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1 Introduction

Both Brooks and Turski describe the derivation of complete and consistent speci�cations

as the \essence" of sofware engineering [1, 2]. Both authors stress the importance of the

debugging of a speci�cation, and Turski asserts that the only way to validate a speci�cation

is by testing, \as there is no other way"[2].

\To specify a system" can mean either \to describe properties of the system" or \to

build a model of the system." A speci�cation language can support the latter by enforcing

a \speci�cation by prototyping" paradigm. The speci�cation by prototyping approach is

consistent with the automation-based paradigm of Balzer et al and the operational approach

of Zave [3, 4].

A program speci�cation that executes provides a mechanism for both the design and

debugging of a speci�cation. An executable speci�cation can demonstrate the functionality

of a program even if the execution is much slower than required of the actual implementation.

Inital results of Fickas et al indicate that an e�ective way to �nd errors in a speci�cation is

by proper example generation to test hypothetical cases [5].

Executable speci�cations can aid in the traditional development of software. An exe-

cutable speci�cation can be used in place of a subroutine stub when building a system. Thus,

the partially implemented system will exhibit the full functionality of the �nal system. The

executable speci�cation can serve as an oracle in an automated testing environment.

We can build an executable speci�cation of a complex system from executable speci�ca-

tion constructs. Although the speci�cation constructs must be executable, we are not overly

concerned with execution e�ciency. An e�cient implementation can be developed from the

executable speci�cation either using traditional software engineering methods or through the

use of program transformations [6].

In this paper, we describe the use of PROSPER (PROtotypes and SPEci�cations with

Relative types) as a tool for de�ning executable functional speci�cations. PROSPER is a

functional language which can be used to express abstract model speci�cations. Functional

programs are a natural mechanism for expressing functional speci�cations (e.g., MIRANDA

and me too [7, 8]). PROSPER di�ers from the foregoing functional languages in its treatment

of types as values. PROSPER also has features that are tailored to follow the abstract model

approach for de�ning rigorous speci�cations.

The abstract model approach is described by [9, 10, 11, 12]. Two non-executable abstract

model speci�cation languages are VDM (meta-iv) [13] and Z [14]. Using the abstract model

approach, a software system is speci�ed as an abstract data type (ADT) using a minimum

of well understood primitive types. This ADT consists of a formal domain speci�cation and

operations on the domain. The domain consists of a source set, which describes the structure

of objects in the domain, and an invariant, which restricts the domain to a subset of the

source set. First order predicate calculus is used to specify domain invariants and the pre

and post conditions of operations. With some constraints, the constructs used in abstract

model speci�cations are potentially executable. A major focus of building abstract model

speci�cations is on de�ning types and operations on types [11].

In order to support type speci�cation, PROSPER functions can specify types in the

same manner as ordinary values. The idea of treating types as values is not new (see, [15])
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and is a result of the natural evolution of programming language development. In Pascal,

values, functions, and types are completely separate categories of the language. In ML [16],

functions are values and are separate from types. PROSPER values include both functions

and types. We treat a type as a domain of values and do not include the related operations

as part of a type. Modules associate particular operations with a type when specifying an

ADT.

PROSPER speci�cations are described in terms of fully typed objects and in particular

(possibly higher order) functions. These functions can process types and functions as well

as ordinary values. For example, the List function speci�ed in Section 5 takes a type as an

argument and produces a type as a result. Therefore, List(integer) and List(boolean) repre-

sent two di�erent types. The generic binary search tree example in Section 5 is even more


exible. In addition to parameterizing the types of objects placed in a tree, we parameterize

the boolean function used to determine the location for objects in a tree.

PROSPER has two mechanisms for introducing parameters in type expressions. These

mechanisms allow the speci�cation of polymorphic [16] and dependent types [17, 18]. One

mechanism is similar to that of the programming languages ML [16] and Pebble [15]. The

other mechanism is new. Polymorphic and dependent types allow the parameterization of

components within type expressions.

Because of the 
exibility of PROSPER type speci�cation, complete type checking can

be accomplished only at execution time. Therefore, we describe PROSPER as a fully typed

language rather than a strongly typed language. Some type checking is possible at compile

time, but type checking is limited since some type expressions can involve computations.

Consider two type expressions t[f(a)] and t[g(b)] where f and g are functions and t[� � �] is a

context such that t[x] is a type expression. Although the two type expressions are equal when

f(a) = g(b), this fact cannot be determined at compile time. At execution time, both f(a)

and g(b) are evaluated and then type checking can be completed. Run time type checking has

been advocated for use in programming environments [19]. Dynamic typechecking is even

more appropriate in a speci�cation environment where execution speed is less important.

In traditional languages such as Pascal, we create types, such as arrays, at compile time.

We can view a Pascal array as a compile-time function that takes the array bounds and the

element type as an argument and produces a type, say array[1..10] of integer, as a compile-

time result. In PROSPER, a similar type speci�cation function operates at run-time, and

operates in essentially the same manner as functions over \normal" types. As a result, types

become \�rst class citizens." In a fully typed language, functions that operate on types must

be also be typed. Thus, we must deal with a richer notion of a type. PROSPER uses a

two-level type system to avoid logical paradoxes that can result from the use of \type type"

as a type [20]. In this system \normal" values are typed, while types can be supertyped.

PROSPER can be viewed as the kernel of a speci�cation system. Starting with primi-

tive executable constructs we build towards higher level executable speci�cation structures.

Using PROSPER, we can \grow" executable versions of the primitives used in the abstract

model approach. To de�ne an executable version of the SPECS language used by [10], we

need to specify (1) executable versions of the set, sequence, and labeled tuple (record) type

building constructs, and (2) de�ne executable functions that provide a pragmatic subset of

the �rst order predicate calculus. Although some constructs used to de�ne non-executable
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speci�cations cannot be directly executed, analogous executable speci�cations can be de�ned.

In this paper we describe the prototype version of PROSPER that we are currently

implementing. Section 2 describes the unique features of PROSPER, necessary language

constructs are described in Section 3, and Section 4 presents the PROSPER type operators.

In Section 5, the PROSPER speci�cations of a generic list and binary tree ADT are described.

Section 6 compares PROSPER with related approaches.

2 Unique PROSPER Features

Every PROSPER lexical item is a symbol. From symbols, the PROSPER linguistic constructs

are built. These basic constructs can be classi�ed as values, parameters, and names. A value

is the direct representation of \semantic values" in the language; we brie
y introduce two

important aspects concerning values:

1. Representations of \semantic values" are not necessarily unique (integers have unique

representations while reals do not, e.g. 1 @ integer, 1 @ real, 1.0 @ real).

2. Some \semantic values" do not have standard direct representations. For example,

functions de�ned by users as well as new user de�ned data types do not have di-

rect representations (user de�ned types are represented indirectly via the results of

functions). Users, however, can declare some objects to be values and the system in-

corporates conventions for introducing values for types built with the SUB and SUM

operators (see Section 4).

Parameters are local names of values, while names (of values) are global names of values. We

assume a LISP like binding mechanism for global names and do not discuss the mechanism

further in this paper. Our focus here is on the features that are unique to PROSPER.

2.1 Values and Parameters

Values are built from symbols and expressions using the \@" operator. Values are typed

and denoted leftpart @ rightpart where the leftpart represents a \quantity" and the rightpart

represents a \type". Example values include 1 @ integer, abc @ character, 7.5 @ real, and

boolean @ TYPE. The \@" symbol is used to separate quantities from a type designator

when denoting values. The \@ rightpart" portion of a value is ommitted only when the type

of the leftpart can be inferred. That is, the value has been declared as a triple and there

is no ambiguity. For example, 7 is a symbol and not a value. We cannot determine out of

context whether 7 represents the value 7 @ integer or 7 @ character. Note that the problem

of ambiguous values is resolved in Ada with quali�ed expressions, i.e., INTEGER'(7).

When specifying a parameter the \:" symbol is used to separate a parameter name

from the type of value that it represents. For example `x:integer, `y:character, and `t:TYPE.

Note that parameters have a ` symbol as a pre�x. The use of a \:" symbol when specifying

parameters and a \@" symbol for specifying values re
ects the subtle di�erence between

the speci�cation of values and parameters. Assume that the input parameter of a function

is speci�ed as `x:integer. The `x symbol in the body of the function represents some value
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(of type integer) to be determined at execution time. Since all values are typed, the `x must

be replaced by a complete value triple such as 7 @ integer.

The same \:" notation is used to express type relations for function application. Con-

sider the triple f @ integer ! integer which is a function producing an integer result from

an integer argument. If we use 1 @ integer as an argument we get an integer result which is

expressed as f(1 @ integer):integer. The result value itself, f(1 @ integer), represents a triple

which is \some integer symbol" @ integer. The symbol \:" used in f(1 @ integer):integer

speci�es that the result is a triple with a \@ integer" component. The notation f(1 @ in-

teger) @ integer is not used because this combination of symbols would be interpreted as

\some integer value" @ integer, e.g., (7 @ integer) @ integer, which is not desired.

Although the di�erences between the meaning of \:" and \@" are subtle at �rst inspec-

tion, the added precision is necessary when describing functions that manipulate types in

the 
exible manner of PROSPER.

2.2 The Basic World and Super World

The semantic domains of PROSPER are divided into a \basic world" and a \super world".

The basic world contains the normal values of computation and the super world contains

objects that may be types. The two \worlds", the basic world and super world, correspond

to the object level and meta level in logic. The reason for having the two worlds is to

avoid logical inconsistencies when dealing with \type type" [20]. In PROSPER, TYPE is

not a type; TYPE is a super-type and belongs in the super world. Constable et al propose

an in�nite hierarchy of type universes, Ui, to avoid logical paradoxes in their system for

automating mathematics [21]. Mitchell and Harper suggest that the typing rules of Standard

ML can be understood in terms of universes U1 and U2 [22]. PROSPER uses a basic world

and a super world as a pragmatic subset of an in�nite hierarchy of universes.

In the basic world we have:

Basic Values: All values have a type component. Primitive basic values include integer,

boolean, and character values. In addition to user introduced basic objects (which do

not have direct representations) there is a primitive value of $ @ single.

Functions: Standard boolean (&, or, not, etc.) and integer operations (+, �, mod, etc.)

are included as primitives. Users can also de�ne functions.

Types: Primitive types include integer, boolean, character, and a special type single which

can only have a value $ @ single. Structured types are built from primitive types using

type expressions and type building operators like \�" (Cartesian product) and \!"

(functions). Types can be de�ned using super-functions which return a type.

In the super world we have:

Super-Values: A super-value is an object of the form e @ T where e is an expression and

T is a super-type (and e is of super-type T). Example super-values include integer @

TYPE and (1 @ integer) @ VALUE.
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Super-Functions: Super-functions have at least one argument or a result that is a super-

value. The primitive function Cartesian? @ TYPE!boolean is an example. The

Cartesian? function determines whether its argument, which is a type, is a Cartesian

product of types.

Super-Types: There are two primitive super-types, VALUE and TYPE. TYPE represents

the notion of type type. VALUE represents the union of all basic value types and

TYPE. Other super-types can be built using \�" and \!" operators (as in the basic

world) and by using the sub operator. For any super-function F @ TYPE!boolean,

one can specify a super-type

(F )sub = ft : TYPE j F (t) = true g.

which is used to express \restrictive polymorphism".

PROSPER has a polymorphic \=" operator used to compare elements of the same type

or super-type. Thus, 1 @ integer = 1 @character is an illegal expression. This operator is

de�ned for elementary types and super-types and is automatically extended when new types

are de�ned using the SUB and SUM superfunctions which are described in Section 4.

2.3 Parameters in Type Expressions

Type expressions can have parameter components which are used to form polymorphic [16]

and dependent types [17, 18]. We understand polymorphism as the ability to handle objects

of many types. We follow the ML way of dealing with implicit polymorphism through free

type variables occurring in type expressions. For example, the identity function, IDEN-

TITY @ `some:TYPE!`some in PROSPER, is a polymorphic function in the above sense

(where `some is a type variable or type parameter). The identity function can process argu-

ments of many types and returns an object of the same type as its argument. We understand

dependent type as a type of function whose type of result depends on the values of the argu-

ments. For example, the function

F(`x:integer) = if `x=0 then true else 100

has a dependent type according to the above description. We will represent the type expres-

sion for F as F @integer.`i ! if `i=0 then boolean else integer (where `i is a value variable,

or element parameter).

A parameter used in a type expression has a scope that includes the smallest type subex-

pression where the parameter occurs. For example, consider the type expression:

integer!`some:TYPE!`some

where `some is a parameter. The smallest subexpression where `some occurs is:

`some:TYPE!`some

because the type expressions are by default treated as if parenthesised to the right. This

corresponds to left associativity of arguments to functions when a function is invoked. Thus

a function
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f @ boolean!integer!integer = f @ boolean!(integer!integer).

When invoked, f true 5 @ integer = (f true) 5 @ integer.

Two operators are used to introduce parameters. One operator, \:", is used to specify

a super-type of a parameter (a type parameter). The other operator, \.", binds a name (an

element parameter) to a value of a type or super-type. The \:" operater can be used to

describe the types of polymorphic functions while the \." operator can be used to specify

dependent types. (For a general discussion of types see [23].) The di�erence between the \:"

and \." is described further.

We examine the \:" operator �rst. Consider the type expression: `some:TYPE ! `some.

In this expression the type parameter `some can be bound to any value T of super-type

TYPE. The type expression is polymorphic and is used to specify a type of a function that

maps a domain T @ TYPE to T @ TYPE. Thus, `some:TYPE ! `some can be instantiated

to: integer ! integer, boolean ! boolean, and foo @ TYPE ! foo @ TYPE. Consider the

application of a function G @ `some:TYPE ! `some to an argument A @ footype. The type

parameter `some is bound to the type of the argument to G which, in this case, is footype.

The type subexpression `some:TYPE speci�es that footype must be an element of supertype

TYPE. That is, footype must be a type. The full type expression speci�es that if the argu-

ment to G is of type footype then the result is also of type footype. Consider the function

F @ ((`some:TYPE ! some) ! boolean). F takes a function of type `some:TYPE ! `some

as its argument and produces a result of type boolean. The successor function succ @ inte-

ger ! integer could be used as an actual parameter to F.

To demonstrate the \." operator, consider a choice function G @ TYPE.`t ! `t. G is

a function that takes a type as an argument and produces a result of the same type as its

argument. The element parameter `t is bound to the value supplied as an argument to G,

and the argument to G must be an element of supertype TYPE. If the argument to G is

integer @ TYPE, the result will be an integer value. A boolean result is produced when the

value boolean @ TYPE is the argument. Thus we can use the notation G(integer):integer

and G(boolean):boolean.

We say that \." is dual to \:" since: (1) e:t stands for the value of e with the speci�ed

type t; (2) e.`y stands for a type or super-type which is the value of expression e and `y

names an argument of e. When an actual element of the type or super-type e is known for

the type expression, perhaps during partial evaluation, this element replaces all occurrences

of `y in the expression.

Consider the component `x:t of a larger type expression `x:t ! z. This component `x:t

is evaluated as specifying type `x where `x is some element of supertype t. Thus, the type

expression component `n:integer speci�es an element of type integer and is not a type. A

subexpression t.`y of a larger type expression t.`y ! z speci�es type t. However, when a value

of type t is (at \execution" time) supplied as an argument corresponding to the expression

component t.`y, this value is bound to all occurrences of `y in z. Thus integer.`y speci�es

type integer. When a speci�ed integer value is supplied at execution time, this value (not

type) is bound to all occurrences of `y in z.

The notation works not only for types but for other values. Using the functions F @ in-

teger ! TYPE and G @ integer.`n ! F(`n) we �nd that the result of G(1) is of type F(1)
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and therefore G(1):F(1). We can also see that the result of G(2) is of type F(2), and so on.

Thus, we �nd that G(1):F(1), G(2):F(2), : : : . This 
exibility in creating dependent types

is quite useful when specifying generic functions.

3 PROSPER Constructs

To ease the readability of PROSPER speci�cations we use a number of notation conventions:

boldface for PROSPER keywords such as value, capital letters for the primitive super-types

and super-values such as VALUE and TYPE, and italics for other symbols such as integer,

boolean, etc. The name of functions that return a boolean end with a \?" character.

The examples use the following forms of PROSPER expressions:

� type expressions: as previously described

� conditionals: if E1 then E2 else E3

where E1 is of type boolean

� tuples: E1; E2

where if E1 is of type T1 and E2 is of type T2 then

(E1; E2) : (T1 � T2) is a 2-tuple.

The functions �rst and snd select components:

�rst((5; 6) : (integer�integer))= 5 @ integer ,and

snd((5; 6) : (integer�integer))= 6 @ integer

� application: function operand

as in factorial 3. Parentheses are used for grouping, so factorial(3) = factorial 3.

� local declaration: let p be e1 in e2

where p is a parameter construct and e1, e2 are expressions as in:

let `t1 � `t2 be integer � boolean in `t2 � `t1.

Declarations can be of the following form:

� simple declarations: value S @ T is E

which associates the symbol S with the value of expression E which is of type T.

� descriptive declarations:

value S @ T1 ! T2 such-that S `a is E

which associates the symbol S with the value of expression E and all occurrences of `a

in E are replaced by the argument, `a:T1, and E:T2.

� module declarations:

module M export S1 @ E1; S2 @ E2; : : :

from D1; D2; : : : end-from

Modules facilitate the creation of ADT's. The exported symbols appear as primitives to the

user while the representation is hidden in the from clause. The representation is a sequence

of declarations (D1; D2; : : : ).
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4 Special Type Operators

One powerful feature of PROSPER is the ability to create subtypes. The 
exibility of the

subtyping capability is a direct result of the use of types as arguments and results of functions.

For example, we can de�ne a new type evens which consists of all even integers. Super-

function SUB creates the subtype. SUB is supplied a function that can test a particular

value of a speci�ed type to see if it meets a restriction. Any values of the speci�ed type

that meet the restriction are members of the subtype. A full description of SUB itself is

SUB @ (`some:TYPE!boolean)!TYPE. The following speci�es evens:

value evens @ TYPE is SUB(IsEven?)

where IsEven? is speci�ed:

value IsEven? @ integer!boolean

such-that IsEven? (`A)

is mod( `A, 2 @ integer) = 0 @ integer

Type evens is de�ned in terms of function IsEven?. For expression s @ evens to be valid,

the result of the application of IsEven? to s @ integer must be true. For example, 4 @ evens

and 6 @ evens are correct expressions since IsEven? (4 @ integer) = true and IsEven?

(6 @ integer) = true. The expression 5 @ evens generates an error. Note that the @

operator allows us to create values of a new type in a standard \automatic" way. As the

example shows, a subtype is created by specifying a function that determines whether a

value meets a speci�ed criterion for restricting a larger type.

Type evens can demonstrate the PROSPER approach to the issues of type equivalence

and inheritance (We use the term \type relativity" for the PROSPER mechanism dealing

with inheritance issues). When the representation for a type is accessible, structural equiv-

alence is used and operations are inherited from the source type. For example, 4 @ evens =

4 @ SUB(IsEven?) and de�ned integer operations such as +;�;�, etc. can be performed on

evens. The algorithm used to perform evens addition is (1) convert the operands from evens

to integers, (2) perform integer addition, and (3) convert the result to evens, if possible. For

example: 2 @ evens divided by 2 @ evens is 1 @ integer, in contrast to 4 @ evens divided

by 2 @ evens is 2 @ evens.

Inheritance and structural equivalence are restricted through the use of modules. Con-

sider the module:

module Evens-Module

export even-primitive @ TYPE

from value even-primitive is SUB(IsEven?)

comment

4 @ even-primitive = 4 @ SUB(IsEven?) here

end-comment

end-from

comment

4 @ even-primitive 6= 4 @ SUB(IsEven?) here

end-comment
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Speci�cations within the from clause are hidden from external speci�cations. Since only the

type name even-primitive is exported, users cannot access the representation, SUB(IsEven?).

Outside the from clause

1. integer operations are not de�ned over the relative type even-primitive, and

2. name equivalence between types is used for any value of type even-primitive.

The SUM super-function creates a type that is a possibly in�nite union of types. SUM

is supplied a function that can test a type to see if it meets a criterion and builds a \disjoint

union" of types. Elements of the new type are built from all elements of all types that

meet the criterion. SUM @ (TYPE!boolean)!TYPE is really a partial super-function. Its

argument must be a function which returns true for countably many types. To demonstrate

the use of SUM, we can de�ne type int-bool which is the union of types integer and boolean:

value int-bool @ TYPE is SUM(Int-or-bool? )

value Int-or-bool? @ TYPE!boolean

such-that Int-or-bool? (`x) is

`x = integer or `x = boolean

Type int-bool is de�ned in terms of the function Int-or-bool?. For a value v to be correctly

typed as int-bool, true must result from the application of Int-or-bool? to the type of v. Thus

(1 @ integer) @ int-bool and (false @ boolean) @ int-bool are correctly typed values.

The leftside of a value of type int-bool, or any type de�ned via SUM, must have a

type designator. Unlike SUB, SUM cannot always infer the type. For example, (7 @ inte-

ger) @ SUM(Int-or-char?) is not the same value as (7 @ character) @ SUM(Int-or-char?),

and thus 7 @ SUM(int-or-char?) is ambiguous.

Two functions associated with SUM create objects of a summed type and retrieve values

in their \original" types:

1. Inj | injects new values into the summed type. Inj is supplied the TYPE!boolean

function that SUM uses to de�ne a speci�c summed type and the base value to be

injected. Inj produces a value of the summed type:

(Inj Int-or-bool?) (1 @ integer) = (1 @integer) @ SUM(Int-or-bool?)

2. Proj | projects values the other way:

Proj((1 @ integer) @ SUM(Int-or-bool?)) = 1 @ integer

The types of these functions are:

Inj @ (TYPE! boolean).`F ! `some:(`F)sub ! SUM(`F)

Proj @ SUM(`F).`e ! BASE-TYPE(`e)

where BASE-TYPE is a superfunction which, for an element e of a given sum-type, returns

the type of the element before injection. For example,

BASE-TYPE((1 @ integer) @ SUM(`F)) = integer @ TYPE

SUM di�ers from discriminant union types (Pascal variant records) in that SUM can create

an in�nite union of types. Such an in�nite type is used to de�ne a generic list and a generic

binary search tree ADT speci�cation in the following section.
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5 Example Speci�cations

We demonstrate two useful type building functions constructed from the PROSPER primi-

tives. The �rst example is a speci�cation of a generic list ADT. Although the Generic-List

type operator is not a primitive in PROSPER, we can easily de�ne a generic list ADT that

is similar to a LISP list, but is fully-typed. A list type is generated by the List function

when supplied a type as an argument. Once a list type is generated, all of the normal list

operations can be performed on objects of that type. The second example is a generic binary

search tree speci�cation. This example is a highly 
exible, robust, and secure type building

function: the speci�cation incorporates an invariant as part of the speci�cation; precon-

ditions of operations are enforced through type checking; and highly customized types of

binary search trees can be de�ned. For example, a binary search tree is usually de�ned only

to contain elements of types where a comparison operator such as > is de�ned. However, the

PROSPER speci�cation allows the user to supply the comparison function as a parameter.

5.1 A Generic List Speci�cation

Figure 1 displays the generic list speci�cation. The export section of the speci�cation

contains all of the information necessary to access the ADT Generic-List. The actual rep-

resentation is expressed in the from section, and the user need not be concerned with the

representation. In this example, the List type constructor is not de�ned in the usual re-

cursive manner. A List type is de�ned as the union of the in�nite set of types marked by

Is-List-Rep?. Essentially the SUM superfunction unions the types \list of length 0," \list of

length 1," \list of length 2," etc. Note that the type marking functions can be expressed by

context-free grammar rules. Thus, (Is-List-Rep? `some) can be represented by the rule:

T =) single j `some � T

We union the family of types generated by this rule for our representation of lists. This ap-

proach allows us to eliminate recursion and all \heavy machinery" concerning �xed-points.

It seems to be simpler than Scott's theory approach to recursive types [24]. For more details

and the semantics of all the type constructors (de�ned in set theory) see [25].

To use the ADT Generic-List we invoke the List function with a TYPE argument. For

example, List(integer) is the type \list of integers," List(real) is the type \list of reals," and

List(foo) is the type \list of foo." We can use the ADT speci�cation to introduce some list

values:

value Newlist @ List(integer) is Nil @ List(integer)

value A @ List(integer) is Cons(5 @ integer, Newlist)

Only integer values can be added to Newlist and A. And all exported Generic-List operations

can be performed on A. However the Head and Tail operations are insu�ciently speci�ed

for empty lists such as Newlist and the system response is unde�ned. We can correct the

situation by specifying a precondition that prevents the application of Head and Tail to an

empty list. First, we introduce the following convention used throughout the rest of the

paper. If f and g are the symbols of functions then f g is the symbol of their composition.

For example Not Null? `L is Not(Null? `L). We use it in the new version of the Generic-List
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module Generic-List

export

List @ TYPE!TYPE;

Nil @ List(`some:TYPE);

Head @ List(`some:TYPE)!`some;

Tail @ List(`some:TYPE)!List(`some);

Cons @ (`some:TYPE�List(`some))! List(`some);

Null? @ List(`some:TYPE)!boolean

from

value List such that List(`t) is SUM(IsListRep? `t);

value IsListRep? @ TYPE!TYPE!boolean

such that IsListRep? `a `b is

if `b = single then true

else if Cartesian? `b then let `z � `y be `b

in (`z = `a) & (IsListRep? `a `y)

else false;

value Nil is ($ @ single) @ SUM(IsListRep? (`some:TYPE));

value Head such that Head(`x) is �rst(Proj(`x));

value Tail such that Tail (`x:List(`t))

is (Inj (IsListRep?(`t)))(snd(Proj `x));

value Cons such that Cons(`a, `b:List(`t))

is (Inj (IsListRep?(`t))) (`a,(Proj `b));

value Null? such that Null? `L is `L = Nil

comment We use \=" here to compare elements

of type single. We do not export \=" to

to avoid comparing functions, when we specify

lists of functions. end-comment

end-from

Figure 1: A Generic List Speci�cation
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module where the only di�erence with respect to the old one is in the types of the Head and

Tail operations. the SUB superfunction to specify that Head and Tail can only operate on

non empty lists:

Head@SUB(Not Null?@(List(`x:TYPE)!boolean)) ! `x

Tail@SUB(Not Null?@(List(`x:TYPE)!boolean)) ! List(`x)

An attempt to de�ne a value such as Head(Newlist) results in an execution time \type error"

since the new export speci�cation of Head only operates on a subtype of lists that excludes

empty lists. A user of Generic-List can easily test the pre condition by using the Null?

function which operates on all lists. In this case, a list object has a di�erent type than

the parameter speci�cation of the new Tail function. To perform the Tail(`L) operation the

system performs type conversions as described in Section 4.

5.2 A Generic Binary Search Tree Speci�cation

Figures 2 { 4 specify a generic binary search tree (GBST). Figure 2 is the exported access

to a GBST; a user of this speci�cation only has access to the exported functions. We can

specify one integer binary search tree type using

value IntBST @ TYPE is GBST(integer,>)

We can build objects of type IntBST:

value NewIntTree @ IntBST is Clear @ IntBST

value SmallTree @ IntBST is Insert(Insert(NewIntTree,5@integer),7@integer)

We can use any integer relation to specify an integer binary search tree { we are not restricted

to the \>" relation. The GBST speci�cation is 
exible enough to allow us to construct a

tree of lists:

value ListTree @ TYPE!TYPE

such-that ListTree `t is GBST(List `t, ListComparer)

A polymorphic ListComparer function is used to specify the comparison between lists. For

example, a ListTree can be de�ned in terms of a polymorphic comparison function such as

\length":

value Length @ List(`some:TYPE) ! integer

such-that Length `L is

if Null? `L then 0 @ integer

else 1 @ integer + Length(Tail `L)

Now we can specify ListComparer in terms of length:

value ListComparer @ List(`some:TYPE)�List(`some) ! boolean

such-that ListComparer(`L1,`L2) is Length(`L1) > Length(`L2)

13



module GBST

export

GBST @ TYPE.`t �(`t�`t!boolean) ! TYPE;

Clear @ GBST(`t:TYPE, `f:(`t�`t!boolean));

IsEmpty? @ GBST(`t:TYPE, `f:(`t�`t!boolean)) ! boolean;

Data @ SUB(Not IsEmpty? @ (GBST(`t:TYPE, `f:(`t�`t!boolean))!boolean)) ! `t;

InGBST? @ GBST(`t:TYPE, `f:(`t�`t!boolean)) � `t ! boolean;

Insert @ GBST(`t:TYPE, `f:(`t�`t!boolean)) � `t

! GBST(`t:TYPE, `f:(`t�`t!boolean));

Leftside @ SUB(Not IsEmpty? @ (GBST(`t:TYPE, `f:(`t�`t!boolean))!boolean))

! GBST(`t, `f);

Rightside @ SUB(Not IsEmpty? @ (GBST(`t:TYPE, `f:(`t�`t!boolean))!boolean))

! GBST(`t, `f));

from
...

end-from

Figure 2: Generic Binary Search Tree Exported Access

The use of a non-polymorphic ListComparer function to de�ne a ListTree would restrict the

types that can be applied to ListTree | a type error would result if an invalid type is applied

to such a ListTree.

Of course we can de�ne a monomorphic (like IntBST) type using GBST; for example:

value IntListTree @ TYPE is GBST(List(integer),FooComparer)

where

value FooComparer @ List(integer)�List(integer) !boolean

such-that FooComparer(`L1,`L2) is Head(`L1) > Head(`L2)

The representation of GBST in Figure 3 consists of a basic structure and an invariant.

The basic structure, speci�ed as type constructor GBTREE, corresponds to the source set

used in the SPECS speci�cation language of [10]. GBTREE is speci�ed as the union of the

types \empty tree", which can only have the value $@single, and \non-empty tree", which

contains a value of a generic type and two subtrees. The invariant, GBST-inv?, uses the

super function SUB to restrict all binary search trees to GBTREE's that satisfy the generic

relation.

Figure 4 contains the the speci�cation of GBST operations illustrate the de�nition of

functions that return \normal" values.

5.3 Readability of PROSPER Speci�cations

Unfortunately the example PROSPER speci�cations are not easy to read. Readability prob-

lems are partly because we are explicit with all details here; future systems should infer most
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module GBST

export : : :

from

value GBST such-that GBST(`t, `f) is SUB (GBST-inv? (`t, `f));

value GBST-inv? @ (TYPE.`t�(`t�`t!boolean)) ! GBTREE(`t) ! boolean

such-that GBST-inv? (`t,`f) `bst is

if BASE-TYPE(`bst) = single then true

else let (`data, `left, `right) be Proj(`bst)

in (biggest? `f (`data, `left)) & (smallest? `f (`data , `right));

value biggest? @ ((`t:TYPE�`t)!boolean) ! (`t � GBTREE(`t)) ! boolean

such-that biggest? `f (`elem,`subtree) is

comment `f is the comparison function end-comment

if BASE-TYPE(`subtree) = single then true

else let (`data,`left,`right) be Proj(`subtree)

in (`f (`elem, `data)) & (biggest? `f (`elem, `left))

& (biggest? `f (`elem, `right)) ;

value smallest? @ ((`t:TYPE�`t)!boolean) ! (`t � GBTREE(`t)) ! boolean

such-that smallest? `f (`elem,`subtree) is

if BASE-TYPE(`subtree) = single then true

else let (`data,`left,`right) be Proj(`subtree)

in (`f(`data,`elem)) & (smallest? `f (`elem, `left))

& (smallest? `f (`elem, `right)) ;

value GBTREE @ TYPE ! TYPE such-that

GBTREE `t is SUM(Is-GB-structure? `t );

value Is-GB-structure? @ TYPE ! TYPE ! boolean

such-that Is-GB-structure? `a `b is

if `b = single then true

else if Cartesian? `b then let `r � `z be `b

in if Cartesian? `z then let `s � `t be `z

in `r = `a & (Is-GB-structure? `a `s) & (Is-GB-structure? `a `t)

else false else false;
...

end-from

Figure 3: Generic Binary Search Tree Representation
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module GBST

export
...

from
...

value Clear is Inj (GBST-Inv?(`t,`f)) ($ @ single);

value IsEmpty? such-that IsEmpty? (`x) is `x = Clear;

value Data such-that Data `x is �rst(Proj(`x));

value InGBST? such-that

InGBST? (`tree:GBST(`t:TYPE,`f), `elem) is

if `tree = Clear then false

else if `elem = Data(`tree) then true

else if `f(`elem, Data(`tree))

then InGBST? (Rightside (`tree), `elem)

else InGBST? (Leftside (`tree), `elem);

value Insert such-that

Insert(`tree:GBST(`t:TYPE,`f),`elem) is

if `tree = Clear then

(Inj (GBST-Inv?(`t,`f)))(`elem,$ @ single,$ @ single)

else if `f(`elem,Data(`tree))

then

(Inj (GBST-Inv?(`t,`f))) ((Data(`tree)), Leftside(`tree), Proj(Insert(Rightside(`tree),`elem)))

else

(Inj GBST-Inv?(`t,`f))) ((Data(`tree), Proj(Insert(Leftside(`tree),`elem)), (Rightside(`tree)));

value Leftside such-that

Leftside(`tree:GBST(`t,`f)) is

(Inj (GBST-Inv?(`t,`f)))(�rst(snd(Proj `tree));

value Rightside such-that

Rightside(`tree:GBST(`t,`f)) is

(Inj (GBST-Inv?(`t,`f)))(snd(snd(Proj `tree));
...

end-from

Figure 4: Generic Binary Search Tree Operations
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of the types. The use of parameterized types will always add 
exibility and generality at a

cost of greater complexity to the human reader anyway. We remind the reader that the ex-

amples are of ADT's that are likely to be the core of a speci�cation system, and that ADT's

built from the example speci�cation should be easier to read. However, formal speci�cations

do tend to be di�cult to read. Preciseness comes at a cost. Balzer has also commented on

the di�culty of reading GIST speci�cations [26], and he describes one solution to the prob-

lem | a program that translates a GIST speci�cation into natural language. We do not feel

that any executable formal speci�cation will be easy to read, because a formal speci�cation

re
ects the essential complexity of a system [1]. We suggest that a translator for PROSPER

similar to the one designed for GIST speci�cations will be a useful tool to aid the reading of

PROSPER speci�cations.

6 Related Work

A PROSPER speci�cation models the functionality of a system; it does not model the envi-

ronment outside the system. Other researchers have developed speci�cation techniques that

include the outside environment. Feather calls such speci�cations \closed-system" speci�ca-

tions [27]. Closed-system speci�cation techniques include the Jackson System Development

Method, JSD [28, 29], GIST [27], and PAISLey [30]. JSD is an informal technique and is not

executable, however it has been used successfully in industrial settings. GIST speci�cations

are formal and potentially executable, rely on access to an associative database, and are

based on acceptable histories of system behavior. GIST was developed from an arti�cial

intelligence and database system perspective and can be used to model concurrent systems.

The PAISLey executable speci�cation language was developed to formally specify real-time

systems. A PAISLey speci�cation consists of a set of asynchronous processes, and each pro-

cess is speci�ed in a functional manner. \Exchange functions" (which are not mathematical

functions) are used to specify interprocess interactions. PAISLey can be used to specify both

real-time constraints and concurrency.

PROSPER is designed to model only the functional aspects of system behavior. Thus,

we do not address non-functional aspects such as concurrency and real-time constraints. We

seek to explore the potential of dynamic typing in functional speci�cations using abstract

model speci�cation techniques. Although we do not currently address non-functional aspects

of speci�cation, abstract model techniques have been applied to concurrency issues [31].

PROSPER is distinguished by its 
exible and powerful type speci�cation facilities and its

conformance to the abstract model paradigm.

PROSPER is designed to provide an executable means of expressing speci�cations that

can be de�ned using model based speci�cation languages. Thus the PROSPER design is

in
uenced by model based non-executable languages such as the SPECS language de�ned

by Baker et al. [10], VDM (meta-iv) [13, 9], and Z [14]. These speci�cation languages as-

sume a small set of scalar types such as integers, reals, and booleans, and a small set of

type constructors. The structure of data objects and the types of procedures and functions

are speci�ed in a manner very similar to that of imperative programming languages such

as Pascal and Ada. Additional type restrictions on data objects are expressed using in-
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variants. Both the invariants and the pre and post conditions of operations are speci�ed

using �rst order predicate calculus. Because, in general, �rst order predicate calculus is not

executable, these speci�cations are not executable and the veri�cation of speci�cations and

implementations must be performed by humans.

A synthesis system that generates Pascal or PL/1 implementations from abstract model

speci�cations was developed by Belkhouche and Urban [32]. The system statically enforces

invariants on generic parameters, and must determine all types and restrictions at compile

time since Pascal is one of the target languages.

PROSPER di�ers from the foregoing abstract model speci�cation languages. PROSPER

is functional and side e�ect free. The functional nature of PROSPER eases the algebraic

analysis of PROSPER speci�cations [33]. Besides, a functional language is a natural vehicle

for expressing functional speci�cations. A profound di�erence between PROSPER and the

foregoing abstract model speci�cation languages is that PROSPER has one form for ex-

pressing both type structure and invariants { functions. Thus, using a subtype operator, an

invariant is merged with the type structure speci�cation. A type restricted with an invariant

is distinct from the \same" type without the invariant. Because PROSPER is executable,

full �rst order predicate calculus can not be used and the results of operations must be

speci�ed in a constructive fashion.

MIRANDA [7] and me too [8] are also executable functional speci�cation languages. Both

languages allow the speci�cation of in�nite data objects, while PROSPSER does not. In�nite

objects are not included in PROSPER because we have \eager" (not \lazy") evaluation of

PROSPER expressions. This avoids the problem of undecidable functions on in�nite objects

in MIRANDA ([7], see pp. 385-386). The most signi�cant di�erence between PROSPER

and either me too or MIRANDA is the extensive type speci�cation facilities of PROSPER.

The me too language has been implemented in a Lisp environment [34] and has been

used to prototype a number of software systems including a decision analysis system [35]

and an expert system shell [36]. PROSPER takes a similar approach as me too and, in

addition, is able to enforce invariants and pre conditions. Such constraints are expressed

only as comments in me too.

The enforcement of invariants and pre conditions and the desire for generic and poly-

morphic speci�cations, resulted in PROSPER's unique treatment of types. Nordstr�om and

Petersson suggest using an extended type system to completely specify a program [37]. Using

their system both compile-time and run-time type checking are undecidable. Typechecking

can only be performed using formal proofs provided by the programmer. The PROSPER

type system is not as strong as that of Nordst�om and Petersson, but it is automatable and

typechecking is performed at run-time as part of speci�cation testing.

One language with a related treatment of types is Pebble [15]. Pebble and PROSPER

di�er in their treatment of the concept of \value." PROSPER values are built from symbols

using \@", while \:" indicates the type of a parameter or a name. In Pebble, the symbols

themselves are values. Both Pebble and PROSPER treat types as values. However Pebble

types are values only during the typechecking phase, which is a distinct phase from execution.

Such a distinction is not made in PROSPER; the computation of PROSPER type values

is as 
exible as the computation of normal values. As a result, PROSPER typechecking is

limited at compile time | much type checking must be performed at execution time.
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In Pebble, bindings and modules are also values. In PROSPER, the concepts of decla-

rations and values are not glued conceptually. Both PROSPER and Pebble types are built

from a few primitive types without operations, and more complex types are constructed from

the primitives. Neither language deals with assignment, exceptions, or concurrency.

One di�erence between the two languages is the treatment of polymorphic types. PROS-

PER polymorphism is implicit (as in ML), while in Pebble the polymorphism is explicit.

We illustrate the di�erence with an example. Consider a generic swap function. In Pebble a

generic swap routine is of type

(t1:type � t2:type) !> (t1 � t2 ! t2 � t1) .

Note the di�erent \!>" operator for function space construction and also note that t1:type

in Pebble is equivalent to TYPE.`t1 in PROSPER. This swap routine can be instantiated as

swap [int,bool]:int�bool!bool�int. In PROSPER, a similar Swap function is de�ned:

Swap @ `a:TYPE�`b:TYPE!`b�`a.

The PROSPER Swap function does not need to be supplied with explicit type arguments.

The type of the results depends on the type of the arguments. Thus, Swap(1 @ inte-

ger,false @ boolean):boolean�integer. In PROSPER, there is one notation \." for uniform

treatment of dependent types (depending on both types or ordinary values). Thus, the need

for special operators such as \!>" is avoided. We can de�ne (as in Pebble) a super-type

TYPE.`t � `t which represents pairs of the form: (type, element of that type). In PROSPER

we can also de�ne a function G @ integer.y!F(y), where perhaps F @ integer!TYPE and

F(1)=boolean, in which case G(1):boolean. A function similar to G is not discussed in [15].

Also Pebble does not have the equivalents of the superfunctions SUB and SUM.

7 Conclusions

Speci�cation is a critical phase of software development. The goal of the speci�cation phase

is to create a formal description of the system to be designed. The speci�cation itself can

mean \to describe properties" or \to build a prototype." In the latter case, it means to

de�ne data domains and functions over them. Such speci�cations can be called \executable

speci�cations" or operational speci�cations.

PROSPER supports the \speci�cation by prototyping" paradigm and provides powerful

facilities for de�ning executable functional speci�cations. The language is based on a small

set of primitive constructs which allows the construction of 
exible generic structures. PROS-

PER treats types and functions as \�rst class citizens" and has new mechanisms for de�ning

types that depend upon actual parameters at execution time. The merging of invariants

with the structural speci�cations of data types insures that type invariants are preserved.

PROSPER constructs are designed to be fully executable. As a result, a complex software

speci�cation that is grown from the primitives is executable.

The PROSPER approach has potential for reducing the cost of software development.

Relatively simple (mathematically), the model based system makes the design process easier

than in a system based on the axiomatic approach or in a system incorporating imperative

features. Our system provides the ability to test design by execution on di�erent levels of

the construction process. Thus, PROSPER can be used for rapid prototyping. One can test
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and/or experiment with a prototype to check the functionality of the system.

Current research activities include the implementation of a prototype PROSPER inter-

preter, the speci�cation of additional generic types useful in the general application of model

based speci�cations, and using PROSPER to specify non trivial software systems.
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