steps were used to execute each subject
program f with the fault seeded types described in
Section 4.1. For each coupling sequence sj,k in f, and
each type t that is a subtype of the declared type T of
sj,k’s coupling variable:

1. Execute f using a test case c that binds sj,k’s context

variable to the corresponding fault-seeded type
Record the result in the test result set for f,

2. For each test case execute f using c, and
record the state of the instance bound to sj,k’s context
variable for the corresponding pairs of last-defini-
tions and first-uses of each coupling variable. Add
this result to

4.4. Result evaluation

For each coupling sequence sj,k in f, and each type t
that is a subtype of the declared type T of sj,k’s coupling
variable:

1. Compare each test result in with the correspond-
ing result in the test oracle If the two results are

equal, then the test was passed. This ascertains
whether or not an instance of the descendant type t
can be substituted freely for an instance of the
declared type T of the context variable.

2. For All-Poly-Def-Uses: Compare each test result in
 for each coupling variable v in sj,k with the corre-

sponding pair in the test oracle . If the results are

equal, the test was passed. This ascertains if the
method under test preserves the fidelity of the inter-
actions between the antecedent and consequent meth-
ods when the context variable o is bound to an
instance of a particular type that is a subtype of the
declared type of o.

5. Results

Table 5 summarizes the results of each experiment.
For each fault type, the table shows the number of faults
seeded, the number of faults detected, and the detection
effectiveness. The last column presents the average
detection effectiveness per combination of criterion and
fault type for each program. Effectiveness is defined as a
ratio of the number of faults detected to the number of
faults seeded. The shaded blocks correspond to
combinations of program and fault type that were not
tested. In these cases, the subject programs did not
exhibit the structural characteristics necessary to support
the syntactic pattern for the fault type. The last group of
rows in the table summarizes by criterion the number of
faults that were seeded, the number of faults detected,
and the average detection effectiveness.

Figure 4 shows a plot of the detection effectiveness
per criterion for each fault type averaged (i.e. the mean)
over all programs. The individual data points were
weighted to reflect the differences in the number of faults
seeded for each combination of program and test

Figure 2. Class hierarchy with seeded shadow
hierarchy for All-Poly-Classes

Figure 3. Class hierarchy with seeded shadow
types for All-Coupling-Defs-Uses

A

B

C

B'

C'

Declared type
of context
variable

Type
family

defined
by
A

Seeded types

Shadow
Hierarchy

t′′

A

B

C

1::B vB
2::B vB :: nB vB

1::C vC 2::C vC :: nC vC

Seeded
shadow
types

Type
family

defined by
A

One test case

One per coupling variable

One per coupling variable

t′.
Ψf.

c SC f,∈

Ψf.

Ψf.
Ωf.

Ψf.
Ωf.

adequacy criterion. Thus, the data points are comparable.
A cursory examination of the plot reveals that

apparently the most effective of the coupling-based test
adequacy criteria within the experimental is All-Poly-
Def-Uses (APDU), which, as shown in Table 5, has
average detection effectiveness across fault types of

. The other coupling-based criteria have
average detection effectiveness of 0.63 (APC) and 0.37
(ACS), with Branch Coverage having the lowest
detection effectiveness of 0.12. Plots for the average
effectiveness of each program across all subject criteria

are given in Alexander’s dissertation [1].
All three of the coupling-based testing criteria exhibit

basically the same fault detection pattern. That is, each is
more or less effective for the same fault types. For
example, all three do reasonably well at detecting faults
of type SDA, SDI, and SDIH, with the corresponding
detection effectiveness across this sequence being
monotonically increasing. In contrast, all three are much
less effective at detecting faults of type IC and IISD.
Note that in all cases, across all fault types all four
criteria appear to exhibit an ordering with respect to the

Table 5: Experimental Results

Program Criterion SDA IC SDI IISD SDIH SDA IC SDI IISD SDIH SDA IC SDI IISD SDIH
APDU 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
ACS 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
APC 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
BC 9 6 3 3 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 39 6 39 39 10 3 10 10 0.26 0.50 0.26 0.26 0.32
ACS 39 6 39 39 0 0 0 0 0.00 0.00 0.00 0.00 0.00
APC 39 6 39 39 5 3 1 3 0.13 0.50 0.03 0.08 0.18
BC 39 6 39 39 8 0 9 9 0.21 0.00 0.23 0.23 0.17

APDU 36 3 33 36 36 3 30 36 1.00 1.00 0.91 1.00 0.98
ACS 36 3 33 36 7 3 3 7 0.19 1.00 0.09 0.19 0.37
APC 36 3 33 36 9 3 5 12 0.25 1.00 0.15 0.33 0.43
BC 36 3 33 36 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 24 24 18 11 12 8 0.46 0.50 0.44 0.47
ACS 24 24 18 0 4 0 0.00 0.17 0.00 0.06
APC 24 24 18 11 12 8 0.46 0.50 0.44 0.47
BC 24 24 18 5 5 2 0.21 0.21 0.11 0.18

APDU 36 3 36 36 36 3 31 33 1.00 1.00 0.86 0.92 0.94
ACS 36 3 36 36 7 0 8 6 0.19 0.00 0.22 0.17 0.15
APC 36 3 36 36 8 3 10 7 0.22 1.00 0.28 0.19 0.42
BC 36 3 36 36 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 18 18 18 18 13 18 1.00 0.72 1.00 0.91
ACS 18 18 18 0 0 0 0.00 0.00 0.00 0.00
APC 18 18 18 13 13 16 0.72 0.72 0.89 0.78
BC 18 18 18 0 0 0 0.00 0.00 0.00 0.00

APDU 55 30 37 26 0.67 0.867 0.77
ACS 55 30 32 26 0.58 0.867 0.72
APC 55 30 34 26 0.62 0.867 0.74
BC 55 30 14 8 0.25 0.267 0.26

APDU 76 30 34 23 0.45 0.767 0.61
ACS 76 30 5 2 0.07 0.067 0.07
APC 76 30 12 2 0.16 0.067 0.11
BC 76 30 30 21 0.39 0.7 0.55

APDU 42 42 12 42 38 37 12 39 0.90 0.88 1.00 0.93 0.93
ACS 42 42 12 42 4 10 7 15 0.10 0.24 0.58 0.36 0.32
APC 42 42 12 42 15 26 12 31 0.36 0.62 1.00 0.74 0.68
BC 42 42 12 42 3 9 2 5 0.07 0.21 0.17 0.12 0.14

APDU 27 27 6 27 27 26 6 23 1.00 0.96 1.00 0.85 0.95
ACS 27 27 6 27 6 12 5 7 0.22 0.44 0.83 0.26 0.44
APC 27 27 6 27 12 17 6 8 0.44 0.63 1.00 0.30 0.59
BC 27 27 6 27 4 7 3 5 0.15 0.26 0.50 0.19 0.27

APDU 231 12 356 21 279 183 9 233 21 219 0.80 0.83 0.67 1.00 0.80 0.82
ACS 231 12 356 21 279 31 3 77 15 66 0.19 0.33 0.23 0.81 0.29 0.37
APC 231 12 356 21 279 80 9 133 21 116 0.42 0.83 0.42 1.00 0.49 0.63
BC 231 12 356 21 279 20 0 74 5 50 0.08 0.00 0.16 0.22 0.16 0.12

P4

P5

P6

P7

Summary

Faults Detected Detection EffectivenessFaults Seeded

P1

P2

P3

P8

P9

P10

X

XAPDU 0.82=

average detection effectiveness across fault types (i.e.
BC < ACS < APC < APDU).

5.1. Analysis of the coupling-based criteria

APDU has an average detection effectiveness of 0.80
for SDIH, suggesting that it is most effective of the three
coupling-based criteria at detecting faults of this type. In
comparison, criterion APC has a detection effectiveness
of 0.49 for the SDIH faults while ACS has a detection
effectiveness of only 0.29. The average detection
effectiveness of Branch Coverage is approximately 0.16.

For the SDI fault type, the average detection
effectiveness of APDU is 0.66 which is approximately
18 percent less, making it not quite as effective as for
SDIH faults. Similarly, the remaining coupling criteria
also reflect less average detection effectiveness. APC is
approximately 14 percent less, yielding 0.42, and the
decrease for ACS is sightly less at 21 percent, yielding a
detection effectiveness of 0.23. The detection
effectiveness for Branch Coverage remains the same at
0.16.

For the SDA fault type, APDU remains the most
effective, having the same average detection

effectiveness as SDIH fault types (0.80). Both APC and
ACS are less for SDA faults, having a detection
effectiveness of approximately 0.42 and 0.19. This
represents a decrease of approximately 14 percent for
APC as compared to its average detection effectiveness
for SDIH faults. APC did no worse for SDA faults than it
did for SDI Faults. ACS detected about 34 percent fewer
SDIH faults, and approximately 17 percent fewer than
SDI faults. Branch coverage drops to a detection
effectiveness of 0.08, a decrease of 50 percent.

For the IISD fault type, both APDU and APC have an
average effectiveness of 1.0. ACS has an effectiveness of
0.81, and Branch Coverage having the lowest average
effectiveness, 0.22. For fault type IC, both APDU and
APC have an average effectiveness of 0.83, while ACS
drops to 0.33 as compared to IISD. Branch Coverage
again has the lowest detection effectiveness at 0.00.

Compared to the other coupling-based criteria, APDU
did the best job of detecting the type of faults that were
seeded, having an average detection effectiveness of
0.82. In contrast, APC has 23 percent less average
detection effectiveness across all fault types of 0.63, and
for ACS, the effectiveness 0.37 is approximately 55
percent less as compared to APDU and 41 percent less as

Figure 4. Average detection effectiveness by fault type

Detection Effectiveness per Test Adequacy Criterion
for each Fault Type averaged over all Subject Programs

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA IC SDI IISD SDIH

Fault Type

Ef
fe

ct
iv

en
es

s

APDU

APC

ACS

BC

compared to the detection effectiveness of APC. Finally,
Branch Coverage has the worst average detection
effectiveness across the types of seeded faults, 0.12.
Compared to APDU, Branch Coverage, APC, and ACS
are all less effective, approximately by 85 percent, 81
percent, and 66 percent, respectively.

5.2. Explanation of effects

The variation in the detection effectiveness among the
coupling criteria is of no surprise. The weakest of the
coupling criteria, ACS, does not consider the effects on
state space interactions caused by inheritance and
polymorphism, and this could account for its relatively
poor performance as compared to the remaining two.
According to the first condition of the fault/failure
model, a location that contains a fault must be reached
before the fault can manifest a failure [8, 12]. The
shortcoming of ACS is that not all locations that can
contain faults due to inheritance and polymorphism must
be executed. By their very nature, these faults will be
located within the hierarchy associated with the objects
being integrated, not in the method under test. Thus,
faults at these locations will not necessarily be executed
as a result of testing according to the ACS criterion. As
expected, the APC criterion performs better than ACS.
This is due to the stronger testing requirements imposed
by APC. APC requires that all possible type substitutions
be tested for each coupling sequence appearing in the
method under test. Thus, the possibility of executing a

fault located in the hierarchy being integrated is
increased simply because control flow enters each type at
least once. However, this is not sufficient to ensure all
feasible locations containing faults will be executed.

The most effective of the three coupling-based test
adequacy criteria is APDU. This too is of no surprise
since its requirements are stronger than ACS and APC. It
requires that all state interactions be tested with respect
to the coupling variable for each coupling sequence, and
for all types of instances that can be bound to the
coupling variable. This validates our theory that state
interactions need to be explicitly tested for.

5.3. Hypothesis tests

Log-linear analysis permits one to analyze categorical
data in much the same manner as in analysis of variance.
The sampling distribution underlying Table 6 is a
product of independent multinomials. According to
Bishop, Fienberg and Holland, the kernel of the
appropriate likelihood function is the same as that for a
simple multinomial or a simple Poisson [7]. Therefore
the estimation procedures for the simpler sampling
distributions may be used, at least for large samples. The
resulting estimates are close to the correct maximum
likelihood estimates and the usual goodness of fit
statistics are asymptotically chi-square.

We first fitted the experimental results to a model

corresponding to a 4-way contingency table with i, k marginals fixed. The model consists of the dimensions

Table 6: Results of hypothesis tests

N Hypothesis c2 df Dc2 Ddf Conclusion

1
H0: APDU is no more effective than BC

91.74 164 816.74 36 Reject H0
H1: APDU is more effective than BC

2
H0: APC is no more effective than BC

35.93 68 175.00 12 Reject H0
H1: APC is more effective than BC

3
H0: ACS is no more effective than BC

19.00 63 97.94 12 Reject H0H1: ACS is more effective than BC

4
H0: APDU is no more effective than APC

51.87 68 441.47 12 Reject H0
H1: APDU is more effective than APC

5
H0: APDU is no more effective than ACS

47.89 68 103.88 12 Reject H0
H1: APDU is more effective than ACS

6
H0: APC is no more effective than ACS

69.28 68 256.97 12 Reject H0
H1: APC is more effective than ACS

Fault × Response, Fault × Program, Program ×
Criterion × Response, and all lower level nested factors.
The factor Response consists of two levels, each
corresponding to success or failure of a particular test
case. Denote these four factors by u1 (Program), u2
(Fault Type), u3 (Criterion), and u4 (Response). Denote
cell counts by mi,j,k,l, where i, j, k, and l correspond to the
four factors. The best fitting model was found to
be:

The terms with one subscript represent main effects;
the terms with two subscripts represent two-factor
interactions; and the terms with three subscripts
represent three-factor interactions. In Figure 5, we can
see that the fitted cell counts closely match the observed
cell counts.

The procedure for testing the significance of a factor
is to fit the best model with that factor included and then
fit the same model with that factor removed and observe
the change in the chi-square goodness-of-fit statistic.

For the initial hypothesis test, we tested for an
interaction between criterion and fault type by fitting the
model described above with and without the fault-type/
criterion term. If there is no interaction, we can simply
pick the best criterion and only use it for our testing. If
there is an interaction, then we will have to use two or
more of the criteria to adequately test for all of the fault
types. For this test, the difference in the total c2 that the
term of criterion × fault type accounted for is negligible.
Thus, we do not reject the null hypothesis (H0), and
hence conclude that there is no interaction between these
two factors.

For the remaining hypothesis tests, we selected out
only the data for a particular pair of criteria (indicated by
the column labeled Hypothesis in Table 6) and then
tested for an interaction between these two by fitting the
model described with and without the corresponding
fault-type/criterion term. Table 6 summarizes the results
of these tests. The column labeled Hypothesis states the
null (H0) and alternative hypothesis (H1) for each test.
The columns labeled c2 and Dc2 give the change in value
of the chi-square goodness-of-fit statistic, and the
columns labeled df and Ddf give the corresponding
change in degrees of freedom. Finally, the last column
gives the result of each test, indicating whether the null
hypothesis is rejected or not.

As the table shows, for hypotheses one through six,
there was a net change in the degrees of freedom and the
c2 goodness of fit value. In all cases, there is statistical
significance at a p-value less than 0.001. Therefore, we

reject the null hypothesis (H0) in favor of the alternative
(H1) for all six of these hypotheses. The first three
hypotheses allow us to conclude that each of the three
coupling-based criteria are more effective than Branch
Coverage at detecting the types of faults seeded. The
remaining three hypotheses allow us to compare the
effectiveness among the coupling-based criterion. Since
the null hypothesis (H0) was rejected for each, we
conclude that there is statistical evidence to suggest that
APDU is more effective than APC and ACS at detecting
the subject fault types, and also that APC is more
effective than ACS.

6. Discussion

The three hypotheses in Table 6 that tested the
effectiveness of each coupling-based criteria against
Branch Coverage indicate that the coupling criteria are
better at detecting the object-oriented faults used in the
experiment. A remaining question is which of the three
coupling criteria is the most effective. Hypotheses one,
two, and three have established that each of the coupling
criteria are better than Branch Coverage. Observation of
the plot in Figure 4 suggests that APDU is, on average,
more effective that APC and ACS. Similarly, APC is,
also, on average, more effective than ACS. This
observation is supported by the last three hypothesis
tests. Given the above conclusion, a key question that
remains is which criterion or combination of criteria
should be used?

The plot in Figure 4 also suggests that there is no
coupling-based criterion that is particularly better for
detecting one fault type versus another (i.e. the criterion
do not specialize in the faults that they detect). If any
criterion is good for a particular fault type, they all are.
Therefore we could pick best of the coupling criteria and
use that for all fault types.

Realistically, other factors must be considered when
choosing a test adequacy criteria C. Cost can be defined
in many ways, including the number of test cases
required to satisfy C and the time required to analyze a
program to determine if a desired level test coverage has
been attained. An observation made in this research is
the difference between the number of tests required to
achieve APDU as compared to APC and ACS was an
order of magnitude. The total number of APDU test
cases created for all the subject programs is 817, while
for APC it is 55, and 26 for ACS. If we define cost in
terms of the number of required test cases, clearly APDU
is significantly more expensive than APC and ACS.
From a practical perspective, is the additional cost worth
the benefit received? The answer to this important
question is left as future work, however, our research
offers a clear cost/benefit trade-off.

Log mi j k l, , ,() u0 u1 u2 u1 3, u1 4,
u2 4, u1 2, u3 4, u1 3 4, , …

+ + + + +
+ + + +

=

7. Conclusions

The experiments show that coupling-based testing
techniques can be (and have been) extended to detect the
faults that result from the polymorphic relationships
among components in an object-oriented program.
Further, the results show that these techniques are an
effective testing strategy for object-oriented programs
that use inheritance and polymorphism. This is an
important result for developers, testers, and consumers of
software developed using object-oriented languages.
Developers now have an approach, techniques, and
guidelines for addressing certain aspects of integrating
object-oriented components. Professional testers also
have a repeatable and verifiable means of testing the
work products produced by developers and a means of
targeting specific types of faults peculiar to object-
oriented software.

Acknowledgments

We would like to thank Dr. Gene R. Lowrimore of the
Center for Demographic Studies at Duke University for
his assistance with the statistical analysis of the
experimental results.

References

[1] Roger T. Alexander, Testing the Polymorphic Relation-
ships of Object-oriented Programs, PhD dissertation,
George Mason University, 2001.

[2] Roger T. Alexander and A. Jefferson Offutt. Analysis
Techniques for Testing Polymorphic Relationships. In Pro-
ceedings of the Thirtieth International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS30 '99). 1999. Santa Barbara CA: IEEE Computer
Society.

[3] Roger T. Alexander and A. Jefferson Offutt. Criteria for
Testing Polymorphic Relationships. In Proceedings of the
International Symposium on Software Reliability and
Engineering (ISSRE00). 2000. San Jose CA: IEEE Com-
puter Society.

[4] Boris Beizer, Software Testing Techniques. 1990, New
York, New York: Van Nostrand Reinhold.

[5] Edward V. Berard, Essays on Object-Oriented Software
Engineering. Vol. 1. 1993: Prentice Hall.

[6] Robert V. Binder, Testing Object-Oriented Software: A
Survey. Journal of Software Testing, Verification and Reli-
ability, 1996. 6(3/4): p. 125-252.

[7] Yvonne M. M. Bishop, Stephen E. Fienberg, and Paul W.
Holland, Discrete Multivariate Analysis: Theory and
Practice. 1975, Cambridge, Massachusetts: MIT Press.

[8] R. A. DeMillo and A. J. Offutt, Constraint-based Auto-
matic Test Data Generation. IEEE Transactions on Soft-
ware Engineering, 1991. 17(9): p. 900-910.

Figure 5. Observed versus fitted cell frequencies

Observed versus Fitted Cell Frequencies

Fitted Cell Frequencies

O
bs

er
ve

d
C

el
l F

re
qu

en
ci

es

-5

5

15

25

35

45

-5 5 15 25 35 45

Fault x Response, Fault x Program, Program x Criterion x Response
(and all lower-level nested factors)

[9] P. G. Frankl and E. J. Weyuker, An applicable family of
data flow testing criteria. IEEE Transactions on Software
Engineering, 1988. 14(10): p. 1483--98.

[10] Zhenyi Jin and A. Jefferson Offutt, Coupling-based Crite-
ria for Integration Testing. The Journal of Software Test-
ing, Verification, and Reliability, 1998. 8(3): p. 133-154.

[11] Bertrand Meyer, Object-Oriented Software Construction.
1997, Englewood Cliffs, New Jersey: Prentice Hall.

[12] L. J. Morell. Theoretical Insights into Fault-Based Test-
ing. In Proceedings of the ACM SIGSOFT '89 2nd Sympo-
sium on Software Testing Analysis and Verification
(TAV2). 1988. Banff Alberta.

[13] Jeff Offutt, Roger Alexander, Ye Wu, Quansheng Xiao,
and Chuck Hutchinson. A Fault Model for Subtype Inher-
itance and Polymorphism. In Proceedings of the Twelfth
IEEE International Symposium on Software Reliability
Engineering (ISSRE '01). 2001. Hong Kong, PRC.

