
Predicting Availability of Systems using BBN in Aspect-Oriented Risk-Driven
Development (AORDD)

Siv Hilde Houmb
Department of Computer Science and Information Science

Norwegian University of Science and Technology
Sem Selands Vei 7-9, NO-7034 Trondheim, Norway

sivhoumb@idi.ntnu.no

Geri Georg, Robert France, Raghu Reddy, and James Bieman
Software Assurance Laboratory

Department of Computer Science, Colorado State University
601 S. Howes St., Fort Collins, CO 80523-1873
(georg/france/raghu/bieman)@CS.colostate.edu

Abstract

Several standards exist that target security assessment
and certification. However, these standards support quali-
tative evaluation according to predefined security levels. To
trade-off between treatment strategies, we also need quan-
titative estimates of operational security. Quantitative eval-
uation, such as probabilistic analysis, is frequently used
within the dependability domain. The need to quantify se-
curity attributes has recently been raised. This relates both
to security requirements in Quality of Service (QoS) archi-
tectures, and input requirements to trade-off decisions re-
garding the design and choice of security mechanisms. To
measure and make trade-off decisions regarding security
mechanisms, we separate treatments from the primary func-
tionality model, and model treatment strategies as aspects
using Aspect-Oriented Modeling (AOM). In this paper, we
develop a Bayesian Belief Network (BBN) based prediction
system for estimating system availability. Availability is es-
timated using the variables mean time to mis-use (MTTM),
mean effort to mis-use (METM), impact of misuse (MI),
and frequency of misuse (MF). Misuses are addressed using
treatment strategies. The quality of treatment strategies is
estimated using the variables treatment cost (TC) and treat-
ment effect (TE).
Keywords:Security management, prediction system, trade-
off analysis, BBN, and AOM

1 Introduction

In security management there is no single correct soft-
ware design solution, rather choices and trade-offs. Fur-
thermore, the multidisciplinary nature of these choices in-
volves trade-off among conflicting objectives. This means
that we need techniques to rank available solutions. The
Aspect Oriented Risk Driven (AORDD) Bayesian Belief
Network (BBN) based cost-benefit trade-off analysis pro-
vides decision support for resolving conflicts, by computing
the Return of Security Investment (RoSI) for each solution.
In the context of this paper we are looking into treatment
strategies, which are solutions to misuses. We make use
of Aspect Oriented Modeling (AOM), and model treatment
strategies as aspects to separate security concerns from the
primary model. This makes it easy to swap treatment solu-
tions in and out when computing RoSI.

To compute RoSI and rank the different solutions we
need to specify misuses and solutions in terms of quality at-
tributes. Quality attributes are non-functional requirements,
such as requirements related to the reliability, availability,
safety, and security [19] of a system. In the context of this
paper we build a prediction system to estimate the avail-
ability of a system, as part of a estimation repository in the
AORDD framework.

The paper is structured as follows. Section 2 gives an
overview of related work. Section 3 gives a brief descrip-
tion of the AORDD framework, while Section 4 presents
the prediction system for system availability. Section 5
presents the BBN topology, which is the implementation
of the prediction system. Section 6 presents the information

bieman
To appear in Proc. Symp. on Risk Management and Cyber-Informatics (RMCI 2005).

sources for quantifying variables used to predict availabil-
ity. Section 7 gives an example of the approach using the
e-commerce platform ACTIVE. We conclude the paper by
looking into some of the problems with the approach, as
well as presenting further work.

2 Related work

In Littlewood et al. [20] a first step towards operational
measures of computer security is discussed. The authors
point to the lack of quantitative measures for determining
operational security, and relate security assessment to tradi-
tional probability theory. They make use of knowledge from
the dependability domain, and re-define the input space and
usage environment of this domaine to include intentional
attacks posed upon the system. Furthermore, Ortalo et al.
[23] present a quantitative model to measure known Unix
security vulnerabilities using a privilege graph, which is
transformed into a Markov chain. The model allows the
characterization of operational security to be expressed as
mean effort to security failureas proposed in Littlewood et
al.

Madan et al. [21] consider security to be a Quality of
Service (QoS) attribute and, based on ideas from Little-
wood et al. [20], they present an approach to quantify se-
curity attributes of intrusion-tolerant software systems us-
ing stochastic modeling techniques. Wang et. al. [35] ex-
tend the state transition approach of Mandan et al. They
present the difficulty of capturing details of real architec-
tures in manually constructed Markov models, and advocate
the use of Stochastic Petri Nets (SPN). A similar approach
is used in Singh et al. [28], who describe an approach for
probabilistic validation of an intrusion-tolerant replication
system. Here, a hierarchical Stochastic Activity Nets (SAN)
model is used to validate intrusion-tolerant systems and to
evaluate the merits of various design choices.

Jonsson and Olovsson [18] present a quantitative analy-
sis of attacker behavior based on empirical data collected
from intrusion experiments performed by undergraduate
students at Chalmers University in Sweden. The results of
the experiment show that a typical attacker behavior com-
prises three phases; the learning phase, the standard attack
phase, which appears to be exponentially distributed, and
the innovative attack phase.

Our approach is based on the initial concepts discussed
in Littlewood et al. [20] and adopted in Madan et al. [21].
We model security risk as a random process, and base our
analysis on the concepts of stochastic modeling, and in par-
ticular Markov analysis, as presented by Madan et al. [21],
Ortalo and Deswarte [23], and Jonsson and Olovsson [18].
We use aspects to model treatment strategies in order to sep-
arate concerns and ease trade-off analysis by making it eas-
ier to incorporate different security treatments into the sys-

tem under consideration. We also discuss how to combine
empirical data and subjective expert judgment when pre-
dicting availability.

3 AORDD Framework

The AORDD framework combines risk-driven develop-
ment (RDD) [30] with aspect-oriented modeling (AOM)
[9]. The framework consists of the AORDD process [12],
an iterative development process, a security treatment as-
pect repository, an estimation repository, rules for how to
annotate UML models with information used for estima-
tion, a BBN- based cost-benefit trade-off analysis, and rules
for how to transfer information from the annotated UML
models into the BBN topology. In this paper we focus on
estimation, and in particular how to measure availability.
We also describe how to apply the information as input to
the BBN topology.

Figure 1 gives an overview of the activities in the
AORDD cost-benefit trade-off analysis. Whenever a deci-
sion request is initiated, the composer integrates the aspect
models with the primary model. Then the prediction man-
ager examines the composed model. The main task for the
prediction manager is to identify the type of system, and
the quality attributes that need to be provided to the BBN.
These variables are provided as annotations in the UML
models. The appropriate estimation set is requested from
the repository, and fed into the BBN topology. The BBN
topology is the implementation of the trade-off analysis.
The estimation repository is connected to the security treat-
ment aspect repository, where the aspect models are stored.
Furthermore, for both repositories we have company con-
fidential and public versions. These two repositories are
updated whenever new information is available.

4 Prediction system for availability

Availability is the property of being accessible and us-
able upon demand by an authorized entity [14]. This means
that system assets should be available to the proper system
user upon request. It also means that system assets should
not be available to a non-user upon request. To describe
availability we need to specify not only expected system be-
havior, the services that the system delivers to the environ-
ment, but also the system’s ability to resist external faults,
and in particular intentional faults [16]. Figure 2 gives an
overview of the relations between requests and preservation
of system availability.

This model of availability is based on work by Laprie
[19] and Jonsson [16]. Afault occurs when user or non-
user input causes an error in the system. Afailure is defined
as an undesirable state. A failure may lead to degradation
of a system service, and thereby reduce system availability.

Decision request

Composer
 Prediction

Manager

Estimation

repository

BBN topology

(trade
-
off)

Aspect model
 Primary model

1

2a
2b
 3

4

5
 6

7
8

9

10

Decision request
Decision request

Composer
Composer
 Prediction

Manager

Prediction

Manager

Estimation

repository

Estimation

repository

BBN topology

(trade
-
off)

BBN topology

(trade
-
off)

Aspect model
 Primary model

1

2a
2b
 3

4

5
 6

7
8

9

10

Figure 1. Overview of the activities of the
AORDD cost-benefit trade-off analysis

USER

NON-USER

USER

NON-USER

SYSTEM

request

request

availability

availability

environmental influence:

fault introduction

system behaviour:

delivery-of-service

denial-of-service

Figure 2. Effect of environmental and internal
influence on the system

We measure availability using service levels [17], which
is modeled using continuous-time Markov chains [34]. A
service level is defined as a group of system states, each
denoting a specified degree of normal system accomplish-
ment. The service levels are dependent on the design and
implementation of the system (structure of the system), as
well as on the application of the system; how the system
is used. A degraded service delivered by a system may be
regarded as a full service in a certain application, or by a
certain user. Service levels are therefore domain and stake-
holder specific.

The highest service level isservice level 0 (SL0), or full
service level. This level is comprised of system states that
describe the complete fulfillment of all requirements in the
specification, and at the same time preserve availability; the
fully operational states. The lowest service level isservice
level x (SLx), or no service level. This level is comprised of
states where the system does not deliver any service to the
user, or delivers service to the non-user, which means that
the system availability is compromised. In security critical
systems some failures are more serious than others, imply-

ing severe economic loss. These failures are denoted catas-
trophic. Such failures are modeled asservice level x (SLx),
no service level, and treated separately using fail safe states.
The fail safe state for the example, given in Section 7, is
that whenever a catastrophic failure occurs, the system is
shut down. An example of a catastrophic failure is when
a non-user has gained full access to the system. We also
describe levels between these two service levels, each de-
noting different degraded operational states.

Service levels depend on system states and we model the
behavior of the system, including the identified mis-uses, as
a state transition diagram. Operational states (normal sys-
tem behavior) are modeled as normal behavior states (NB),
and states associated with a misuse are modeled as misuse
states (MU). Each state in the state diagram is annotated
with the type of state and the service level to which it be-
longs. Figure 3 shows a general example of a state transi-
tion diagram, while Figure 4 depicts the related state tran-
sition matrix. Both figures use the NB, MU, and FS state
name notation. The matrix in Figure 4 shows transition
probabilities from each state to every other state in the sys-
tem.

NB
-
1
 NB
-
2
 NB
-
3

MU
-
a
 MU
-
c

{SL=k+1}
 {SL=k+2}

<<
mis
-
use state>>
 <<
mis
-
use state>>

{SL=0}

<<normal behavior state>>

{SL=0}

<<normal behavior state>>

{SL=0}

<<normal behavior state>>

MU
-
b

{SL=x
-
1}

<<
mis
-
use state>>

FS
-
1

{SL=x}

<<fail safe state>>

NB
-
1
 NB
-
2
 NB
-
3

MU
-
a
 MU
-
c

{SL=k+1}
 {SL=k+2}

<<
mis
-
use state>>
 <<
mis
-
use state>>

{SL=0}

<<normal behavior state>>

{SL=0}

<<normal behavior state>>

{SL=0}

<<normal behavior state>>

MU
-
b

{SL=x
-
1}

<<
mis
-
use state>>

FS
-
1

{SL=x}

<<fail safe state>>

Figure 3. State transition diagram

Transitions between states can be modeled using any set
of UML diagrams, given that the UML diagrams are anno-
tated appropriately. As shown in the example in Section 7,
we compute the transition probabilities and associated qual-
ity attributes (in this case the quality attribute availability)
using sequence diagrams.

4.1 Computational procedure for availability

The first step in the computational procedure is to define
the service levels, along with specifying those functions or

To State

Normal behaviour

states

 Mis
-
use states

 Fail safe states

 NB
-
1

 NB
-
2

 NB
-
x

 MU
-
a

 MU
-
x

 FS
-
1

 FS
-
x

NB
-
1

 0

 P
12

 P
1x

 P
1a

 P
1x

 P
1FS1

 P
1FSx

NB
-
2

 P
21

 0

 P
2x

 P
2a

 P
2x

 P
2FS1

 P
2FSx

..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

Normal

behaviour

states

NB
-
x

 P
x1

 P
x2

 0

 P
xa

 P
xx

 P
xFS1

 P
xFSx

MU
-
a

 0

 0

 0

 0

 P
ax

 P
aFS1

 P
aFSx

Mis
-
use

states

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

FS
-
1

 0

 0

 0

 0

 0

 0

 0

..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

F
ro

m
 S

ta
te

Fail safe

states

FS
-
x

 0

 0

 0

 0

 0

 0

 0

Figure 4. State transition matrix

sub-services that belong to each level. The second step in-
cludes the construction of a availability state transition di-
agram for each failed service level. This implies modeling
the system behavior using annotated UML interaction di-
agrams and the system architecture, including hardware as
well as software, using annotated UML structural diagrams.
In the third step, failure rates, for all the transitions in the
availability transition diagram, are calculated by compiling
the influence of the various faults, and then integrating them
for each service level. In security critical systems failure
rates for each level are not constant, but are rather functions
over time.

4.2 Definition of the availability prediction system

We model the state of a system as a continuous-time
Markov process,{Xt}t≥0, with a finite state spaceE, in
which each service level,SLn, can be identified with a sub-
set of states inE. Thus,E is the disjoint unionSL0 + ...
+ SLx, wherex is the number of service levels. Further-
more, service levels0,...,kcorrespond tooperational states
O; states giving the minimum required availability for the
system, in the sense that the system delivers a full or de-
graded service to the user. Service levelsk+1,...,xdenotes
the failed states. That is,E = O + F where,O = SL0+ ...
+SLkandF = SL(k+1)+ ... +SLx.

Transitionsi → j have intensityλij (i,j ε E, i 6= j). The
initial probability P (X0 = i) is denoted byπi. In most
situations, the system will always start in a fixed statei0 so
that:πi = 1 for j = i0 and 0 forj 6= i0.

We assume that the system starts at the highest service
level; i0 ε SL0. Transitions between operational states rep-
resent degradations, and transitions to a failed state repre-
sent failures. We do not consider repair or online implemen-
tation of treatment strategies (such as dynamic allocation of
treatments), meaning that no transitions take place from a
failed state;λfj = 0 for f ε F and allj ε E. Failed states are
absorbing.

For an acyclic Markov state graph (meaning that a state
can only be visited once) the mean time to mis-use, MTTM,
is given by the sum of the mean sojourn times in the states
leading to the target, weighted by the probability of visiting
these states. The mean sojourn time in state j, denoted as
Tj , is given by the inverse of the sum of state j‘s output
transition rates:Tj = 1/λ. MTTMi = Ti +

∑
lεout(i) Pil

* MTTMil ; Pil = λil * Ti, where i is the initial state and
l is the target state. The mean effort to misuse, METM;
METMi = Ei +

∑
lεout(i) Pil * METMil ; Pil = λil *

Ei, whereEi is the sojourn effort spent in state i.
For a set of n states system availability is given as SA =∫

1≤SLn≤x (
∫

0≤i≤k (MTTMi + METMi di +
∑

0≤i≤k

MFi|MTTMi, METMi, TEi +
∑

0≤i≤k MIi|TEi),
where MF is misuse frequency and TE is treatment effect.
When doing trade-off between treatment strategies we also
need to take treatment cost, TE, into account. This is mea-
sured using Return of Security Investment, RoSI; ROSI
= TC *

∫
1≤SLn≤x (

∫
0≤i≤k MTTMi + METMi di

+
∑

0≤i≤k MFi|MTTMi, METMi, TEi +
∑

0≤i≤k

MIi|TEi).
Please note that the method is based on a pre-defined set

of service levels (see Section 4.1), and a set of correspond-
ing failure rates estimating the rate of transitions between
levels. These sets are further explored in the next sections.

5 Implementing the availability prediction
system using BBN

To predict availability we need information on which to
base estimates. There are rarely sufficient amounts of em-
pirical data available, so we extend the method with tools
to reason under uncertainty. We also need to combine dis-
parate information sources for assessing the quality of treat-
ment strategies in terms of RoSI, and to compute the system
availability.

BBN have proven to be a powerful technique for reason-
ing under uncertainty, and have been successfully applied to
the assessment of system safety [5], [6], [7], [27], [33], and
[8]. The BBN methodology [26] is based on Bayes rule.
HUGIN [13] is the leading tool supporting BBN.

Bayes rule calculates conditional probabilities. Given
the two variables X and Y, the probabilityP for the
variable X given the variable Y, can be calculated from:
P(X|Y)=P(Y|X)*P(X)/P(Y). By allowing Xi to be a com-
plete set of mutually exclusive instances of X, Bayes for-
mula can be extended to calculate the conditional proba-
bility of Xi given Y. A BBN is a connected and directed
graph consisting of a set of nodes and a set of directed arcs
(or links). Nodes are defined as stochastic or decision vari-
ables, and multiple variables may be used to determine the
state of a node. Each state of each node is expressed us-
ing probability density. The probability density expresses

our confidence to the various outcomes of the set of vari-
ables connected to a node, and depends conditionally on
the status of the parent node at the incoming edges. For
more information on BBN and variables in BBN the reader
is referred to [15].

Figure 5 presents a portion of the BBN topology for
assessing system availability based on treatment strategies.
Note that this is just a small part of the complete BBN for
computing RoSI, which represents the implementation of
the availability prediction system. The decision variables
are mean time to mis-use (MTTM), mean effort to mis-
use (METM), and treatment effect (TE). These variables
affect state nodes mis-use frequency (MF) and mis-use im-
pact (MI). The resulting states of these nodes are combined
with TE using a BBN utility node (SAutility) and are also
used to calculate the value of the node of interest, system
availability (SA).

Treatment effect (TE) is related to misuse impact (MI)
and frequency (MF). We can impact TE in three ways; by
reducing MI, reducing MF, or both. To calculate a reduc-
tion in MI we estimate the effect using the same unit as for
misuse impact, e.g. asset value loss for MI and asset value
regain for TE, or by using a qualitative scale such as low,
medium, and high. The main asset in the example is the
availability of the system, and MI and TE are estimated in
terms of loss and regain of system availability. The change
in system availability does therefore need to be included in
the definition of the different service levels. When calcu-
lating a reduction in MF the values are given as reduced
frequency or probability, depending on the unit used to de-
scribe misuse frequency. Treatment cost represents the esti-
mated cost to implement the treatment strategy. This cost is
not shown in the BBN fragment of Figure 5. In the exam-
ple of Section 7 we estimate cost as economical expenses,
but one may also use other value types, such as resources
or time to implement the treatment during development or
system downtime, if the system is a running system. BBN
has the ability to use different units for different values, as
long as their relations are defined; the conditional probabil-
ities, e.g. P((MF=high)=0.8|METM=low, MTTM ¡ 1 hour,
TE=none).

Misuse frequency depends on the time and effort to mis-
use and the treatment effect (MF|MTTM, METM, TE).
MTTM and METM are based on the model for quantifica-
tion of security attributes in software systems as discussed
by Mandan et al. [21] and Wang et al. [35]. Mandan et
al. [21] measure these two variables using stochastic pro-
cesses, a semi-Markov process, since the time and effort
distribution may be non-exponential (a novice attacker uses
more effort and time before a successful attack). It should
also be noted that an attacker may not always be success-
ful in causing a misuse, i.e., probability of success≤ 1.
Jonsson and Olovsson [18] describe an attack using three

phases; learning phase, standard attack phase, and innova-
tive attack phase. Time and effort between successful at-
tacks are shown to be exponential for the standard attack
phase (standard attacks for an average attacker). In this pa-
per we only consider the standard attack phase, and assume
an exponential distribution between misuses (successful at-
tacks), as given in Section 4.2.

6 Information sources

Since there are limited amount of relevant empirical data
available for the variables MI, MF, and TE, we need to com-
bine information sources and reason under uncertainty us-
ing the BBN topology. We have two main types of informa-
tion sources for misuse and treatment variable estimation;
empirical or observable information (“objective) and sub-
jective expert judgments.

6.1 Empirical or observable information sources

One type of observable information source is real-time
information sources, such as Intrusion Detection Systems
(IDS) and honeypots [29]. Other observable information
sources are company experience repositories, public repos-
itories, and experience from similar systems. Examples of
public repositories are the quarterly reports from Senter for
Informasjonssikkerhet (SIS) in Norway, CERT.com, reports
from the Honeynet-project [31], and other attack trend re-
ports.

Another type of empirical source is available When us-
ing information from similar systems. In this case we use
experts to reason about system differences and their effect
on the configuration being assessed. The result of this rea-
soning is documented as annotated UML models, and a
document describing the experts and their discussion of the
provided opinions. This process is formalized using a doc-
umentation template.

6.2 Subjective expert judgments

The two most common expert collections methods were
developed by RAND; the scenario method and the Delphi
method [22]. A problematic aspect with the Delphi method
is that the result from the expert judgments represents their
agreed upon values, rather than aggregated and traceable
individual values. When estimating misuse impact (MI),
treatment strategy effect (TE), and cost (TC) we need to
make use of experts with different knowledge domains, as
illustrated in Figure 6.

Figure 5. BBN topology for assessing system availability

Domain Expert
 B

Domain Expert
 A

Domain Expert
 C
 Domain Expert
 D

Overlapping
knowledge
A
n
B

Overlapping
knowledge
B
n
D
Overlapping
knowledge
 A
n
C

Overlapping
knowledge
C
n
D

Overlapping
knowledge
 A
n
B
n
C

Overlapping
knowledge
 A
n
C
n
D

Overlapping
knowledge
A
n
B
n
D

Overlapping
knowledge
B
n
C
n
D

Overlapping
knowledge
 A
n
B
n
C
n
D

Domain Expert
 B

Domain Expert
 A

Domain Expert
 C
 Domain Expert
 D

Overlapping
knowledge
A
n
B

Overlapping
knowledge
B
n
D
Overlapping
knowledge
 A
n
C

Overlapping
knowledge
C
n
D

Overlapping
knowledge
 A
n
B
n
C

Overlapping
knowledge
 A
n
C
n
D

Overlapping
knowledge
A
n
B
n
D

Overlapping
knowledge
B
n
C
n
D

Overlapping
knowledge
 A
n
B
n
C
n
D

Figure 6. Relation between domain expert
knowledge

7 Predicting availability of ACTIVE

The e-Commerce platform ACTIVE [1] consists of a
web server running Microsoft Internet Information Server
(IIS), an Java application server (Allaire JSP Engine), and a
database server running Microsoft SQL Server.

The IST EU-project CORAS [4] performed three risk
assessments of ACTIVE in the period 2000–2003. The
project looked into security risks of the user authentifica-
tion mechanism, secure payment mechanism, and the agent
negotiation mechanisms of ACTIVE. In the context of this
paper we will use the results from the risk assessment of the
user authentification mechanism.

To access any of the services in ACTIVE, users must
either login as a registered user or a visitor. The authen-
tification mechanism is a cross-cutting concern and can be
viewed separately from the main functionality of the AC-
TIVE platform. We term this main functionality as the pri-
mary model [11].

One of the misuse types identified for the authentifica-
tion mechanism was different types of denial of service
(DoS) attacks, and in particular TCP-SYN flooding [3] and
IP spoofing attacks [2]. Service levels used are; SL0, SL1,

SL2, SL(x-1), and the fail safe service level SLx. SL0 de-
notes the set of states describing a full operational system.
SL1 denotes the set of states with degraded availability for
users, and no access to services for non-users. SL2 denotes
a further degradation in the services provided to users, and
still no access for non-users. In our example, SL(x-1) de-
notes the set of services where there is no availability of
services for users, as well as no access to services for non-
users. SLx denotes the set of fail safe states. For this exam-
ple we have one fail safe state FS-1; full access to services
for non-users and the system is taken offline.

Figure 7 depicts a UML sequence diagram of the orig-
inal login sequence for ACTIVE using a TCP connection.
The sequence diagram has been annotated to include avail-
ability variables for the TCP connection setup service. The
highest level of service begins at the top left of the dia-
gram, and ends with the return of a login page from the e-
commerce system web server. The level of service is given
in terms of the physical deployment. Thus, if the client and
server are connected over a LAN the level of service will
be SL0. However if the client and server communicate over
internet or a dial-up connection, the service will be some-
what degraded, to SL1. (These service levels are defined in
an associated deployment diagram, which is not included in
this paper due to space constraints.)

The degraded service, where service is not available to
users or to non-users, begins at the ’else’ clause in the
NetworkStack-Server, when the data structures for partially
opened TCP connections have been filled. At this point, no
more connections can be accepted, with the result that no
one can gain new access to the system. This is service SL(x-
1). The service ends when an error is returned to the web
client. The availability variables associated with the ser-
vice level are shown to the right of the ’else’ guard. These
variables are shown as an instance in an array of possible
expert data. In this example, information from the ith ex-
pert is shown in the figure. Since the data is stored in an

:WebBrowser
 :WebServer
NetworkStack-Client
 NetworkStack-Server

requestLoginPage (IPaddrWebServer)

SYN (IPaddrWebServer)

pendingConnections = addToPendingConnections (IPaddrWebClient)

[pendingConnections < filled]

denyConnection (IPaddrWebClient)

[else]

removeAsPending (IPaddrWebClient)

SYN-ACK (IPaddrWebClient)

requestLoginPage (IPaddrWebClient)

{loginService.serviceLevel0 =

physicalConnection.defaultServiceL

evel, start}

{loginService.serviceLevel(x-1) = SL(x-1), start}

{loginService.serviceLevel(x-1)[i].probability = 0.4}

{loginService.serviceLevel(x-1)[i].MTTM = 0.12 * sizeof

(pendingDataStructure)}

{loginService.serviceLevel(x-1)[i].METM = 0.0002 * sizeof

(pendingData Structure)}

{loginService.serviceLevel(x-

1), end}

alt

returnLoginPage (IPaddrWebClient)

loginPage

ACK (IPaddrWebServer)

error

{loginService.serviceLevel1, end}

{logicService.serviceLevel1[i].

probability = 0.6}

{SL0.availability > SL1.availability}

{SL(x-1).availability = 0}

returnLoginPage (IPaddrWebClient)

Figure 7. Login service using a TCP connection

array, the information from different experts can be com-
bined according to averages, a weighting scheme or other
types of algorithms, before it is used in a BBN computa-
tion. The variables are the probability that the attack will
occur (given as 0.4), the time needed to reach a successful
attack, and the effort needed to reach a successful attack.
The two last variables are given in terms of the number of
connections that the server can handle. Based on honey-
pot observations of a prototype of the e-commerce system,
we assume the server can handle up to 1000 simultaneously
TCP connections. We set the time to a successful attack to
0.12 times the number of connections the server can handle,
and the effort as 0.0002 times the number of connections.
We thus annotate the diagram based on empirical data from
the honeypot.

There are several available treatment strategies for the
misuse TCP-SYN flooding. One possible treatment strategy
is a patch to the network stack software that adds another
message layer once the partial connection data structures
becomes close to full. In this situation, a cookie is sent to
the client and the pending connection is removed from the
data structure. If the client does not respond within a short
period of time, the cookie expires and the client must re-
start the request for a connection. If the client responds in

time the SYN-ACK message is sent, and the connection is
set up. Adding the cookie message makes it unlikely that
an attacker can respond in time, and if the client address
has been spoofed, the client will not respond in any event.
In both cases, the cookie will expire on the server, without
taking up any storage in the pending connections data struc-
tures. Thus, these structures will not fill due to flooding and
cause a failure in the delivery of the service. This treatment
sequence can be composed with the original login sequence
to produce a model of the protected system. This composi-
tion is shown in Figure 8.

The woven model is also annotated with service avail-
ability variables. As before, the highest service level begins
at the upper left corner of the sequence. It ends at the bot-
tom left corner of the sequence, when the client receives a
login page. The highest level of service is given in terms of
the physical connection between the client and server.

The degraded service level begins when the pending con-
nection data structure is close to full, and ends when the
client receives a login page. The degraded service level is
given in terms of the original highest service level. The de-
graded service availability variables are shown to the right
of the guard that starts the degraded service. Again, they are
shown as an instance of an array, so that the variables for

:WebBrowser
 :WebServer
NetworkStack-Client
 NetworkStack-Server

requestLoginPage (IPaddrWebServer)

SYN (IPaddrWebServer)

pendingConnections = addToPendingConnections (IPaddrWebClient)

[pendingConnections =

closeToFilled]

cookieRequest (clientCookie)

removeAsPending (IPaddrWebClient)

SYN-ACK (IPaddrWebClient)

removeSyn (IPaddrWebClient)

cookieResponse (clientCookie)

addToPendingConnections (IPaddrWebClient)

ACK (IPaddrWebServer)

returnLoginPage (IPaddrWebClient)

loginPage

alt

{loginService.serviceLevel0 =

 physicalConnection.

defaultServiceLevel.start}

{loginService.serviceLevel1 = physicalConnection.defaultServiceLevel + 1, start}

{loginService.serviceLevel1[j].probability = 0.4}

{loginService.serviceLevel1[j].MTTM = 0.12 * closeToFilled}

{loginService.serviceLevel1[j].METM = 0.0002 * closeToFilled}

{loginService.serviceLevel0, end}

{loginService.serviceLevel0[j].

probability = 0.6}

{loginService.serviceLevel1, end}

{SL0.availability > SL1.availability}

{SL(x-1).availability = 0}

[else]

[pendingConnections = Filled]

denyConnection (IPaddrWebClient)
error
 {loginService.serviceLevel(x-1) = SL(x-1), start}

{loginService.serviceLevel(x-1)[i].probability = 0.005}

{loginService.serviceLevel(x-1)[i].MTTM = 0.001 * sizeof (pendingDataStructure)}

{loginService.serviceLevel(x-1)[i].METM = 0.000001 * sizeof (pendingData Structure)}

{loginService.serviceLevel(x-1),

end}

[else]

alt

returnLoginPage (IPaddrWebClient)

requestLoginPage (IPaddrWebClient)

Figure 8. Woven “OS·· patch aspect model and primary model

multiple experts can be included in the BBN computations.
The availability variables are similar to the values as in the
original login service sequence depicted in Figure 7, since
the attack is the same. One difference is that the number
of connections that are needed before the service degrades
is based on the limit ’closeToFilled’. Another difference is
that the service level only degrades once this threshold has
been reached. The service does completely fail if the data
structure for partially opened TCP connections is full. This
case will not occur because of a flooding attact, so the vari-
ables associated with this failure are much lower than in the
unprotected sequence shown in Figure 7.

7.1 Information sources used for predicting avail-
ability

Information sources used for estimating availability in-
clude log files from a honeypot configured with Honeyd
[32]. Honeyd simulated Windows NT 4.0 server with In-
ternet Information Server 4.0 (IIS) [24]. As a second layer

of logging we used the Network IDS version of Snort.
In this example, we will only look at connection attempts

to TCP port 80, which is intended for the IIS server. Dur-
ing a period of 24 hours Snort detected 470 different IP-
addresses trying to open connections to port 80, which gives
470/24=19,8 attack tries per hour. This was done by pene-
trating the network sending SYN requests to ranges of IP-
addresses. In this case we are most interested in the at-
tack attempts where outsiders sent several SYN requests to
the same source. 140 of the 470 IP-addresses sent a se-
ries of SYN requests to the same source within 24 hours,
which gives 140/24=5,8 SYN flooding attack tries per hour.
2 of the attack tries was successful, which gives MTTM=12
hours. The mean attack time for the successful attacks
where; METM=0,2 hours.

7.2 Computing system availability using BBN

Recall the BBN topology from Section 5. To compute
system availability for the treatment strategy “OS patch”

we insert the annotated information from the UML se-
quence diagram modeling the composed treatment and pri-
mary model for “OS patch” (see Figure 8). Figure 9 shows
a portion of the BBN that computes system availability of
“OS patch” with the annotated information.

We have made a few simplifications and used qualitative
scales; low, medium, and high for MI and MF, and none,
low, medium, and high for TE. The translation scale used
for MF is; low=0.0-0.4, medium=0.4-0.8, and high=0.8-1.0.
In order to illustrate the use of the BBN topology we as-
sumes that MTTM=12 hours equals medium on the quali-
tative scale, and that METM=0,2 hours equals low on the
qualitative scale.

8 Conclusion and further work

The second-generation honeynet, GENII, has the possi-
bility to provide real-time and realistic empirical data both
during the development and maintenance of a system. By
configuring the Honeynet with the current design and so-
lutions, we can test the current design for possible vulner-
abilities, as well as assessing the effect of different treat-
ment strategies. When doing trade-off between treatment
strategies, GENII has the possibility to collect estimates
by configuring the Honeynet using one treatment strategy,
record data, and then swap treatment strategy and record
data. This can also be automated and connected directly
with the BBN topology. By preparing a set of configura-
tions for the different treatment strategies, the Honeynet is
configured automatically using a predefined time interval.
The data recorded by the log-files is examined and inserted
into the appropriate observable nodes in the BBN topology,
which then computes the RoSI for each treatment strategy.
However, the quality of the data collected depends on the
quality of the filtering mechanism in the Honeynet, the Hon-
eywall, which distinguishes authorized use from unautho-
rised use. This is further discussed by Ostvang [25].

In this paper we have focused on building a prediction
system for estimating the availability of a system. To com-
pute RoSI for treatment strategies, or to assess the overall
security level of a system, one needs to include more qual-
ity attributes in the prediction system. Laprie [19] describes
trustworthiness of a system using a dependability frame-
work. Dependability is described by four basic attributes;
reliability, availability, safety, and security. These four at-
tributes are primary related to non-degradable systems. Jon-
sson [16] extends the dependability framework to include
security specific attributes, and in particular effects of ac-
tivities from non-users. Further work includes extending
the estimation repository of AORDD to include the quality
attributes described in [16].

When assessing treatment strategies or the availability
of a system, we need to combine disparate information

sources and aggregate expert opinions. There exist a set
of methods to assess safety of software systems using BBN
[10]. Further work includes looking into how to utilize BBN
for aggregating expert opinions and combining information
sources for RoSI.

References

[1] EP-27046-ACTIVE, Final Prototype and User Manual,
D4.2.2, Ver. 2.0, 2001-02-22., 2001.

[2] CERT Advisory CA-1995-01. Ip spoofing attacks and hi-
jacked terminal connections, September 1997. CERT Co-
ordination Centre, http://www.cert.org/advisories/CA-1995-
01.html.

[3] CERT Advisory CA-1996-21. Tcp syn flooding and ip
spoofing attacks, November 2000. CERT Coordination Cen-
tre, http://www.cert.org/advisories/CA-1996-21.html.

[4] CORAS (2000–2003). A platform for risk anal-
ysis of security critical systems. IST-2000-25031,
http://www.sourceforge.net/coras/, 29. November 2004.

[5] P.-J. Courtois, N. E. Fenton, B. Littlewood, M. Neil, L. St-
rigini, and D. R. Wright. Bayesian belief network model
for the safety assessment of nuclear computer-based sys-
tems. Second year report part 2, Esprit Long Term Research
Project 20072-DeVa, 1998.

[6] K. Delic, M. Mazzanti, and L. Stringini. Formilizing engi-
neering judgment on software dependability via belied ne-
towrks. InDCCA-6, Sixth IFIP International Working Con-
ference on Dependable Computing for Critical Applications,
”Can We Rely on Computers?”, Garmisch-Partenkirchen,
Germany, 1997.

[7] N. Fenton, B. Littlewood, M. Neil, L. Strigini, A. Sutcliffe,
and D. Wright. Assessing dependability of safety critical
systems using diverse evidence.IEEE Proceedings Software
Engineering, 145(1), 1998.

[8] N. Fenton and M. Neil. A critique of software defect pre-
diction models.IEEE Transaction of Software Engineering,
25(5):675–689, 1999.

[9] G. Georg, R. France, and I. Ray. An aspect-based approach
to modeling security concerns. InWorkshop on Critical Sys-
tems Development with UML (CSDUML’02). Dresden, Ger-
many, October 2002.

[10] B. A. Gran. The use of Bayesian Belief Networks for com-
bining dispparate sources of information in the safety as-
sessment of software based systems. Doxtoral of engineer-
ing thesis 2002:35, Department of Mathematical Science,
Norwegian University if Science and Technology, 2002.
2002:35.

[11] S. H. Houmb, G. Georg, R. France, J. Bieman, and J. Jürjens.
Cost-benefit trade-off analysis using bbn for aspect-oriented
risk-driven development. InAccepted for the International
Conference on Engineering of Complex Computer System
(ICECCS2005) in Shanghai, China, 16-20 June 2005, 2005.

[12] S. H. Houmb, G. Georg, R. France, and D. Matheson. Using
aspects to manage security risks in risk-driven development.
In 3rd International Workshop on Critical Systems Develop-
ment with UML, number TUM-I0415, pages 71–84. TUM,
2004.

Figure 9. Computing system availability using BBN

[13] HUGIN: Tool made by Hugin Expert a/s, Alborg, Denmark,
2004. http://www.hugin.dk.

[14] ISO/IEC. ISO/IEC 13335: Information technology – Guide-
lines for management of IT Security, 2001.

[15] F. Jensen.An introduction to Bayesian Network. UCL Press,
University College London, 1996.

[16] E. Jonsson. On the integration of security and dependabil-
ity in computer systems. InIASTED Int’l Conf. Reliability,
Quality Control and Risk Assessment, pages 93–97. Wash-
ington, Nov. 4–6 1992.

[17] E. Jonsson and S. Asmussen. A practical measure for some
dependability attributes in degradable computing systems.
In In Proceedings of NSDCS92, 1992.

[18] E. Jonsson and T. Olovsson. A quantitative model of the
security intrusion process based on attacker behavior.IEEE
Trans. Software Eng., 4(25):235, April 1997.

[19] J. C. Laprie.Dependability: Basic Concepts and Terminol-
ogy. Springer-Verlage, 1992.

[20] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor,
S. Page, D. Wright, J. Dobson, McDermid J., and D. Goll-
mann. Towards operational measures of computer security.
Journal of Computer Security, 2:211–229, 1993.

[21] B. Madan, K. Vaidyanathan, and K. Trivedi. Modeling and
quantification of security attributes of software systems. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN‘02), 2000.

[22] K. Øien and P. R. Hokstad. Handbook for performing expert
judgment. Technical report, SINTEF, 1998.

[23] R. Ortalo and Y. Deswarte. Experiments with quantitative
evaluation tools for monitoring operational security.IEEE
Trans. Software Eng., 5(25):633–650, Sept/Oct 1999.

[24] M. E. Østvang. The honeynet project, phase 1: Installing
and tuning honeyd using lids. Master’s thesis, Norwegian
University of Science and Technology, 2003.

[25] M. E. Østvang. Using honeynet as an information source in
a business perspective: What are the benefits and what are
the risks? Master’s thesis, Norwegian University of Science
and Technology, 2004.

[26] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Net-
work forPlausible Inference. Morgan Kaufmann, 1988.

[27] SERENE: Safety and Risk Evaluation using Bayesian
Nets. ESPIRIT Framework IV nr. 22187, 1999.
http://www.hugin.dk/serene/.

[28] S. Singh, M. Cukier, and W. H. Sanders. Probabilistic
validation of an intrusion-tolerant replication system. In
de Bakker, J.W., de Roever, W.-P., and Rozenberg, G., edi-
tors, International Conference on Dependable Systems and
Networks (DSN‘03), June 2001.

[29] L. Spitzner.Honeypot - tracking hackers. Addison-Wesley,
2003.

[30] K. Stølen, F. den Braber, T. Dimitrakos, R. Fredriksen, B. A.
Gran, S. H. Houmb, Y. C. Stamatiou, and J. Ø. Aagedal.
Model-based risk assessment in a component-based soft-
ware engineering process: The CORAS approach to identify
security risks. In F. Barbier, editor,Business Component-
Based Software Engineering, pages 189–207. Kluwer, 2002.
ISBN: 1-4020-7207-4.

[31] The Honeynet Project. The web page for the honeynet
project. http://www.honeynet.org/. 15 December 2004.

[32] The Honeynet Project.Know your enemy, Revealing the ses-
curity tools, tactics, and motives of the blackhat community.
Addison-Wesley, 2002. ISBN: 0201746131.

[33] TRACS: Transport Reliability Assessment Cal-
culation System, DERA project E20262, 1999.
http://www.agena.co.uk/tracs/index.html.

[34] D. Vose. Risk Analysis: A Quantitative Guide. John Wiley
& Sons Ltd., 2000.

[35] D. Wang, B. B. Madan, and K. S. Trivedi. Security analysis
of sitar intrusion tolerance system. InACM SSRS’03. ACM
Press, 2003.

