
Using Design Cohesion to Visualize, Quantify, and Restructure

Software
�

Byung-Kyoo Kang and James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, Colorado 80523 USA
kang@cs.colostate.edu, bieman@cs.colostate.edu

Abstract

During design or maintenance, software developers
often use intuition, rather than an objective set of crite-
ria, to determine or recapture the design structure of a
software system. A decision process based on intuition
alone can miss alternative design options that are eas-
ier to implement, test, maintain, and reuse. The con-
cept of design-level cohesion can provide both visual
and quantitative guidance for comparing alternative
software designs. The visual support can supplement
human intuition; an ordinal design-level cohesion mea-
sure provides objective criteria for comparing alterna-
tive design structures. The process for visualizing and
quantifying design-level cohesion can be readily auto-
mated and can be used to re-engineer software.

Keywords: cohesion, software design, software main-
tenance, software visualization, software measurement
and metrics, software restructuring and re-engineering,
software reuse, measurement theory.

1 Introduction

Poorly structured software designs can result in sys-
tems that are di�cult to test, upgrade, maintain, and
reuse, and are unreliable. An inferior design can be
due to inadequate choices during the initial design of a
system, or can be a natural result of software evolution.

Objective criteria for evaluating design alternatives
are needed. Many existing criteria are applicable to
implementations, not designs. Examples of objective
criteria for evaluating code structure include princi-
ples of structured programming, the cyclomatic num-
ber [10], functional cohesion [3], and many others. The
principles of information hiding and data abstraction

�Research partially supported by NASA Langley Research

Center grant NAG1-1461.

provide guidance for structuring a design, but do not
give objective means for comparing alternative struc-
tures. Function points are used to predict the expected
size of an implementation rather than to evaluate de-
sign structure [1]. The object-oriented design mea-
sures proposed by Chidamber and Kemerer provide a
mechanism to gather quantitative information about
classes in object-oriented software, but they do not pro-
vide guidance to help evaluate design alternatives [4].
Gamma et al describe a set of structural design pat-
terns for object-oriented software and objective, but
not quantitative, criteria for choosing a particular pat-
tern [7].

Visual displays of software designs and ordinal mea-
sures of design attributes are potential tools to identify
and evaluate design alternatives. A visual display of a
design structure will increase the accuracy of decisions
based on intuition. Measures that provide objective,
quantitative characterizations of a design add further
insight, and can potentially be used in an automated
structuring system.

Design visualization and measurement tools can
help in developing an initial design, and they can be
used to re-engineer existing software. The most di�-
cult software to re-engineer is legacy software, which
often has no available design documentation. To re-
engineer such software we need to recapture the design
structure from the implementation. Software visual-
ization tools can certainly help here. After the design
is recaptured, the system can be restructured.

Our objective is to create design visualization and
measurement tools that can be applied to design-level
entities. These tools should support the visualization
and quantitative evaluation of design structure, and be
useful in restructuring a software design.

In the remainder of this paper we show that the
concept of design-level cohesion can be used to visu-

alize, quantify, and restructure software. The term
\software cohesion," which was introduced more than
20 years ago [11], refers to the relatedness of module
components. A highly cohesive software module is a
module whose components are tightly coupled. Cohe-
sive modules are di�cult to split into separate compo-
nents. Thus, the degree of cohesiveness should be an
attribute that is useful for evaluating the structure of
modules.

First, we need a model that captures the essence of
the attribute is needed [2].

2 A Model for Visualizing Designs

An input-output dependence graph (IODG) can
model a design-level view of a module. The model
is based on the data and control dependence relation-
ships between module input and output components.

Input components of a module include in-
parameters and referenced global variables. Output
components include out-parameters, modi�ed global
variables, and `function return' values. An in-out-
parameter becomes two components, an input com-
ponent and an output component. An array, a linked
list, a record, or a �le is one component rather than
a group of components. We de�ne the data and con-
trol dependence informally; their formal de�nitions are
given in compiler texts, for example, see reference [13].

De�nition: A variable y has a data dependence on

another variable x (x
d
! y) if x `reaches' y through a

path consisting of a `de�nition-use' and `use-de�nition'
chain. By data dependence, we mean the `true depen-
dence' determined by examining the data
ow of the
static components. A typical case of data dependence
between two variables is that a variable is used to com-
pute the other through a sequence of assignment state-
ments.

De�nition: A variable y has a control dependence on
another variable x if the value of x determines whether
or not the statement containing y will be performed.

De�nition: A variable y is dependent on another vari-
able x (x! y) when there is a path from x to y through
a sequence of data or control dependence. We call the
path a dependence path.

De�nition: A variable y has condition-control depen-
dence on another variable x (x

cc
! y) if y has control

dependence on x, and x is used in the predicate of a
decision (i.e., if-than-else) structure. For example, all
variables in the `then' and `else' bodies of an `if' state-
ment are condition-control dependent on variables used
in the predicate of the decision.

De�nition: A variable y has iteration-control depen-

dence on another variable x (x
ic
! y) if y has control de-

pendence on x, and x is used in the predicate of an iter-
ation structure. For example, all variables in a `while'
body are iteration-control dependent on variables used
in the loop predicate.

De�nition: A variable y has c-control dependence on
another variable x (x

c
! y) if the dependence path be-

tween x and y contains a decision-control dependence.

For example, for (1) x
cc
! y, (2) x

d
! a

cc
! b

d
! y, and

(3) x
cc
! a

ic
! b

d
! y, y has c-control dependence on

x. The c-control dependence between an input and an
output variable means that the output value is con-
trolled by the input value through decision structure.

De�nition: A variable y has i-control dependence on

another variable x (x
i
! y) if the dependence path be-

tween x and y contains an iteration-control dependence
but no condition-control dependence. For example, for

(1) x
ic
! y and (2) x

d
! a

ic
! b

d
! y, y has i-control de-

pendence on x. When an output has i-control depen-
dence on an input, the output value is a�ected by the
execution of a iteration process whose execution count
is a�ected directly or indirectly by the input.

In our model, a dependence between an input and an
output of module is either data, c-control, or i-control
dependence.

IODG De�nition. The input-output dependence

graph (IODG) of a module M is a directed graph, GM

= (V, E). V is a set of input-output components of M,
and E is a set of edges labeled with dependence types
such that E = f(x; y) 2 V � V j y has data, c-control,
and/or i-control dependence on xg

The graph contains the information how input-
output components are related. The dependence be-
tween components can be determined by data
ow
analysis using a compiler-like tool when an implemen-
tation is available. Without an implementation, a de-
signer must specify the dependencies between input
and output components. Such a speci�cation is a key
component of a detailed design. An IODG can be read-
ily displayed visually as shown in Figure 1.

The caller-callee relationship is represented by in-
cluding the input-output dependence relationship of
the callee in the corresponding place of the I/O depen-
dence diagram of the caller. In such a digram, an input
is represented by a circle, and an output by a square.
The texts in each circle and square are the names of
input and output variables. Each arrow indicates the
dependence between two components.

Figure 1 shows two IODG's, one for pro-

arrn

n

fib_arr

begin

 for i := 3 to n

 amean := asum / n;
 hmean := n / hsum;
end;

 fib_arr[1] := 1;
 fib_arr[2] := 2;

 fib_arr[i] := fib_arr[i-1] + fib_arr[i-2];
 Asum_Hsum(n, fib_arr, asum, hsum);

d d

d d

d

d
d

d

asum hsum

amean hmean

i i

i

Asum_Hsum

d
d

i
i

begin

 for i := 1 to n do begin

 asum := 0;
 hsum := 0;

 asum := asum + arr[i];
 hsum := hsum + 1.0/arr[i];
 end;
end;

var i : integer;

var asum, hsum : int_array;

procedure Fibo_Amean_Hmean

 i : integer;
 var hsum : float);
 var asum : integer;
 arr : int_array;
 (n : integer;
procedure Asum_Hsum

 var hmean : float);
 var amean : integer;
 var fib_arr : int_array;
 (n : integer;

Figure 1: Input-output dependence graph representation for Asum Hsum and Fibo Amean Hmean.

cedure Asum Hsum and another for procedure
Fibo Amean Hmean. Fibo Amean Hmean generates an
array of n Fibonacci numbers and computes the arith-
metic mean and harmonic mean of the numbers by
calling procedure Asum Hsum.

We can extend the IODG to include caller/callee
relationships, and then determine exact dependence
relationships between input/output components. For
example, consider input n and output amean of the
IODG of Fibo Amean Hmean. We �nd three de-
pendence paths between them: (1) n

d
! amean,

(2) n
d
! input parameter

i
! output parameter

d
!

amean, and (3) n
i
! fib arr

d
! input parameter

d
!

output parameter
d
! amean. According to our depen-

dence de�nitions, amean has data and i-control depen-
dencies on n.

3 Measuring Design Cohesion

Software cohesion, as described by Stevens, Myers,
and Constantine (SMC Cohesion) [11], provides an in-
tuitive mechanism for assessing the relatedness of the
components in an individual module. We show that
SMC Cohesion can be applied directly to the IODG
representation of a module to evaluate the design-level
cohesiveness of the module. We use the ordering im-
parted by SMC Cohesion on the set of all IODG's as
an empirical relation system to show that our own au-
tomatable design-level cohesion measure (DLC) satis-
�es the representation condition of measurement [5, 6].
That is, we show that the DLC measure is consistent
with the intuition provided by SMC Cohesion.

3.1 SMC Cohesion as an Empirical Rela-
tion System

Stevens, Myers and Constantine de�ned seven levels
of cohesion on an ordinal scale [11]. The SMC Cohesion
of a module is determined by inspecting the associa-
tion between all pairs of its processing elements. The
purpose of SMC Cohesion is to predict properties of
implementations that will be created from a given de-
sign, so a processing element is a module behavior that
may not yet be reduced to code. SMC Cohesion is
based on seven distinct associative principles between
each pair of processing elements in a module. These
seven levels are listed in order of increasing strength
of association: (1) coincidental association, (2) logical
association, (3) temporal association, (4) procedural
association, (5) communicational association, (6) se-
quential association, and (7) functional association.

When a pair of processing elements exhibit more
than one association level, the cohesion for the pair is
their highest association level. When a module con-
tains more than one pair of processing elements, the
module's cohesion is the lowest association level of all
pairs.

The assessment of SMC Cohesion requires the judg-
ment of human raters. As a result, SMC Cohesion
cannot be readily applied to measure cohesion in prac-
tice [12]. However, SMC Cohesion de�nes an intuitive
notion of the cohesion of design components. Since
SMC Cohesion also imparts an ordering on design com-
ponents, we can use it as an empirical relation system
to help us to de�ne a quantitative cohesion measure
that can be readily automated.

3.2 A Design-Level Cohesion (DLC) Mea-
sure

We de�ne six relations between a pair of output
components based on the IODG:

1. Coincidental (R1): R1(o1; o2) = :(o1 !

o2) ^ :(o2 ! o1) ^ :9x [(x ! o1) ^ (x ! o2)].
Module outputs o1 and o2 do not have dependence
relationship with each other, nor dependence on a
common input.

2. Conditional (R2): R1(o1; o2) = 9x [((x
c
!

o1) ^ (x
c
! o2)) _ ((x

c
! o1) ^ (x

i
!

o2)) _ ((x
i
! o1) ^ (x

c
! o2))]. Two outputs

are c-control dependent on a common input, or
one of two outputs has c-control dependence on
the input and the other has i-control dependence
on the input.

3. Iterative (R3): R1(o1; o2) = 9x [(x
i
! o1) ^

(x
i
! o2)]. Two outputs are i-control dependent

on a common input.

4. Communicational (R4): R1(o1; o2) =

9x [((x
d
! o1) ^ (x! o2)) _ ((x

d
! o1) ^ (x!

o2))]. Two outputs are dependent on a common
input. One of two outputs has data dependence
on the input and the other can have a control or
a data dependence.

5. Sequential relation (R5): R1(o1; o2) = (o1 !
o2) ^ (o2 ! o1). One output is dependent on the
other output.

6. Functional relation (R6): R1(o1; o2) = o1 �

o2. There is only one output in a module.

These six relations are in an ordinal scale; cohesion
strength increases from R1 to R6. These six relations
correspond to six association principles (temporal co-
hesion is not included) of SMC Cohesion with some
overlap.

DLC Measure De�nition. The cohesion level of a
module is determined by the relation levels of output
pairs. For each pair of outputs, the strongest relation
for that pair is used. The cohesion level of the module
is the weakest (lowest level) of all of the pairs. That is,
the output pair with the weakest cohesion determines
the cohesion of the module.

Consider the IODG's of Figure 1. Outputs hsum

and asum of module Asum Hsum have iterative and

communicational relations. Since the communicational
relation is stronger than the iterative relation, the
cohesion level of module Asum Hsum is communica-
tional cohesion. Module Fibo Amean Hmean has three
pairs of outputs. The output pair �b arr and amean

has three relations, iterative, communicational, and se-
quential. Since the sequential relation is the strongest,
the pair has a sequential relation. Similarly, the output
pair �b arr and hmean has a sequential relation, and
the output pair amean and hmean has a communica-
tional relation. Since the communicational relation is
the weakest among the relations of all pairs, the entire
module exhibits a communicational cohesion.

4 Restructuring Software Designs

The DLC cohesion level can be used as a criterion
to determine whether or not a given module should be
redesigned or restructured. An IODG provides visual
help to determine how to perform the restructuring.
The restructuring process is a sequence of restructuring
operations.

4.1 Restructuring Operations

Figure 2 shows eight basic restructuring operations
using the IODG. Figure 2 (a) shows the decomposition
of a module that exhibits coincidental cohesion. Since
each group of data tokens corresponding to each out-
put does not have any dependence relation on the other
group, the decomposition simply requires the separa-
tion of the groups.

Figure 2 (b) shows the decomposition of a module
with conditional, iterative, or communicational cohe-
sion. The decomposition process copies all common
and non-common data tokens in a dependence relation-
ship with the each output into the resulting module.

Figure 2 (c) shows two operations: (1) the decom-
position of a module with sequential cohesion and (2)
the composition of two modules with a sequential rela-
tionship. The output of a module (producer module) is
used as the input of the other (user module). In case
(1), a module with sequential cohesion becomes two
modules that have a sequential relationship. The pro-
ducer module includes all data tokens on which the �rst
output depends. The user module includes all data to-
kens on which the second output depends without the
data tokens on which the �rst output has dependence.
The operation of case (2) is the inverse of case (1).

Figure 2 (d) shows another way of decomposing a
module with sequential cohesion. An output compo-
nent is replaced by a module call and is factored out
into a separate module (callee). The callee includes

O1

I I21

M1

O2 O

I

M2

1

1 O

I

2

M3

2

O

I

M2

1

1

M1

O1 O

I1

2 O

I

2

M3

1

O1

O2

I1

O1

I

M2

1
I2

O2

M3

I1

O2

O1

O2

M1

O

I1

1

M2
M2

M1

I1

1 M2M1 :O
D4

I1

O2

M1 M2
C2

M2

O

I1

1

M1
M1

O

I1

M2

2

M2, M3{ }M1
D1

M2, M3{ }M1
D2

O2O2

(c)

(d)

(e)

(f)

(a)

(b)

M1

M2, M3{ }M1
C1

M2, M3{ }M1
D3

I1

O1

I1

O1

M1 M2
M1 M2

H(

R(
M1 M2

O1)

O1)

Figure 2: Eight basic operations for module restructuring.

the output and all data tokens that the output de-
pends on. The output and data tokens of the callee
are removed from the caller and replaced by a module
call statement.

Figure 2 (e) shows the composition of two module
with a caller/callee relationship. The call statement is
replaced by the tokens of the callee. The composition
may be appropriate when the callee is called only by
the caller. The composition process can reduce unnec-
essary coupling.

Figure 2 (f) contains two operations, `hide' and `re-
veal'. Using hide, H(M1:O1), output O1 of module M1

is hidden by changing the output into a local variable.
This operation removes an unnecessarily exposed out-
put; the output is not used outside of its module.

`Reveal' is the inverse of hide. Using reveal,
R(M1:O1), a local variable O1 of M1 is revealed by
changing the local variable into an output variable.
The operation reveals a hidden function and exports
it. Reveal can be used to separate a hidden function
from a large module. We simply reveal the local vari-
able corresponding to the hidden function and apply
the appropriate decomposition operation.

Existing software can potentially be restructured
automatically by applying the restructuring opera-

tions. The data dependences, IODG's, and the DLC
measure can be generated using practical code analysis
technique.

4.2 A Restructuring Process

A sequence of restructuring operations can be ap-
plied to improve the design structure of software sys-
tem:

1. Generate IODG's of the modules of interest.

2. Compute the DLC level from each IODG.

3. Locate the modules with low DLC levels and
determine the poorly-designed modules among
them. Modules with multiple independent func-
tions will be identi�ed.

4. Decompose the IODG of each poorly-designed
module as follows:

(a) Partition the output components of the
IODG so that when decomposed according
to the partition, each resulting IODG has
a higher DLC level. The IODG and DLC
measure guides the partitioning process. The

DLC measure indicates the weakest connec-
tion among outputs.

(b) Decompose each IODG according to its par-
tition. Each resulting IODG includes input-
output components that have dependence re-
lation with the partitioned outputs. The
dependence type (i.e., data, i-control, or c-
control dependence) between components is
also copied.

To decompose two IODG's with a caller-callee re-
lationship, the callee is examined �rst. The cor-
responding invocation in the caller is changed to
re
ect the callee's decomposition, and then the
decomposition is applied to the caller.

Step 4 is repeated until the DLC level of each re-
sulting IODG is acceptable.

5. Locate unnecessarily decomposed (i.e., overmod-
ularized) modules and compose them. When a
system is overmodularized, the overall interaction
between modules is unnecessarily increased, i.e.,
the coupling of the system is high. To locate over-
modularized modules, a practitioner can use other
quality measures such as coupling, size, and/or
reuse measures. The IODG can help an engi-
neer visualize the module structure to help iden-
tify candidates for composition.

6. Generate module code. If the software being re-
structured is an existing product, the �nal step is
generating module code for each IODG.

4.3 Restructuring Example

Figure 3 shows the restructuring process of mod-
ules Asum Hsum and Fibo Amean Hmean of Figure
1. The restructuring involves the caller-callee relation-
ship between the two procedures and several restruc-
turing operations. The resulting restructured modules
are given in Figure 4. At the start of the restructuring
process, both modules exhibit communicational cohe-
sion. The modules are restructured into three modules
that exhibit functional cohesion, the strongest cohe-
sion level. The restructured modules should be easier
to understand, maintain, and reuse.

5 Related Work

Closely related work has focused on code-level cohe-
sion measures and restructuring based on code-level co-
hesion. Lakhotia uses the output variables of a module
as the processing elements of SMC Cohesion and de-
�nes formal rules for designating a cohesion level which

preserve the intent of the SMC Cohesion [9]. The asso-
ciative principles of SMC Cohesion are transformed to
relate the output variables based on their data depen-
dence relationships. A tool can automatically perform
the classi�cation. However, the technique can be ap-
plied only after the coding stage since it is de�ned upon
the implementation details.

Bieman and Ott develop cohesion measures that in-
dicate how close a module approaches the ideal of func-
tional cohesion [3]. Three measures of functional co-
hesion are based on \data slices" of a procedure and
satisfy the requirements of an ordinal scale. The func-
tional cohesion measures are formally de�ned, and co-
hesion measurement tools have been built. These mea-
sures also depend on the implementation details of a
module.

Kim, Kwon, and Chung introduce restructuring
methods where module strength (cohesion) is used as
a criterion to restructure modules [8]. A processing

blocks is a group of data tokens with data or control
dependence relationships with an output variable. A
rule recognizes `logically associated' module functions
which together depend on an output, and are consid-
ered a processing block. Unfortunately, logically as-
sociated functions cannot always be automatically de-
tected by analyzing program code.

Depending on its module strength, a module is re-
structured by either `separating' or `grouping'. A mod-
ule with low module strength is split into new modules,
while other modules are decomposed and the resulting
components are grouped into a package. The process
of making a package requires an understanding of both
module functions and design decisions.

Like our approach, module strength is used as a
criterion for software restructuring. However, Kim et
al de�ne cohesion based only on the code implemen-
tation. For restructuring, the measure computes the
average of the relatedness between processing blocks
rather than �nding the most weakly connected blocks.

Our approach is unique in that we use only design-
level information to determine the cohesion and re-
structuring options. Our design-level cohesion measure
quanti�es well-de�ned attributes in a consistent fash-
ion. Finally, our cohesion measure, cohesion model and
restructuring process can be automated.

6 Conclusions

We report the following progress towards improving
the ability to make objective software design decisions:

1. We de�ne the IODG model that represents a
design-level view of a module. The IODG is based
on the dependency relationships between module

DLC(Asum_Hsum
DLC(Fibo_Amean_Hmean

) = communicational cohesion
) = communicational

cohesion

DLC(Asum) = functional cohesion
DLC() = functional cohesionHsum

DLC(Fibo_Hmean
DLC(Fibo_Amean) = sequential cohesion

) = sequential cohesion

DLC(Asum) = functional cohesion
DLC() = functional cohesionHsum
DLC(Fibo_Amean_Hmean) =

communicational cohesion

n

fib_arr

arrn

l

d d

d

d

d

d

Fibo_Amean_Hmean

hmeanamean

d
d

Asum_Hsum

dd

Asum_Hsum

hsumasum

i i

i
i

arr

hsum

arrn

asum

n

fib_arr

amean hmean

Hsum

d

d

Asum

n

d d

dd

d d

d d

Fibo_Amean_Hmean

l

Hsum

i

i

Asum

di i

i

arrn

asum

arrn

hsum

n arr n arr

amean hmean

n

fib_arr

d

Asum

Hsum

d

Amean Hmean

d d

d d d d

d d

Asum Hsum
Fibonacci

i

i i

d di i
arrn

hsum

arrn

asum

amean

fib_arr

n

fib_arr

n

Hsum

d

d

Asum

i

i

Fibo_Amean

Asum

d

dd

d

d

dd

d

Fibo_Hmean

Hsum

hmean

d di i

i i

arrn arrn

amean hmean

n

fib_arr

d d

Amean HmeanFibonacci

i,d i,di { Fibo_Amean, Fibo_Hmean }

Asum Amean

Hsum Hmean

{Fibo_Hmean Fibo, Hmean

Fibo_Amean { Fibo, Amean

}

}

Fibo_Amean_Hmean

Asum_Hsum Asum, Hsum{ }
D2

D2

D3

D3

C2

C2

R6: Generate program code.

R2:

R1: Generate IODG’s.

R3:

R4:

R5:

Restructuring steps :

of Figure 1.
Program code

System1.4 System1.3

DLC of every module is functional cohesion.

DLC of every module is functional cohesion.

System1.1 System1.2

System1.5

R1 R2

R4

R3

R5

Program code
of Figure 4.

R6

Figure 3: Restructuring procedures Asum Hsum and Fibo Amean Hmean of Figure 1.

begin

 for i := 3 to n

 fib_arr[1] := 1;
 fib_arr[2] := 2;

end;

 fib_arr[i] := fib_arr[i-1]
 + fib_arr[i-2];

procedure Fibonacci

begin
 asum := 0;
 for i := 1 to n do begin
 asum := asum + arr[i];
 end;
 amean := asum / n;
end;

procedure Amean

begin

 for i := 1 to n do begin

 end;

end;

 hsum := 0;

 hsum := hsum + 1.0/arr[i];

 hmean := n / hsum;

procedure Hmean

var i, asum : integer;
 var amean : float);

 (n : integer;
 arr : int_array;

var i : integer;
 var fib_arr : int_array);
 (n : integer;

var i, hsum : integer;
 var hmean : float);

 (n : integer;
 arr : int_array;

Figure 4: Procedures produced after restructuring the procedures of Figure 1.

inputs and outputs. It can be used to graphically
visualize the design structure of a module.

2. We derive a design-level cohesion (DLC) measure
based on the IODG representation of module, and
we show that DLC is consistent with the intuition
provided by SMC Cohesion. The DLC measure
provides an objective criteria for evaluating and
comparing alternative design structures.

3. We de�ne eight basic restructuring operations
based on the IODG representation and the DLC
measure. We describe a process for applying the
restructuring operations to improve design of sys-
tem modules. We show that the restructuring pro-
cess can improve the design-level cohesion.

The IODG representation, the DLC measure, and
the restructuring process can be applied during soft-
ware design or maintenance. During design, IODG's
can be constructed from design information. Im-
plementation details are not needed. During main-
tenance, IODG's can be readily generated using a
compiler-like code analysis tool. Such a tool can
be used to recapture designs from existing, possibly
legacy, systems. The DLC measure can be easily com-
puted once an IODG is generated either from a design
or an implementation.

References

[1] A. Albrecht and J. Ga�ney. Software function,
source lines of code, and development e�ort pre-
diction. IEEE Trans. Software Eng., SE-9(6):639{
648, June 1983.

[2] A. Baker, J. Bieman, N. Fenton, D. Gustafson,
A. Melton, and R. Whitty. A philosophy for
software measurement. J. Systems & Software,
12(3):277{281, July 1990.

[3] J. Bieman and L. Ott. Measuring functional
cohesion. IEEE Trans. Software Engineering,
20(8):644{657, Aug. 1994.

[4] S. Chidamber and C. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Software

Engineering, 20(6):476{493, June 1994.

[5] N. Fenton. Software Metrics - A Rigorous Ap-

proach. Chapman and Hall, London, 1991.

[6] N. Fenton. Software measurement: a necessary
scienti�c basis. IEEE Trans. Software Engineer-

ing, 20(3):199{206, 1994.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns Elements of Reusable

Object-Oriented Software. Addison-Wesley 1995.

[8] H-S Kim, Y-R Kwon, and I-S Chung. Restruc-
turing programs through program slicing. Int. J.
Software Engineering & Knowledge Engineering,
4(3):349{368, Sept. 1994.

[9] A. Lakhotia. Rule-based approach to computing
module cohsion. Proc. 15th Int. Conf. Software

Eng., pp. 35{44, 1993.

[10] T. McCabe. A complexity measure. IEEE Trans.

Software Engineering, SE-2(4):308{320, 1976.

[11] W. Stevens, G. Myers & L. Constantine. Struc-
tured design. IBM Sys. J., 13(2):115{139, 1974.

[12] M. Woodward. Di�culties using cohesion and
coupling as quality indicators. Software Quality

J., 2(2):109{127, June 1993.

[13] H. Zima & B. Chapman. Supercompilers for Par-
allel & Vector Computers. Addison-Wesley 1991.

