
An Empirical Evaluation (and Speci�cation)

of the All-du-paths Testing Criterion

(Extended Version)

James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523 USA

(303) 491-7096

bieman@cs.colostate.edu

Janet L. Schultz

Department of Statistics

Iowa State University

Ames, Iowa 50011 USA

Abstract

The all-du-paths structural testing criterion is one of the most discriminating of the data
ow

testing criteria. Unfortunately, in the worst case, the criterion requires an intractable number of

test cases. In a case study of an industrial software system, we �nd that the worst case scenario

is rare. Eighty percent of the subroutines require ten or fewer test cases. Only one subroutine

out of 143 requires an intractable number of tests. However, the number of required test cases

becomes tractable when using the all-uses criterion. This paper includes a formal speci�cation

of both the all-du-paths criterion and the software tools used to estimate a minimal number of

test cases necessary to meet the criterion.

Keywords: Software testing, software measures formal speci�cations, data
ow analysis.

Department of Computer Science Technical Report #CS{91{105

Colorado State University (Revision of Technical Report #CS{89{118)

A version of this paper was published in IEE/BCS Software Engineering Journal,

7(1):43-51, Jan. 1992.

This research was partially supported by the NATO Collaborative Research Grants Program under

RG. 0343/88.

1 Introduction

A major focus of software testing research is the derivation of criteria that aid in selecting the

smallest set of test cases that will uncover as many errors as possible. Structural testing uses the

control and data
ow of a program to select test cases.

Testing criteria which are more capable of uncovering errors tend to require a greater number

of test cases. Consider criteria which require testing speci�c sets of program control
ow paths.

Paths with particular properties are selected for testing. The \all branches" criterion requires the

testing of all branches in a program, while the \all statements" criterion requires that the test data

cause all statements to be executed at least once. Myers describes statement coverage as a \weak

criterion" and demonstrates the advantages of branch coverage over statement coverage [1]. The

\all branches" criterion can uncover more errors than the \all statements" criterion and usually

requires more tests. The most discriminating path-based criterion is the \all paths" criterion which

requires the testing of all possible program paths and requires an in�nite number of test cases in

programs with loops. Since we want testing to be completed eventually, any practical and useful

criterion must be met with a �nite and acceptably small number of test cases.

A number of published analytical studies compare various structural testing criteria [2, 3, 4, 5, 6].

These studies examine the inclusion orderings and worst case complexity of the criteria. Criterion

A includes criterion B if and only if any test data and program that satis�es criterion A also

satis�es criterion B. For example, the \all branches" criterion includes the \all statements" criterion

because when the \all branches" criterion is met the \all statements" criterion is also satis�ed. The

complexity of a criterion refers to the worst case growth in the number of test cases required to

meet the criterion as a size attribute of a program increases.

Ntafos suggests the use of strategies that require at most O(n2) test paths, where n is some

measure of program size [6]. Such strategies are most likely to require a reasonable and prac-

tical number of test cases. Ntafos also notes that these worst case bounds may not re
ect the

actual number of required test cases. Our research is directed towards determining whether testing

strategies that have an exponential worst case bounds may actually be feasible on real programs.

Rapps and Weyuker de�ne a family of path selection criteria based on data
ow relationships

[5]. These criteria focus on the program paths that connect the de�nitions and uses of variables

(du-paths). Consider the Pascal binary search procedure from Dromley [7] shown in Figure 1. The

binary search procedure has the
owgraph shown in Figure 2. For each basic block represented by

owgraph nodes, the variables de�ned and referenced and the program code are shown in Table 1.

A distinction is made between variable uses within computations (c-uses) and uses within predicates

or decisions (p-uses). This distinction is made because p-uses are associated with the out-edges

from predicate nodes rather than the nodes themselves. All of the du-paths in the binary search

procedure are shown in Table 2. Testing all of the du-paths requires that each branch within the

while loop be executed as the last iteration (du-paths h4,2,6i and h5,2,6i) and as a non-last iteration

(du-paths h4,2,3i and h5,2,3i). The branch coverage criterion requires testing each edge at least

once and does not require testing all of these du-paths.

Of the criteria de�ned by Rapps and Weyuker, the all de�nition/use criterion (all-du-paths)

is the \strongest". The all-du-paths criterion requires that the test data exercise all du-paths in

a program. This criterion includes all of the other data
ow criteria of Rapps and Weyuker and

requires the greatest number of paths in a program to be tested. Thus, the all-du-paths criterion

should theoretically be the most e�ective of these data
ow criteria in discovering errors.

The all-du-paths criterion may require a large number of test cases. In the worst case, it can

take an enormous number of test cases. Weyuker shows that the all-du-paths criterion requires 2t

test cases in the worst case, where t is the number of conditional transfers [2]. Note that data
ow

2

procedure binarysearch (a: nelements;

n,x: integer;

var found: boolean);

var lower, upper, middle: integer;

begin

lower := 1;

upper := n;

while lower < upper do

begin

middle := (lower + upper) div 2;

if x > a[middle]

then lower := middle + 1

else upper := middle

end;

found := (a[lower]=x)

end;

Figure 1: Pascal Binary Search Procedure

��
��

��
��

a

��
��

��
��

��
��

��
��

��
��

��
����

��

?

?

?

6

-

Z

Z

Z

Z

Z

Z
Z}�

�

�

�

�

��

S

S

Sw

�

�

��/

?

XXXXXXz

6

4

3

2

1

5

t

s

Figure 2: Binary Search Flowgraph

3

Block Code c-uses p-uses de�nitions

s input parameters a, n, x; a,n,x,

1 lower := 1;

upper := n;

n lower,

upper

2 while lower < upper do lower, upper

3 middle := (lower + upper) div 2;

if x > a[middle]

lower, upper x, a, middle middle

4 then lower := middle + 1 middle lower

5 else upper := middle middle upper

6 found := (a[lower]=x) a, lower, x found

t

Table 1: Binary Search Basic Blocks, De�nitions, & Uses

DU Paths

hs,1i

hs,1,2,3,4i

hs,1,2,3,5i

hs,1,2,6i

h1,2,3i

h1,2,6i

h3,4i

h3,5i

h4,2,3i

h4,2,6i

h5,2,3i

h5,2,6i

Table 2: Binary Search De�nition/Use Paths

testing criteria of Ntafos [8], and the criteria of Laski and Korel [9] strictly subsume the all-du-paths

criterion with the modi�cations suggested by Clarke et al. [10]. Thus, these \stronger" criteria may

require even more test cases than the all-du-paths criterion.

A testing strategy that requires an intractable number of test cases is not realistic. However,

the actual number of test cases can be much less than the worst case. For example the all-du-paths

criterion can be satis�ed for the binary search procedure with eight or fewer tests since several

du-paths can be covered on one test. For example, the du-paths in Table 2 can be covered by

three test cases which cover the complete paths hs,1,2,3,4,2,3,4,2,6,ti, hs,1,2,3,5,2,3,5,2,6,ti, and

hs,1,2,6,ti. Only empirical studies can determine whether the worst case scenario is common.

One empirical study of the du family of criteria was conducted by Weyuker [11, 12]. This study

determined how many test cases were required to meet criteria using a suite of programs collected

by Kernighan and Plauger [13]. The study was performed using the ASSET system, described later

in this section, and required considerable e�ort by human testers. Four human testers developed

and ran sets of test cases on the suite of programs. Out of the suite of programs, only those

4

with 5 or more decision statements were included in the study. A total of 29 programs were

included. Weyuker found that the all-du-paths criterion required approximately the same number

of test cases as the all-uses criterion. The all-uses criterion required far fewer than the worst case

analysis. No cases requiring an intractable number of tests were reported. The programs in our

study are production software in use commercially. Our study includes 143 subroutines, of which

34 subroutines have 5 or more decisions, 7 suboutines have more than 10 decisions, and three

subroutines have 35 or more decisions. One program contains 65 decisions. Weyuker does not

report the sizes of individual procedures.

We examined an industrial software system to determine how many test cases are actually

required to satisfy the all-du-paths criterion. In this case study, we �rst determine the du-paths in

the software system. The software is a natural language text analyzer used for marketing research.

After identifying the du-paths, we estimate the minimum number of test cases necessary to satisfy

the all-du-paths criterion. Our estimate is based on �nding a minimal sized set of complete paths

(paths from the start to terminal node of a program
owgraph) that covers all of the du-paths [14].

Each complete path can be \exercised" by one test case if appropriate input data can be found. We

�nd that for most of the subroutines, the all-du-paths criterion can be satis�ed with fewer than ten

complete paths. Only one subroutine requires an intractable number of complete paths. One other

subroutine requires on the order of 10,000 complete paths. Thus, the all-du-paths criterion can be

used to test most of the subroutines in the software system under study. In the two anomalous

subroutines, the weaker all-uses criterion can be met with a reasonable number of complete paths.

Our contributions include the speci�cation of a software measurement tool that estimates a

minimal number of test cases required to meet the all-du-paths criterion. We use this tool to

determine the estimated number of tests required to meet the all-du-paths criterion. The basis

for our measurement tools is a formal speci�cation of the all-du-paths criterion. The speci�cation

is written in a language-independent fashion so that our tools can be easily adapted to apply to

programs in many standard imperative languages.

The number of complete paths needed to meet the criterion is an estimate of the number of

test cases required. Some complete paths of a program may be infeasible | no input data exists

that can cause such a path to be executed. In addition, some du-paths may be infeasible. Thus, it

might be impossible to select test data that satis�es the particular criterion. As are many problems

in testing, determining whether a particular path is feasible is undecidable [15, 16, 17]. Frankl and

Weyuker suggest the use of heuristics to identify infeasible paths [18]. Since some complete paths

and du-paths may be infeasible, our measure of the necessary number of complete paths will tend

to be higher than the number of feasible paths.

In developing our research tools, we rigorously de�ne the all-du-paths criterion using the SPECS

speci�cation language [19]. The criterion is speci�ed in terms of a language-independent representa-

tion (StandardRep) of imperative programs [20]. Our formal de�nition of the all-du-paths criterion

is applicable to any imperative language that can be mapped to the representation. Because our

empirical study is based on a formal speci�cation, the research can be repeated by others. Note

that the StandardRep can be used to specify a number of useful software structural measures.

We utilize a tool [21] that generates a StandardRep from an ISO Standard Pascal [22] program.

The output routines of the generator are modi�ed to produce a Prolog data base for each program

unit. Each data base represents an augmented
owgraph in which the nodes and edges are included,

along with the variables which are de�ned and used in each node. A Prolog program estimates the

minimum number of complete paths that satisfy the all-du-paths criterion for the corresponding

program unit. All tools used in this research are rigorously speci�ed using SPECS.

A related system developed by Frankl and Weyuker, ASSET, determines whether a given test

set is adequate with respect to the criterion, and produces a list of any node pairs required by

5

the criterion but not exercised by the test data [23, 24]. This list can then be used to strengthen

the test data set. In contrast, our research tools are designed to estimate the number test cases

required by a criterion. ASSET is designed for use on a speci�c subset of Pascal, while our tools

operate on the StandardRep.

This paper has the following organization. Section 2 presents the formal de�nition of the all-

du-paths criterion. This formal de�nition is the basis of our analysis tools. We formally specify the

tools used in the study in Section 3. These software tools include the programs that (1) generate a

Prolog data base from a StandardRep, (2) compute all du-paths in a program, (3) remove redundant

du-paths, and (4) estimate the number of test cases needed to meet the all-du-paths criterion.

Section 4 describes the natural language text analysis system that is the object of this study. The

case study results are described in Section 5 and the conclusions follow in Section 6. Appendix A

contains tables of the case study results and Appendix B includes the Prolog programs used.

2 Speci�cation of the All-du-paths Criterion

The software tools used in this study are speci�ed in the SPECS speci�cation language [19]. SPECS

is an abstract model speci�cation language and is similar to VDM's meta-iv [25] and Z [26]. SPECS

speci�cations are de�ned as abstract data types in terms of mathematical sets, sequences, labelled

tuples, integers, booleans, and operations on these primitives. A SPECS speci�cation consists of an

abstract domain speci�cation and the speci�cation of operations on objects in the domain. SPECS

type declarations use a syntax similar to Pascal. The operations are speci�ed using pre and post

conditions in �rst order predicate calculus (FOPC). Our tools use an abstract representation of

imperative programs as the abstract domain. The all-du-paths criterion and other software tools

are speci�ed as operations on the domain.

2.1 A Representation of Programs

The abstract domain used in specifying the all-du-paths criterion and other software tools incorpo-

rates concepts that are common to imperative language programs | control
ow, data dependency,

and procedure interfaces. This program representation is the StandardRep of Bieman et al [20].

Because we use the StandardRep as the basis for our speci�cation rather than the source language,

our speci�cation applies to programs in any imperative language which can be mapped to the

StandardRep.

In a StandardRep, a program is represented by a set of program units, where each program unit

represents a procedure or function.

StandardRep = set of UnitRep

Each program unit has its own internal structure and a speci�c interface with the rest of the

program.

UnitRep = tuple(Interface: Header, UFS: UnitFlowStructure)

The Interface contains the unique name of the program unit and the information necessary to

determine the data interface with the rest of the program | the procedure or function name, the

list of formal parameters, and the set of global variables which are used or de�ned by the program

unit.

6

Header = tuple(

UnitName: UnitID,

FormalParams: sequence of VarID,

Globals: set of VarID)

Program unit control
ow is modeled by a
owgraph in which nodes represent basic blocks and

edges represent transfers of control between blocks.

UnitFlowStructure = tuple(

Nodes: set of NodeType,

Edges: set of EdgeType,

Start: NodeID,

Terminal: NodeID)

EdgeType = tuple(FromNode: NodeID, ToNode: NodeID)

A basic block consists of code that is always executed in order starting with the �rst token and

ending with the last token. Program unit data
ow is represented as the sequence of de�nitions

and uses in the nodes that represent basic blocks. Following Hecht [27], a variable de�nition is

source program code that, when executed, can (potentially) modify the value stored by a program

variable; a variable use or reference is code that, when executed, references the value stored by a

program variable. Information concerning variable de�nitions and uses are embedded within the

nodes. Nodes also contain information about invoked procedures and functions. A distinction is

made between uses in de�nitions and uses in predicates. The characterization of a node consists of

four parts: a node identi�er, a list of variable de�nitions, and a list of predicate uses.

NodeType = tuple(

NID: NodeID,

LocalDe�nitions: sequence of De�nitionType,

Predicate: ExpType)

Nodes in the StandardRep as de�ned in [20] have an additional component to record the occurrences

of operators and operands. This component is omited here since the information is not needed to

de�ne the all-du-paths criterion.

A de�nition of a variable occurs when either an assignment is made to that variable, or the

variable is de�ned by a procedure call.

De�nitionType = SimpleDe�nition j ProceduralDe�nition

A SimpleDe�nition has two components: the name of the variable being de�ned, and the list

of items used in the de�nition. A procedure call is represented by the procedure name and the

sequence of actual parameters. The representation of a procedure call, combined with the control

ow and data dependency information in the UnitFlowStructure of a called procedure, allows us to

deduce potential data dependencies resulting from the call.

7

SimpleDe�nition = tuple(De�nedVariable: VarID, Expr: ExpType)

ProceduralDe�nition = tuple(

ProcName: UnitID,

ActualParams: sequence of ExpType)

For our purposes, an expression results in a particular sequence of uses. The order is determined

by the parsing.

ExpType = sequence of ExprComponent

Each item used in a SimpleDe�nition may have any of three forms: the item may be a variable,

a constant, or a function call.

ExprComponent = VarID j ConstID j FunctionUse

FunctionUse = tuple(

FunctionName: UnitID,

ActualParams: sequence of ExpType)

Fields of StandardRep objects are referenced in a speci�cation in the following manner:

� Given an object UFS of type UnitFlowStructure, the nodes (set of NodeType) may be ref-

erenced with Nodes(UFS). Similarly, the edges (set of EdgeType) may be referenced with

Edges(UFS).

� Given an object N of type NodeType, the node ID may be referenced with NID(N), the local

de�nitions with LocalDe�nitions(N), and the predicate with Predicate(N).

� Given an object U of type UnitRep, the name of the unit may be referenced with Unit-

Name(Interface(U)), and the formal parameters with FormalParams(Interface(U)).

� Given a sequence S, the �rst item may be referenced with S1, the i
th item with Si, and the

last item with Slength(S). The expression header(S) refers to the sequence without the last

item and trailer(S) refers to the sequence without the �rst item.

We can generate a StandardRep from ISO Standard Pascal programs using the generator im-

plemented by Doh [21]. The mapping from Pascal to the representation is formally speci�ed by

Bieman et al [20]. The output from the generator is used as input to the analysis tools used in this

research. We specify the all-du-paths criterion as an operation on StandardRep objects.

8

2.2 All-du-paths Criterion

The all-du-paths criterion is based on data
ow relationships. Variables are tracked from their

points of de�nition to their points of use. All paths between every de�nition-use pair are selected.

Rapps and Weyuker de�ne their family of criteria on a simple, formal programming language [5].

We rigorously de�ne the all-du-paths criterion on the StandardRep in a manner consistent with the

original de�nitions. In doing so, we have extended the de�nitions to apply to any imperative

programming languages that can be mapped to the StandardRep.

To incorporate procedures and functions in our de�nition, we need to determine which of the

actual parameters are de�ned and which are used at the point of a call. In a procedure call, we

assume that a variable which represents a call-by-reference parameter is de�ned. We also assume

that the variables in an expression which represents a call-by-value parameter are used. All call-

by-value formal parameters are assigned to local variables in the start node of the called procedure

by the StandardRep generator [21]. We also assume that all global variables accessed by the called

procedure are used at the point of a procedure call and all variables in the actual parameters of a

function call are used.

Our speci�cation makes use of the notion of \path subset criterion" [28]. Consider a
owgraph

G = (N;E; s; t), where E � N � N; s 2 N; t 2 N , and all nodes x 2 N lie on a path from s to

t. Any path P from s to t is a complete path. A path subset criterion is a boolean function that,

given a set of complete paths in a
owgraph, outputs true if and only if the set of paths satis�es

the criterion. When using a path subset criterion as a testing criterion the set of paths is �nite.

Let AllDUPaths(G) denote the set of all du-paths in
owgraph G, and let all-du-paths(FS,G)

be a path subset criterion that determines if a particular set of complete paths, FS, includes all

du-paths in G. Then all-du-paths(FS,G) is true if and only if every member of AllDUPaths(G) is

included along some path in FS. In the remainder of this section we specify AllDUPaths in SPECS

as an abstract function in terms of the StandardRep.

The SPECS speci�cation of AllDUPaths has a Pascal-like function header, and pre and post

conditions expressed in �rst order predicate calculus (FOPC). The post-condition utilizes named

expressions, which allow us to modularize complex post-condition expressions and improve read-

ability. AllDUPaths is de�ned in a \top-down" manner|the post-condition is de�ned using named

expressions, each named expression is de�ned in an expression de�nition, and expression de�nitions

may also have named expressions.

The abstract function AllDUPaths and some of its associated expression de�nitions utilize the

following additional type de�nition:

type PathType = sequence of NodeType

De�nition 2.1 The function AllDUPaths has objects of type UnitRep and StandardRep as formal

parameters. The StandardRep parameter is needed to determine de�nitions and uses resulting from

procedure calls. This function generates the set of all du-paths in UR.

function AllDUPaths(UR : UnitRep,

SR : StandardRep) : set of PathType

pre: UR 2 SR

post: AllDUPaths(UR,SR) = CDUPaths(UFS(UR),SR) [PDUPaths(UFS(UR),PR)

Given the Pascal binary search procedure in Figure 1, AllDUPaths speci�es the set of du-paths in

Table 2.

9

The named expressions CDUPaths and PDUPaths are also de�ned formally. CDUPaths speci�es

the set of all c-paths | du-paths with a computation use or c-use of a variable in the last node of

each path. A c-use is a variable reference which appears on the right-hand side of an assignment

statement or in a procedure or function call. PDUPaths speci�es the set of all p-paths | du-paths

with a predicate use or p-use of a variable in the second-to-last node of each path. A predicate

use appears in a conditional statement, such as an \if" or \while" statement. We may think of a

predicate use as attached to the edges following the predicate in a
owgraph.

De�nition 2.2 CDUPaths speci�es the du-paths where for any variable v that is globally de�ned

in the �rst node, v is not de�ned between the �rst and last nodes in the path, and the last node

contains a global c-use of v. Such a path must also be a simple path | a path with no embedded

cycles.

CDUPaths (UFS : UnitFlowStructure,

SR : StandardRep) as set of PathType

such that

CDUPaths(UFS,SR) = fP : PathType j SimplePath(P;UFS) ^

9v[GlobalDefs(P1; v; SR) ^

DefClearPath(P; v; SR) ^

GlobalCUses(Plength(P); v; SR)]g

The set of CDUPaths in the binary search example is f hs,1i, hs,1,2,6i, h1,2,3i, h1,2,6i, h3,4i, h3,5i,

h4,2,3i, h4,2,6i, h5,2,3i g .

De�nition 2.3 PDUPaths speci�es the du-paths where for any variable v that is globally de�ned

in the �rst node, v is not de�ned between the �rst and the last nodes in the path, and the second-

to-last node contains a p-use of v. The last node can be any successor of the second-to-last node.

All nodes except the last must comprise a loop free path.

PDUPaths (UFS : UnitFlowStructure,

SR : StandardRep) as set of PathType

such that

PDUPaths(UFS,SR) = fP : PathType j LoopFreePath(header(P); UFS) ^

9v[GlobalDefs(P1; v; SR) ^

DefClearPath(P; v; SR) ^

PUses(Plength(P)�1; v) ^

Plength(P) 2 Nodes(UFS) ^

(NID(Plength(P)�1); NID(Plength(P))) 2 Edges(UFS)]g

The set of PDUPaths in the binary search example is fhs,1,2,3,4i, hs,1,2,3,5i, h1,2,3i, h1,2,6i, h3,4i,

h3,5i, h4,2,3i, h4,2,6i, h5,2,3i, h5,2,6ig.

SimplePath, GlobalDefs, DefClearPath, etc., are also named expressions in the de�nitions for

CDUPaths and PDUPaths. These named expressions are also speci�ed using expression de�nitions.

De�nition 2.4 A simple path in a UnitFlowStructure is a path in which no two nodes are the

same, except possibly the �rst and last.

SimplePath (P : PathType,

UFS : UnitFlowStructure) as boolean

10

such that

SimplePath(P,UFS) � (length(P) � 2 ^

8i[1 � i � length(P)) Pi 2 Nodes(UFS)] ^

8i[1 � i < length(P)) (NID(Pi); NID(Pi+1)) 2 Edges(UFS)] ^

8m8n[1 � m < length(P) ^ 1 � n < length(P)

^m 6= n) Pm 6= Pn] ^

8m8n[2 � m � length(P) ^ 2 � n � length(P)

^m 6= n) Pm 6= Pn])

De�nition 2.5 A loop free path in a UnitFlowStructure is a path in which all nodes are distinct.

LoopFreePath (P : PathType,

UFS : UnitFlowStructure) as boolean

such that

LoopFreePath(P,UFS) � (8i[1 � i � length(P)) Pi 2 Nodes(UFS)] ^

8i[1 � i < length(P)) (NID(Pi); NID(Pi+1)) 2 Edges(UFS)] ^

8m8n[1 � m � length(P) ^ 1 � n � length(P)

^ m 6= n) Pm 6= Pn])

De�nition 2.6 GlobalDefs determines whether or not a variable, v, is de�ned in a given node.

Such a new value of v may be used in other nodes.

GlobalDefs (N : NodeType,

v : VarID,

SR : StandardRep) as boolean

such that

GlobalDefs(N; v; SR) � v 2 Defs(LocalDefinitions(N); SR)

De�nition 2.7 GlobalCUses determines whether there exists a de�nition in the sequence of de�-

nitions in a node such that v is used, and v is not de�ned in any previous de�nition of the node.

GlobalCUses (N : NodeType,

v : VarID,

SR : StandardRep) as boolean

such that

GlobalCUses(N; v; SR)� 9i[1 � i � length(LocalDefinitions(N)) ^

v 2 CUses(LocalDefinitions(N)i; SR) ^

v 62 Defs(hLocalDefinitions(N)1; :::; LocalDefinitions(N)i�1i; SR)]

De�nition 2.8 PUses uses ProcessExpType to �nd the set of p-uses in a node, then determines

whether or not v is in this set.

PUses (N : NodeType,

v : VarID) as boolean

such that

PUses(N; v) � v 2 ProcessExpType(Predicate(N))

De�nition 2.9 Defs determines the set of all variables which are de�ned in a given sequence of

de�nitions. If the �rst de�nition is a simple de�nition, the left-hand side of the assignment statement

is included in the returned set. If it is a procedure call, ProcDefs �nds the de�ned variables in the

call. This expression de�nition is de�ned recursively to include the rest of the de�nitions in the

sequence.

11

Defs(Dseq : sequence of De�nitionType,

SR : StandardRep) as set of VarID

such that

Dseq = hi)

Defs(Dseq; SR) = fg

^ Dseq 6= hi)

Dseq1
type

2 SimpleDefinition)

Defs(Dseq; SR) = DefinedV ariable(Dseq1) [Defs(trailer(Dseq); SR)

^ Dseq1
type

2 ProceduralDefinition)

Defs(Dseq; SR) = ProcDefs(Dseq1; SR) [Defs(trailer(Dseq); SR)

Thus, the Defs for the sequence of de�nitions lower := 1; upper := n; in Block 1 of the binary

search procedure is flower,upperg.

De�nition 2.10 CUses speci�es the set of variables which are used in either the right side of an

assignment statement or in a procedure call.

CUses(D : De�nitionType,

SR : StandardRep) as set of VarID

such that

D
type

2 SimpleDefinition)

CUses(D;SR) = ProcessExpType(Expr(D))

^ D
type

2 ProceduralDefinition)

CUses(D;SR) = ProcUses(ActualParams(D); SR)

The CUses set for the de�nition middle := (lower + upper) div 2 in the binary search procedure is

flower,upperg.

De�nition 2.11 A de�nition clear path with respect to a variable v is a path in which all nodes

other than the �rst and last do not have a de�nition of v.

DefClearPath (P : PathType,

v : VarID,

SR : StandardRep) as boolean

such that

DefClearPath(P,v,SR) �

8i[1 < i < Plength(P)) v 62 Defs(LocalDefinitions(Pi); SR)]

De�nition 2.12 ProcessExpTypeSeq speci�es the set of all variables occurring in a sequence of

expressions, or ExpTypes. Each ExpType in the sequence is analyzed by ProcessExpType. Process-

ExpTypeSeq is de�ned recursively to include the rest of the expressions in the sequence.

ProcessExpTypeSeq(ETseq : sequence of ExpType) as set of VarID

such that

ETseq = hi)

ProcessExpTypeSeq(ETseq) = fg

^ ETseq 6= hi)

ProcessExpTypeSeq(ETseq) =ProcessExpType(ETseq1) [

ProcessExpTypeSeq(trailer(ETseq))

12

De�nition 2.13 ProcessExpType speci�es the set of all variables occurring in an expression, which

can be viewed as either an ExpType or a sequence of ExprComponent. The type of the �rst item in

the sequence is determined and the corresponding result is obtained. This expression de�nition is

de�ned recursively to include the rest of the sequence.

ProcessExpType(ECseq : sequence of ExprComponent) as set of VarID

such that

ECseq = hi)

ProcessExpType(ECseq) = fg

^ ECseq 6= hi)

(ECseq1
type

2 V arID)

ProcessExpType(ECseq) = ECseq1 [ProcessExpType(trailer(ECseq))

^ (ECseq1
type

2 ConstID)

ProcessExpType(ECseq) = ProcessExpType(trailer(ECseq))

^ (ECseq1
type

2 FunctionUse)

ProcessExpType(ECseq) = ProcessExpTypeSeq(ActualParams(ECseq1)) [

ProcessExpType(trailer(ECseq))

De�nition 2.14 ProcDefs speci�es the set of all variables de�ned in a procedure call. The actual

parameters, formal parameters and the sequence of de�nitions in the start node of the called

procedure are evaluated by the named expression ProcessProcDefs.

ProcDefs(PD : ProceduralDe�nition,

SR : StandardRep) as set of VarID

such that

ProcDefs(PD,SR) =

fv : V arID j 9u9n[u 2 SR ^

UnitName(Interface(u)) = ProcName(PD) ^

n 2 Nodes(UFS(u)) ^

NID(n) = s ^

v 2 ProcessProcDefs(ActualParams(PD);

F ormalParams(Interface(u));

LocalDefinitions(n))]g

De�nition 2.15 ProcessProcDefs examines each actual parameter-formal parameter matching of a

procedure call to determine which variable(s) in the actual parameter are de�ned. This expression

is de�ned recursively to include all of the parameters. If the formal parameter of the match in

question is not used in the start node of the called procedure, the corresponding actual parameter

is a call-by-reference and is added to the result. Otherwise, the result is not a�ected by this

particular parameter matching.

ProcessProcDefs (AP : sequence of Exptype,

FP : sequence of VarID,

LD : sequence of De�nitionType) as set of VarID

such that

AP = hi)

ProcessProcDefs(AP;FP;LD) = fg

ÂP 6= hi)

13

(FP1 62 CUses(LD))

ProcessProcDefs(AP;FP;LD) =ProcessExpType(AP1) [

ProcessProcDefs(trailer(AP); trailer(FP); LD))

(̂FP1 2 CUses(LD))

ProcessProcDefs(AP;FP;LD) =

ProcessProcDefs(trailer(AP); trailer(FP); LD))

De�nition 2.16 ProcUses is similar to ProcDefs, but speci�es the set of all variables used rather

than de�ned in a procedure call. The actual parameters, formal parameters and the sequence

of de�nitions in the start node of the called procedure are passed to the expression de�nition

ProcessProcUses, which does the actual analysis. Included in the result of ProcUses are all global

variables accessed in the called procedure.

ProcUses(PD : ProceduralDe�nition,

SR : StandardRep) as set of VarID

such that

ProcUses(PD;SR) = fv : V arID j9u9n[u 2 SR ^

UnitName(Interface(u)) = ProcName(PD) ^

n 2 Nodes(UFS(u)) ^

NID(n) = s ^

v 2 (ProcessProcUses(ActualParams(PD);

F ormalParams(Interface(u));

LocalDefinitions(n)) [

Globals(Interface(u)))]g

De�nition 2.17 ProcessProcUses examines each actual parameter-formal parameter matching of

a procedure call to determine which variable(s) in the actual parameter are used. This expression

de�nition is de�ned recursively to include all of the parameters. If the formal parameter of the

match in question is used in the start node of the called procedure, the corresponding actual

parameter expression is a call-by-value and all of its variables are added to the result. Otherwise,

the result is not a�ected by this particular parameter matching.

ProcessProcUses (AP : sequence of Exptype,

FP : sequence of VarID,

LD : sequence of De�nitionType) as set of VarID

such that

AP = hi)

ProcessProcUses(AP;FP;LD) = fg

ÂP 6= hi)

(FP1 2 CUses(LD))

ProcessProcUses(AP;FP;LD) =ProcessExpType(AP1) [

ProcessProcUses(trailer(AP); trailer(FP); LD))

(̂FP1 62 CUses(LD))

ProcessProcUses(AP;FP;LD) =

ProcessProcUses(trailer(AP); trailer(FP); LD))

The foregoing formal speci�cation of the all-du-paths testing criterion is used to specify and

design the research tools used in the case study.

14

3 Research Tools

This section describes the tools used to identify du-paths and count the minimum or near-minimum

number of complete paths required to satisfy the all-du-paths path selection criterion for a program

unit. The analysis is performed in two distinct phases. In the �rst phase, a Prolog data base (PDB)

is produced for each unit of a Pascal program. In the second phase, a Prolog program Count takes

a PDB as input, �nds all of the du-paths, and outputs a count of the number of du-paths, the

number of non-redundant du-paths, and an estimate of the number of complete paths, or test

cases, necessary to satisfy the criterion.

3.1 Producing the PDB's for a Program

The PDB's for a Pascal program are generated from a StandardRep [20]. The original Standard-

Rep generator takes a Pascal program as input and produces the corresponding StandardRep as

output [21]. The output routines of the original generator were modi�ed to produce a PDB for

each program unit. A listing of the modi�ed C output routines appears in [29] and the original

StandardRep generator is in [21].

A PDB consists of an annotated
owgraph for one program unit, or UnitRepType. A PDB

contains the information needed for our analysis. The structure of a PDB may be represented

abstractly in SPECS by the following type de�nitions. (In the following de�nitions, DCP stands

for de�nitions, c-uses and p-uses.)

PDB = 3-tuple(

Nodes : set of NodeID,

DCP : set of DCPType,

Edges : set of EdgeType)

DCPType = 4-tuple(

NID : NodeID,

D : set of VarID,

C : set of VarID,

P : set of VarID)

For an object X of type PDB for a program unit U , Nodes(X) and Edges(X) represent the

nodes and edges in the corresponding
owgraph of U . Each element E in DCP(X) contains data

ow information for node NID(E), including the global de�nitions, D(E), global c-uses, C(E), and

p-uses, P (E).

The abstract operation that produces a PDB from a particular UnitRepType is speci�ed as

follows:

function ProducePDB (UR : UnitRepType,

SR : StandardRep) : PDB

pre: UR 2 SR

post:

Nodes(ProducePDB(UR;SR)) =

fx : NodeID j 9n[n 2 Nodes(UFS(UR)) ^NID(n) = x]g

^ DCP (ProducePDB(UR;SR)) = fx : DCPTypej 9n[n 2 Nodes(UFS(UR)) ^

NID(n) = NID(x) ^

D(x) = fv j GlobalDefs(n; v; SR)g ^

15

C(x) = fv j GlobalCUses(n; v; SR)g ^

P (x) = fv j PUses(n; v; SR)g]g

^ Edges(ProducePDB(UR;SR)) = Edges(UFS(UR))

GlobalDefs, GlobalCUses and PUses are given in De�nitions 2.6, 2.7 and 2.8, respectively. A

PDB is represented by Prolog \facts" using Prolog lists. Figure 3 illustrates a PDB as represented

with Prolog data objects for the binary search procedure.

The terminal node t is not included in the list of nodes in the Prolog PDB, since there are no

global de�nitions or uses in t.

A Prolog PDB is the input to the Prolog program Count which identi�es the du-paths and

computes the various path counting measures.

3.2 The Prolog Program Count

Count is implemented in Prolog. The built-in backtracking features of Prolog are well suited for

graph searches, and allow our algorithms to be speci�ed at a higher level than is possible using a

conventional programming language such as Pascal or C. However, by using Prolog, we sacri�ce

execution speed. This sacri�ce is not signi�cant except when examining large PDB's. The Prolog

code for Count is listed in Appendix B.

We describe the algorithm in terms of the abstract representation of a PDB. There are four

main steps in the algorithm:

1. Find all of the du-paths using the PDB. The number of du-paths is output.

2. Find the successor nodes for each node in the PDB.

3. Remove redundant du-paths found in Step 1. The number of remaining du-paths is output.

4. Determine the cardinality of a \small" set of complete paths that include all of the du-paths

from Step 3. These complete paths correspond to (potential) test cases and the number of

such paths is output.

3.2.1 Finding the du-paths

In this step, all du-paths of a program unit as de�ned in Section 2 are found. The following three

expression de�nitions, which are de�ned in terms of the abstract PDB type, will be utilized in the

discussion. They specify the set of global de�nitions, global c-uses and p-uses for a given node ID.

gdefs (P : PDB, NID : NodeID) as set of VarID

such that

gdefs(P;NID) = fv j 9x[x 2 DCP (P) ^ NID(x) = NID ^ v 2 D(x)]g

cuses (P : PDB, NID : NodeID) as set of VarID

such that

cuses(P;NID) = fv j 9x[x 2 DCP (P) ^ NID(x) = NID ^ v 2 C(x)]g

puses (P : PDB, NID : NodeID) as set of VarID

such that

puses(P;NID) = fv j 9x[x 2 DCP (P) ^ NID(x) = NID ^ v 2 P (x)]g

16

nodes([s,1,2,3,4,5,6]).

global_defs(s,[a,n,x]).

global_c_uses(s,[]).

p_uses(s,[]).

global_defs(1,[lower,upper]).

global_c_uses(1,[n]).

p_uses(1,[]).

global_defs(2,[]).

global_c_uses(2,[]).

p_uses(2,[lower,upper]).

global_defs(3,[middle]).

global_c_uses(3,[lower,upper]).

p_uses(3,[x,a,middle]).

global_defs(4,[lower]).

global_c_uses(4,[middle]).

p_uses(4,[]).

global_defs(5,[upper]).

global_c_uses(5,[middle]).

p_uses(5,[]).

global_defs(6,[found]).

global_c_uses(6,[a,lower,x]).

p_uses(6,[]).

edge(s,1).

edge(1,2).

edge(2,3).

edge(3,4).

edge(3,5).

edge(4,2).

edge(5,2).

edge(2,6).

Figure 3: PDB for Binary Search Procedure

17

To calculate the du-paths, all ordered node pairs i and j, where i; j 2 Nodes(PDB), are

examined in turn for the du-paths between them. For a graph with n nodes, there are n(n � 1)

distinct node pairs. Recall that we do not include the terminal node t in any node pairs.

The following sets are calculated for each ordered node pair:

c vars(i; j) = gdefs(PDB; i) \ cuses(PDB; j)

p vars(i; j) = gdefs(PDB; i) \ puses(PDB; j)

When both c vars and p vars are empty there are no du-paths between i and j. Such a pair is

discarded and the next node pair is examined.

If either c vars or p vars is non-empty, Prolog conducts a depth-�rst search for a du-path

between nodes i and j. As each new node k is examined along the path, c vars and p vars are

recalculated as follows:

c vars(i; j) := c vars(i; j) � gdefs(PDB; k)

p vars(i; j) := p vars(i; j) � gdefs(PDB; k)

The recalculation is necessary because a de�nition of a variable v on a path from node i to node

j makes the de�nition of v in i unusable. The rede�nition of v \kills" the earlier de�nition of v.

So if both sets become empty, the current node is discarded and backtracking occurs to search for

an alternate path. If and when node j is reached, a du-path has been found and it is written to an

output �le.

After each du-path is found and written to the output �le, FAIL is used to force Prolog to

backtrack and �nd another du-path from the point at which it left o�. Thus, the search is repeated

until all du-paths for a particular node pair are found. Backtracking is employed at two points:

after each du-path is found and when a new node is encountered along a potential du-path that

causes both c vars and p vars to become empty.

The du-paths appear in the output �le as a Prolog list of lists. The following is the du-paths

in the binary search procedure example in Prolog form:

du_paths([[s,1],

[s,1,2,3,4],

[s,1,2,3,5],

[s,1,2,6],

[1,2,3],

[1,2,6],

[4,2,3],

[4,2,6],

[5,2,3],

[5,2,6],

[]]).

3.2.2 Node Successors

In this step we determine the successor nodes for each node in the node list of the PDB. A sequence

of successor nodes for a particular node n1 consists of all n2 in the node list such that there exists a

path from n1 to n2. Prolog searches the edges in such a way that the sequence of successor nodes is

in nondecreasing order according to the lengths of the paths from n1 to n2. All of these sequences

of successor nodes are written to the output �le and accessed in Step 4.

18

3.2.3 Condensing the du-paths

A number of the du-paths found in Step 1 must be eliminated to prevent the inclusion of one or

more redundant complete paths. For example, if we have the du-paths [1,2,3,4,5] and [2,3] and test

cases cause execution to traverse the �rst path, we have also traversed the second one. As a result,

the second path may be eliminated without consequence.

To condense the list of du-paths, each du-path is examined and if it is \included" on another

du-path in the list it is eliminated. The concept of one path (P1) being included on another path

(P2) can be expressed by the following expression de�nition:

Included (P1 : sequence of NodeID,

P2 : sequence of NodeID) as boolean

such that

Included(P1,P2) � 9i[1 � i � (length(P2) � length(P1) + 1) ^

8j[1 � j � length(P1)) P1j = P2i+j�1]]

For example, [2,4,5], [4,5,8] and [5,8,9,10] are all included on [1,2,4,5,8,9,10], but [8,9,10,11,12] is

not. When the du-paths for the binary search routine are condensed we get:

conlist([[s,1,2,3,4],

[s,1,2,3,5],

[s,1,2,6],

[4,2,3],

[4,2,6],

[5,2,6],

[5,2,3]]).

3.2.4 Counting complete paths

The �nal step of the Prolog algorithm estimates the fewest number of complete paths that include

all of the du-paths. The intuitive idea behind this step of the algorithm is as follows. We start

with a count of 1. We then \overlap" and \piece together" as many du-paths as possible along one

complete path. The count is then incremented and each selected du-path is deleted from the list of

du-paths. This process is repeated until the list of du-paths is empty. The �nal output of Count

is the �nal value of the count. During this step the output �le is accessed for the list of condensed

du-paths found in Step 3 and the successor nodes found in Step 2.

For example, we begin by looking for a du-path that starts with the start node s. If [s,1,2,3,4,5]

is initially selected, the next du-path we look for in the list should begin with the initial sequence

of [1,2,3,4,5,...]. (There cannot be another du-path that begins with [s,1,2,3,4,5,...] due to the

condense step.) If such a path does not exist, we try [2,3,4,5,...], then [3,4,5,...], etc. If we come to

[5,...], we then start looking at the successors of node 5, trying to �nd a du-path that starts with

the closest successor node. If, after trying all successor nodes, we have no luck, we increment the

count and look again for a du-path that starts with the start node s. When we do select a du-path,

the next du-path we look for should start with the tail of the selected path. The selected du-path is

deleted from the list. The program terminates when the list of du-paths becomes empty. Figure 4

presents the algorithm for computing a number of complete paths that include all of the du-paths

in procedural form.

The algorithm does not guarantee that the �nal value for Count is the minimum number of

complete paths that include the du-paths. Suppose we are looking for a du-path that starts with

19

Initialize:

DUP := set of condensed du-paths;

SP := [s]; {Search Path}

Count := 1;

While DUP is non-empty do

if SP = [N] {contains a single node}

then if there is a du-path starting

with a successor to N

then 1. choose a path P which

starts with the closest

successor;

2. DUP := DUP - {P};

3. SP := tail(P);

else 1. increment Count;

2. SP := [s];

else if there is a du-path P

such that SP is a prefix

then 1. D := D - {P};

2. SP := tail(P);

else SP := tail(SP);

end While.

Figure 4: Algorithm for Counting Complete Paths.

a particular sequence of nodes, and that more than one such du-path exists. Count picks the �rst

path it �nds in the list. But perhaps one of the other choices would allow more du-paths to be

included along the complete path. A lower value for Count could result. Thus, the value of Count

is dependent upon the order of the du-paths in the list and can only be an estimate of the required

number of complete paths needed to meet the all-du-paths criterion.

4 Case Study Data: the NLTAS

A natural language text analysis system (NLTAS) is the software that is the data for our study. The

NLTAS is used to analyze verbatim responses to open ended surveys used in marketing research.

An expert analyst uses the system to identify, within natural language text, the words and phrases

that correspond to a speci�ed set of \meaning units." The NLTAS is a product of Iris Systems,

Inc. and has been in commercial use since 1985. The system consists of �ve Pascal programs with

a total of 143 subroutines (procedures and functions). The system has a total of 7,413 lines of code

(including comments). Thus the average length of a subroutine is 52 lines of code. The longest

subroutine is 367 lines of code. All but ten of the subroutines are shorter than 100 lines of code.

We generated a StandardRep from the original source code, and performed the analysis using

the StandardRep of the system. The StandardRep is an abstraction of the code that contains the

information necessary for our analysis, but hides proprietary details.

20

Number of Subroutines in NLTAS Software

with indicated Count

0 � Count � 10 (80.4%)

11 � Count � 25 (10.5%)

26 � Count � 50 (4.2%)

51 � Count � 100 (2.8%)

101 � Count � 400 (1.4%)

400 � Count (1.4%)

0 20 40 60 80 100 120

Figure 5: Required Number of Complete Paths

5 Case Study Results

For each procedure or function in the NLTAS we record the following data:

1. Number of lines of code not including comments (Lines),

2. Number of nodes in the
owgraph representation of the program unit (Nodes),

3. Number of edges in the
owgraph (Edges),

4. Number of du-paths (Du-Paths),

5. Number of non-redundant or condensed du-paths (Condensed), and

6. Estimated minimal number of complete paths required to meet the all-du-paths criterion

(Count).

The above measures for each of the program units are in Appendix A. The number of decisions can

be calculated from the
owgraph dimensions using the following formula: d = e� n where d is the

number of decisions, e is the number of edges, and n is the number of nodes in the
owgraph [30].

The most striking �nding is that in 115 of the 143 subroutines (80%) the all-du-paths criterion

can be met with ten or fewer complete paths. And, in 91% of the subroutines, the all-du-paths

criterion can be met with 25 or fewer complete paths. Figure 5 illustrates these results.

Only four subroutines or 2.8% require more than 100 complete paths. Two of these subroutines

require the testing of more than a practical number of tests. One subroutine (A18) requires testing

a clearly intractable number of complete paths. A18 requires the testing of at least 232 complete

paths. Another subroutine (A59) requires the testing of on the order of 10,000 complete paths.

Due to machine and time limitations, exact counts of the required number of complete paths for

subroutines A18 and A59 could not be computed.

The results in Appendix A appear to indicate that the Count is dependent on subroutine length

(Lines). However, the longest subroutine in the system (A68) with 367 lines of code has a Count of

76. An examination of A18 reveals the cause of the required intractable number of complete paths

necessary in this case.

The code in A18 that causes the intractable result has the following structure:

De�ne X: X := Y;

if P1 then S1;

21

Program Unit Du-Paths Condensed Count

A59 346 139 28

A18 672 568 463

Table 3: All-uses Criterion Applied to A18 and A59

if P2 then S2;
...

if P32 then S32;

Use X: Y := F(X);

where X is not modi�ed in statements S1 through S32. There are 2
32 paths between the de�nition

of X and the use of X and each path is a distinct du-path.

In the NLTAS, code with a structure similar to the foregoing is rare; only subroutine A18

requires an intractable number of complete paths. In almost all of the subroutines, the all-du-paths

criterion is satis�ed by testing a reasonable number of complete paths. These results indicate that

the all-du-paths testing criterion can be used on most of the subroutines in the system.

Subroutines A18 and A59 would require the testing of an impractically large number of complete

paths to meet the all-du-paths criterion. To estimate the number of tests required using a weaker

criterion, we rewrote the Count program to measure the number of complete paths necessary to

meet the all-uses criterion. The all-uses criterion requires that at least one du path (rather than all

du paths) for each du pair be included in testing. Using the all-uses criterion on subroutine A18 and

A59, the number of required complete paths drops dramatically, see Table 3. These results should

be expected since the worst case complexity for the all-uses criteria is bounded by a polynomial [2].

Using the all-uses criterion, the preceding code structure for A18 could be covered with only one

path rather than the 232 paths required for the all-du-paths criterion. Additional paths required

to satisfy the all-uses criterion result from de�nitions and uses other than the pair that causes the

anomolous situation for the all-du-paths criterion.

In most cases, the Prolog programs used in this study executed fast enough and made e�cient

enough use of memory for our purposes. However, due to performance problems in computing

the measures, an iterative version of Count was used for �ve of the subroutines. The performance

problems on these routines result from ine�cient stack use by C-Prolog. We suggest that the Prolog

programs in Appendix B be treated as executable speci�cations. The programs will run correctly,

but may exhaust available memory when processing large PDB's. Recoding into iterative routines

can resolve the problem.

Unfortunately, were not able to determine the percentage of the du-paths or complete paths

that are actually feasible. We were not able to actually run the programs or do an analysis of the

feasibility of particular paths, because we had access to only the StandardRep of the programs. The

actual source code is proprietary. We were able to gain access to the code only in the StandardRep

form, which hides too much of the program semantics for a path feasibility analysis.

6 Conclusions

In this paper, we formally specify both the all-du-paths criterion and a software tool that estimates

the number of test cases required to meet the all-du-paths testing criterion. We use this tool to

22

empirically evaluate the practicality of the criterion. In the worst case, the all-du-paths criterion

requires an intractable number of test cases. However, in this case study, the worst case scenario

only occurs in one subroutine out of 143. Eighty percent of the subroutines would require ten or

fewer test cases. All of the subroutines (including the one \worst case" subroutine) can meet the

all-uses criterion with a tractable number of test cases.

These results demonstrate that the all-du-paths criterion may be a more realistic criterion than

the theoretical results indicate. The all-du-paths criterion should not be completely avoided because

of the few subroutines that require an intractable number of test cases. Of course, the criterion

is not practical for testing these subroutines and alternative testing or veri�cation strategies must

be used. The other data
ow criteria of Rapps and Weyuker require fewer test cases than the

all-du-paths criterion; the all-uses criterion can be met with signi�cantly fewer test cases.

A tool similar to the Count program can be used to identify these anomalous subroutines and

either recode them or use an alternative testing strategy. One could use a tool such as ASSET to

assist in �nding input data to meet the criterion [23, 24]. And Count can be used to predict how

many test cases may be required. Supplying the data and drivers for the required tests is still a

di�cult problem.

Our research tools have been formally speci�ed to allow other similar studies to be conducted.

The StandardRep serves as an excellent basis for specifying data
ow and other structural software

measures. The c-prolog code for the Count program (Appendix B) may be viewed as an executable

speci�cation. We would not expect the program to have satisfactory performance when used to

analyze subroutines that are signi�cantly larger than those in this study. The performance of

the Count program can be improved by using either a more e�cient Prolog implementation or

transforming Count into an iterative program.

In order to generalize from these results we are expanding our study to include additional

commercial software from various application domains. We are also developing similar estimation

tools for additional testing criteria.

Acknowledgment

This research was partially supported by the NATO Collaborative Research Program under RG.

0343/88.

We are grateful to Iris Systems, Inc. for allowing us to use their natural language text anal-

ysis system as data for this case study. We also appreciate the e�ort of Kyung-Goo Doh who

implemented the StandardRep generator. We thank Albert Baker for his suggestions, and Norman

Fenton for his comments on an earlier draft of this paper.

References

[1] G. J. Myers. The Art of Software Testing. John Wiley & Sons, New York, 1979.

[2] E. J. Weyuker. The complexity of data
ow criteria for test data selection. Information

Processing Letters, 19:103{109, August 1984.

[3] M. D. Weiser, J. D. Gannon, and P. R. McMullin. Comparison of structured test coverage

metrics. IEEE Software, 2(2):80{85, March 1985.

[4] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A comparison of data
ow path

selection criteria. Proc. 8th International Conference on Software Engineering, pages 244{251,

23

1985.

[5] S. Rapps and E. J. Weyuker. Selecting software test data using data
ow information. IEEE

Trans. Software Engineering, SE-11(4):367{375, April 1985.

[6] S. C. Ntafos. A comparison of some structural testing strategies. IEEE Trans. Software

Engineering, 14:868{874, June 1988.

[7] R. G. Dromey. How to Solve it by Computer. Prentice-Hall International, London, 1982.

[8] S. C. Ntafos. On required element testing. IEEE Trans. Software Engingeering, SE-10(6):795{

803, November 1984.

[9] J. Laski and B. Korel. A data
ow oriented program testing strategy. IEEE Trans. Software

Engineering, SE-9(3):347{354, May 1983.

[10] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A formal evaluation of data
ow

path selection criteria. IEEE Trans. Software Engineering, 15(11):1318{1332, November 1989.

[11] E. J. Weyuker. An empirical study of the complexity of data
ow testing. Proc. Second

Workshop on Software Testing, Veri�cation, and Analysis, pages 188{195, 1988.

[12] E. J. Weyuker. The cost of data
ow testing: An empirical study. IEEE Trans. Software

Engineering, 16(2):121{128, February 1990.

[13] B. W. Kernighan and P. J. Plauger. Software Tools in Pascal. Addison Wesley, Reading,

Massachusetts, 1981.

[14] J. Bieman and J. Schultz. Estimating the number of test cases required to satisfy the all-du-

paths testing criterion. Proc. Software Testing, Analysis and Veri�cation Symposium (TAV3{

SIGSOFT89), pages 179{186, December 1989.

[15] L. J. White. Basic mathematical de�nitions and results in testing. In B. Chandrasekaran and

S. Radicchi, editors, Computer Program Testing, pages 13{24. North-Holland, 1981.

[16] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. IEEE Trans.

Software Engineering, SE-1:156{173, June 1975.

[17] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Trans. Software Engi-

neering, SE-2(3):208{215, 1976.

[18] P. G. Frankl and E. J. Weyuker. An applicable family of data
ow testing criteria. IEEE

Trans. Software Engineering, 14(10):1483{1498, 1988.

[19] A. Baker, J. Bieman, and P. Clites. Implications for formal speci�cations { results of specifying

a software engineering tool. Proc. COMPSAC87, pages 131{140, October 1987. Tokyo, Japan.

[20] J. Bieman, A. Baker, P. Clites, D. Gustafson, and A. Melton. A standard representation of

imperative language programs for data collection and software measures speci�cation. The

Journal of Systems and Software, 8(1):13{37, January 1988.

[21] K. Doh, J. Bieman, and A. Baker. Generating a standard representation from pascal programs.

Technical Report 86-15, Dept. of Computer Science, Iowa State University, Ames, Iowa, 1986.

24

[22] K. Jensen and N. Wirth. Pascal User Manual and Report. Springer-Verlag, New York, 3rd

edition, 1985.

[23] P. G. Frankl, S. N. Weiss, and E. J. Weyuker. Asset: A system to select and evaluate tests.

Proc. IEEE Conference on Software Tools, pages 72{79, April 1985.

[24] P. G. Frankl and E. J. Weyuker. A data
ow testing tool. Proc. Softfair II, December 1985.

[25] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall International, Lon-

don, 1986.

[26] I. Hayes (editor). Speci�cation Case Studies. Prentice-Hall International, London, 1987.

[27] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, New York, 1977.

[28] Albert L. Baker, James W. Howatt, and James M. Bieman. Criteria for �nite sets of paths

that characterize control
ow. Proc. 19th Hawaii International Conference on System Sciences

(HICSS-19), IIA:158{163, January 1986.

[29] Janet L. Schultz. Measuring the cardinality of execution path subsets meeting the all-du-paths

testing criterion. Master's thesis, Department of Computer Science, Iowa State University,

Ames, IA, 1988.

[30] T. J. McCabe. A complexity measure. IEEE Trans. Software Engineering, SE-2(4):308{320,

1976.

25

