Deriving Measures of Software Reuse in Object Oriented Systems

*

James M. Bieman
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
(303) 491-7096
bieman@cs.colostate.edu

Presented at the British Computer Society
Workshop on Formal Aspects of Measurement, London, 1991
Published in Formal Aspects of Measurement, T. Denvir and R. Herman and R. Whitty (editors)
Springer-Verlag 1992, pp 79-82

Technical Report CS—91-112

Copyright ©1991 by James M. Bieman
July 1991

Abstract

The analysis and measurement of current levels of software
reuse are necessary to monitor improvements. This pa-
per provides a framework for the derivation of measures of
software reuse and introduces several definitions, attributes,
and abstractions of potentially measurable reuse properties.
The framework is applied to the problem of measuring reuse
in object oriented systems which support “leveraged” reuse
through inheritance. I describe the importance of the per-
spective of the observer when analyzing, measuring, and
profiling reuse. Three perspectives are examined: the server
perspective, the client perspective, and the system perspec-
tive. Candidate reuse metrics are proposed from each per-
spective.

1 Introduction

Research on formal aspects of software measurement tends
to focus on properties of measures, measurement theory,
measurement scales, and requirements for predictive mea-
sures. This paper reports on the practical application of
techniques developed in formal studies of software measure-
ment. The overall aim is to derive and measure intrinsic
properties of software documents and processes.
Measurement theory is the foundation for practical soft-
ware measurement. A measure allows us to numerically
characterize intuitive attributes of software objects and
events. We need a clear definition and understanding of a
software attribute before we can define measures. We must
be able to determine that one software entity has more or
less of some attribute before we can use measurement to as-

*This research is partially supported by the NATO Collaborative
Research Grants Program under RG. 0343/88

sign a numerical quantity of the attribute to the entity. And
the orderings of the software entities implied by the measure-
ment must be consistent [BBF190, MGBB90, FM90].

Software reuse is one important measurable property.
Software quality, reliability, and productivity should im-
prove when we reuse our programs, designs, specifications,
etc. Software reuse reduces the quantity of software that
must be developed from scratch and thus allows a greater
focus on quality. The reuse of well-tested software should
result in greater reliability. And the high cost of verification
of a reused module can be spread out over many products.
With reuse, software development becomes a capital invest-
ment. The development effort for each product is used to
build a software infrastructure which can be utilized in sub-
sequent products [Weg84].

The rigorous measurement of reuse will help developers
monitor current levels of reuse and help provide insight into
the problem of developing software that is easily reused.
Conte [CDS86], Boehm [Boe81], Bailey [BB81], and Fen-
ton [Fen91] describe reuse measures that are based on com-
parisons between the length or size of reused code and the
size of newly written code in particular software products.
Modifications to the reused code are not considered by these
researchers. The purpose of Conte’s reuse measure is esti-
mating coding effort. Reuse reduces coding effort, and this
reduction affects effort estimation techniques. In a simi-
lar light, Boehm and Bailey use the size of reused code to
adjust cost predictors. Fenton also develops a measure of
reuse based on the dependencies in an associated call graph.
Selby [Sel89] classifies modules into categories based on the
percentage of new versus reused code in a module. The cat-
egories are (1) completely new modules, (2) reused modules
with major revisions (> 25% changed), (3) reused modules
with slight revisions (< 25% changed), and (4) modules that
are reused without change. The foregoing reuse measure-

ment techniques look at reuse in a one-dimensional fash-
ion. Except for Fenton’s measure of private reuse described
in Section 3.1, all of the foregoing reuse measurements are
based on one attribute, program size (or program length).
Only Selby addresses the measurement of reuse with modi-
fications.

Proponents assert that a major benefit of object oriented
design and programming is the generation of reusable soft-
ware components [Mey87]. Components can be reused as
is, or modified using subclassing facilities. Class libraries
promote the reuse of well tested components of general or
special interest. Object oriented systems promote reuse
through language features such as data abstraction and in-
heritance constructs, and through system support such as
browsers.

To support or refute claims that object oriented soft-
ware is easier to reuse, we must be able to measure reuse
in these systems. Measuring reuse in object oriented sys-
tems requires that we define attributes, abstractions, and
measures appropriately for these support mechanisms. Only
with meaningful measures can we determine whether object
oriented systems really promote reuse.

Ultimately we want to determine whether there are struc-
tural properties that make software more likely to be reused.
If there are such properties, we want to identify them. We
believe that there are — software engineering practices have
long supported the notion that certain internal structure
such as structured programming, data abstraction, informa-
tion hiding, etc result in higher quality software products.

The existence of structural properties which improve the
level of reuse can only be determined empirically. To inves-
tigate this issue, we need to be able to characterize reuse in
actual systems. Determining whether object oriented tech-
niques promote greater reuse requires that we be able to
measure the quantity of reuse.

Measurement of the current state of industrial practice
is of great concern to the software engineering commu-
nity [GC8T7]. Only with accurate measures of the “level” of
actual reuse can projects be monitored and “improvement”
measured.

I want to be able to measure reuse related to object ori-
ented class libraries. Reuse occurs within a class library;
library classes may used by other library classes. Library
classes may also be reused by a new system. Data from in-
dustry can be examined to learn how reuse naturally occurs
in object oriented systems. Experiments can help us relate
the “level” of reuse to other software properties. But first,
the important reuse attributes must be identified.

My goal is to derive a set of measurable, intuitively mean-
ingful reuse attributes, and then use the derived measures
in empirical research. This paper describes the process of
deriving measurable reuse attributes and is a prerequisite to
future empirical investigations. The focus here is on code
reuse. In the future, I plan to investigate the derivation of
measures of specification and design reuse.

This paper is organized as follows. Section 2 describes
the process, borrowed from measurement theory, for deriv-
ing new measures of software reuse. Section 3 introduces a
number of definitions related to reuse, reuse attributes, and
describes prospective abstractions which capture the reuse
attributes. In Section 4, the definitions, attributes, and ab-

stractions described in Section 3 are applied to reuse in ob-
ject oriented systems. An additional abstraction is proposed
and a set of candidate reuse measures is introduced. A sum-
mary of the results presented in the paper and conclusions
are given in Section 5.

2 A Method for Deriving Reuse Mea-
sures

Measurement theory provides guidance for deriving reuse
measures. Aspects of the “quantity of reuse” are internal
product attributes related to properties of particular soft-
ware documents [Fen91]. Measurement theory suggest the
following process [BBF90]:

1. Identify and define intuitive and well-understood at-
tributes of software reuse. We must qualitatively un-
derstand what we want to measure.

2. Specify precisely the documents and the attributes to
be measured. We must be able to describe precisely the
object that we measure, and the property of the object
that the measurement is to indicate.

3. Determine formal models or abstractions which capture
these attributes. Formal models are required to unam-
biguously produce numerical measurement values.

4. Derive mappings from the models of attributes to a
number system. The mappings must be consistent with
the orderings implied by the model attributes.

The first three steps are critical. Good definitions of reuse
attributes, the documents, and abstractions are needed be-
fore the attributes can be meaningfully measured.

A long term goal is to be able to use reuse measures
to make predictions on external software process attributes
such as the development time, maintainability, defects, etc.
Industry’s need for predictors is often the overriding issue
when new measures are introduced and validated. For a
measure to be effective in making predictions we need theo-
ries relating different measures, and empirical support. Oth-
erwise the use of a measure for prediction is only based on
speculation. The requirement that an internal measure ef-
fectively predict external process attributes has had a nega-
tive impact on software metrics research, especially affecting
research directed towards developing measures of structural
“complexity” [Fen91]. However, a measure can be useful
even if it is not an effective predictor. To be useful, a mea-
sure must give a numerical value to a software attribute that
is of genuine interest. I defer worrying about the added re-
quirements for using measures for predictions, and simply
seek valid and useful reuse measures.

To derive reuse measures we need clear definitions of soft-
ware reuse attributes, precise definitions of the documents
to be measured, formal models of the reuse attributes, and a
method for generating consistent numerical values from the
documents and attributes.

3 Reuse Definitions, Attributes, and
Abstractions

Our derivation of reuse measures concentrates on clear def-
initions of reuse properties and abstractions which capture
these properties.

3.1 Public and Private Reuse

Fenton defines public reuse as “the proportion of a product
which was constructed externally” [Fen91]. He determines
this proportion in terms of program lengths. The following
is a modified version of a definition of public reuse from
[Fen91]:

length (E)

length (P)

where F is the code developed externally and P is the new
system including F. This definition of public reuse makes
use of any acceptable abstraction of program length, which
may be lines of code or the number of characters. To use
such a measure, one must be able to clearly distinguish be-
tween the components (lines or characters) that are from
the external source and the components that are completely
new. Abstractions based on more generic components are
also appropriate.

Assume the existence of a library of previously developed
software components. Useful components are imported from
library when a new system is developed. Components may
be modified when imported. The import mechanism may
be designed into the environment, or ad hoc. Reuse is de-
termined by the relation between the new system and the
library.

In the ensuing discussion in this section, let I = “reuse
library” and N = “new system”, assuming L and N are sets
of software “components.” A component may be a source
line of code, a statement, a procedure, a module, or an entire
sub-system. I can define reuse as the use of e € L in N. (use
is not formally defined).

The software entity from the library that is being reused
is called the server and the software entity that makes use
of the the library component is the client.

Fenton defines private reuse (or perhaps more appropri-
ately internal reuse) as the “extent to which modules within
a product are reused within the same product” [Fen91]. He
uses the call graph as an abstraction which captures the
“essence” of private reuse. A call graph is a (directed) graph
which represents the control flow connections between mod-
ules. Call graph nodes represent modules, and nodes are
connected with an edge if a module represented by one of
the nodes invokes the the module represented by the other
node. Figure 1 is an example call graph. Here MO directly
uses M1, M2, and M3. M1 uses M4, M2 uses M3 and M4,
and M3 uses M4 and M5. Since M4 is used by M1, M2, and
M3, and M3 is used by M0 and M2, M3 and M4 are used
by more than one other module. Using Fenton’s interpreta-
tion [Fen91], M3 and M4 are the only modules used more
than once or reused. Fenton’s measure of private reuse is:

public reuse =

r(d)=e—n+1

where e is the number of edges and n is the number of nodes
in the call graph. This measure is exactly the number of

M1 M2y M3

Figure 1: A call graph abstraction

modules which are invoked by more than one other module.
Thus, the private reuse in the program represented by Fig-
ure 1is r(G) = 3. This measure matches an intuitive notion
of reuse; M4 is reused twice since it is used by three other
modules (M1, M2, and M3) and M3 is reused once since it
is used by two other modules (M0 and M2). In this case, a
reuse occurs on the second or subsequent uses.

One limitation of the measure is that it is not sensitive to
more than one invocation of module A by module B, and is
not sensitive to the size of the system. In fact, the call graph
abstraction is not an adequate abstraction for developing
reuse measures that are sensitive to the number of times that
module B invokes module A. An alternative abstraction is
a call multigraph. A call multigraph has an edge for each
invocation of A by B, thus two nodes may be connected
by several edges. Figure 2 contains a call multigraph. The
figure has two edges connecting M1 and M4, and connecting
M3 and M5. These edges represent duplicate calls of M4 by
M1 and M5 by M3. Fenton’s measure of this graph gives us
an r(G) = 5 accounting for the two additional reuses.

Both the call graph and call multigraph are not adequate
for measuring the relative size or length of the reused soft-
ware units. If relative size of reused code is important when
measuring public reuse, it should be important when mea-
suring private reuse. Perhaps an annotated call multigraph
is appropriate.

We can quickly realize that there are many reuse at-
tributes; no one abstraction is appropriate for measuring
all of the attributes.

3.2 Verbatim and Leveraged Reuse

Verbatim reuse is reuse without modifications. Importing
code from the library without change is verbatim public
reuse. Verbatim public reuse is traditionally accomplished
with a subroutine activation of program libraries, instantia-
tion of predefined public types, importation of public mod-
ules, etc. Using sets of modules as abstractions, we can
define verbatim reuse.

Vele € L Ae € N = “eis reused verbatim”]

M1 M2

M3

o ,

M4

M5

Figure 2: A call multigraph abstraction

We can define measures of reuse in terms of modules (rather
than lengths) with the above abstraction. But sets are not
adequate abstractions for measuring multiple uses of a li-
brary module in the new system. Bags (sets with duplicate
entries) may be a better choice.

Verbatim private reuse is essentially the same as verba-
tim public reuse, except that the reused software entity is
not from a library that existed prior to the new product
development. Rather, the reused software was developed
earlier in the developing the current product. Appropriate
abstractions for deriving measures of private verbatim reuse
include the call graph and call multigraph as described in
Section 3.1.

Leveraged reuse is reuse with modifications. In leveraged
public reuse, code from L is tailored to a new use. An ex-
ample of leveraged reuse is when

Jde, fle€e LA f € NAS “s derived from” e].

Leveraged reuse applies to taking an old piece of code and
“hacking away at it” until it does what the new require-
ments demand. We refer to this undisciplined reuse as ad
hoc leveraged reuse. Leveraged reuse also applies to reuse
with more disciplined modifications, and modifications with
some language support. In order to measure leveraged reuse
we need abstractions which capture the “is derived from” re-
lationship. Again, sets are not adequate. We need to relate
components of a new module to components from the li-
brary. Thus, we must be able to break modules into smaller
units. Here, code statements may be the correct level of
abstraction, and reuse can be measured through statement
comparisons. However this will not capture modifications

to individual statements or expressions. Perhaps only pro-
cess information — transcripts recording program behavior
is effective for measuring ad hoc leveraged reuse. We will see
in Section 4 that there are abstractions that can effectively
capture leveraged reuse, when leveraged reuse is supported
by the language or programming environment.

3.3 Direct and Indirect Reuse

Direct reuse is reuse without going through an intermediate
entity. Subroutine calls, instantiations of a type, or impor-
tations of modules are direct reuses (or uses). “Direct reuse”
is used to distinguish from “indirect reuse.” The previous
discussion in this section really refers to direct reuse.

Indirect reuse is reuse through an intermediate entity.
When module A invokes module B, and B invokes mod-
ule C. Then A indirectly reuses C', and C was indirectly
reused by A. For private indirect reuse a call graph or call
multigraph are appropriate abstractions for deriving mea-
sures.

The Distance (or level) of indirectionis the number of in-
termediate entities between user (client) and used (server).
For example assume that A uses B, B uses (', and C uses
D. Then for the pair (A, D) there is a 2-level indirection,
or the distance of indirection is 2. It follows that when My
uses My, ..., M, uses My41 then (Mo, My41) has an n-level
indirect reuse. The concept of “distance” or “level” of indi-
rection can also be applied to both verbatim and leveraged
reuse. There may be different possible paths connecting two
call graph nodes. Thus, there may not be a unique distance
of indirect reuse between two modules in a system. For ex-
ample, in Figure 1, MO indirectly uses M5 with two distinct

reuse paths. The indirect reuse of M5 via the direct use of
M3 is a 1-level indirect use, while the reuse of M5 through
M2 and M3 is a 2-level indirect use.

3.4 Reuse Perspectives

Different reuse attributes are visible when reuse is examined
from different perspectives. Consider a system where indi-
vidual modules access some set of existing software entities.
When module M uses program unit .5, M is a client and S is
the server. Thus we consider the program unit being reused
as the server, and the unit accessing the server as the client.
One can observe reuse from the perspective of the server, the
client, and the system. Each of these perspectives is relevant
for the analysis and measurement of reuse in a system. We
can derive a set of potentially measurable attributes based
on profiles of reuse from each perspective. Rather than one
measure of one component of a reuse attribute, we end up
with measurements of many reuse attributes.

Server Perspective

The server perspective is the perspective of the library or a
particular library component. Given a particular program
entity, the analysis focuses on how this entity is being reused
by all of the clients.

A set of reuse measurements can be taken from the server
perspective. Such a profile of server reuse describes how the
library is reused by clients. The server reuse profile can help
determine which library components are being reused and in
what manner (verbatim, leveraged, directly, indirectly). Po-
tential measures of server reuse attributes include the num-
ber of times a library component is reused, average for li-
brary, etc

Client Perspective

The client perspective takes the point of view of the new
system or a new system component. Here we are interested
in how a particular program entity reuses other program
entities.

Reuse measurements can also be taken from the perspec-
tive of the client entity. The client reusing profile describes
how a new system uses entities in the library.

We can determine the extent that a software entity takes
advantage of the reuse library. The reusing profile is fo-
cused on the previously implemented code that a program
unit, say unit A, takes advantage of. The client reusing pro-
file can include an analysis of the verbatim reuse in A, and
profiles the instantiation and references of externally defined
program entities. Potential measures include the number of
reuse occurrences in new system, the percentage of the new
system that is reused code, kinds of reuse, etc.

System Perspective

The system perspectiveis a view of reuse in the overall sys-
tem, both servers and clients. The analysis is of the reuse
throughout an entire system. This may include a synthesis
of the reuse in individual clients and servers in the system.

A system reuse profile includes both system-wide private
reuse, and system-wide public reuse. It includes measure-
ment of indirection, direct, and verbatim reuse. We are
interested in both the absolute number of occurrences of
various kinds of reuse, and the reuse related to the size of
the system (reuse density).

3.5 Language Support & Leveraged Reuse
Measurement

Given a library L and new system N, How do we measure
the quantity or percentage of ad hoc leveraged reuse? If
the language or programming environment does not support
reuse, then reuse can be examined either through automatic
text comparisons, or records of programmer behavior. Both
techniques are not dependable.

With support mechanisms, reuse attributes can be ana-
lyzed and measured accurately. Object oriented languages
and environments provide such support. In the follow-
ing section we examine the effect of the object oriented
paradigm on reuse attributes, abstractions, and measure-
ment.

4 Object Oriented Reuse

Object oriented languages support reuse through the class
system, as well as through the instantiation and use of previ-
ously defined entities. Leveraged reuse is supported through
inheritance. In object oriented systems it is difficult to dis-
tinguish between public and private reuse; a new system is
built as an extension to an existing class library. Thus, the
ensuing discussion does not distinguish between public and
private reuse, and the term “reuse” refers to either one.

4.1 Object Oriented Terminology

Object oriented programming and object oriented languages
make use of terminology which is somewhat unique. Here, |
introduce some object oriented terminology especially as it
relates to software reuse. For a more comprehensive intro-
duction to object oriented software see the excellent texts
by Meyer and by Booch [Mey88, Boo91].

Essentially, an object oriented software system is a col-
lection of abstract data types called classes. A class is an
encapsulated specification of both the persistent state of an
abstract data type and its operations. An instantiation or
instance of a class is an object. There may be several concur-
rently active objects of one class; each instantiation is a dif-
ferent object. Suppose a class defines a stack abstract data
type. We can instantiate several stack objects, and each
object may contain different values in their stack frames.

Objects perform actions in response to messages. These
messages are essentially procedure calls. Upon receiving
a message an object responds by sending other messages,
changing state, and/or returning a message to the object
which sent the message. The only way to affect an object
is by sending a message. To change the internal state of an
object, a message with a specified state changing effect must
be sent to the object. Responses to messages are specified
via methods which are components of classes. Methods are
essentially procedures which are local to a class. They may

have parameters, assignments to local variables and persis-
tent class variables, and may send other messages. A stack
class will contain methods for common stack operations such
as push, pop, top, isemptly, etc.

To reuse an unmodified (verbatim reuse) object oriented
software entity, rather than invoke a procedure several times,
one sends several messages to the same object. Instantiat-
ing a class several times is also a form of verbatim reuse.
Verbatim reuse of object oriented software entities is very
similar to verbatim reuse of more traditional software. Both
the call graph and call multigraph abstractions are appro-
priate for deriving measures of reuse in object oriented soft-
ware. Object oriented support of leveraged reuse provides
an enhanced ability to analyze and, hopefully, to measure
leveraged reuse. I will not address ad hoc leveraged reuse in
object oriented systems. Inheritance is a powerful support
tool for leveraged reuse and I assume that this mechanism
is used.

4.2 Leveraged Reuse via Inheritance

Inheritance provides language support for specifying “I want
something just like that except” A developer can modify
a particular class to create a new class which behaves some-
what differently than the parent class. The original class is
the superclass and the new leveraged class is the subclass.
The subclass can be modified in several basic ways:

e adding new state variables.
e adding new methods.
e changing existing methods.

The first two modifications extend the specification of the
superclass, and can be called extension modifications. The
third modification changes the behavior of a superclass
method and can be dubbed an overload modification. When
creating a subclass, a developer need only specify the differ-
ences from the superclass. Clearly, the inheritance mecha-
nism supports reuse of previously written classes.

The class, superclass, subclass hierarchy can be repre-
sented by a class hierarchy graph. Figure 3 shows an exam-
ple class hierarchy graph from a object oriented data base
of university records. The figure shows that both “faculty”
and “student” inherit certain common data fields (perhaps
information such as name, identification number, age, etc.)
and operations (such as add/delete person) from the parent
or superclass “person.” The subclasses “undergrad” and
“grad” inherit information and operations from their super-
class “student.” The subclasses reuse these operations and
data through inheritance. However, the reuse is leveraged
since (language supported) changes are made to the earlier
functionality and data structures. For example, fields for
course grades and an operation to create a transcript may
be added to Class Person when creating Class Student. The
inheritance graph abstraction can be used to describe po-
tential reuse attributes and derive their measures. (Note
that many object oriented languages, such as C' 4+ + sup-
port multiple inheritance, and so one class may have several
superclasses.)

Unfortunately, the class hierarchy graph cannot be used
to distinguish between extension and overload modifications.

We need to look inside the classes to distinguish between
the classes of modifications. The abstraction used to model
overload and extension reuse must include the distinction,
perhaps through colored edges, in order to derive measures
reflecting these leverage categories. For now, 1 defer the
extension of the inheritance graph abstraction to model the
classes of modification. In this paper, the inheritance graph
serves as the abstraction for the derivation of object oriented
leveraged reuse attributes and measures.

Asin more traditional software, we can analyze object ori-
ented reuse from the server, client, and system perspective.
In each case, we suggest measurable attributes.

4.3 OO Server Reuse Profile

The server reuse profile of a particular class (say class A)
will characterize how the class is being reused by the client
classes in the system.

The verbatim server reuse in an object oriented system is
essentially the same as in non object oriented systems. How-
ever, we use object oriented terminology. We can measure
number of instance creations of objects of class A in a new
system and the number of instance references of class A ob-
jects in a new system. These attributes can be determined
either statically or dynamically.

Leveraged server reuse is supported through inheritance,
and is characterized by an analysis of the subclass hierarchy
using the inheritance hierarchy graph as the abstraction.
We can count the number of subclasses of A, analyze the
size and shape of the inheritance hierarchy graph. We can
examine the indirect leveraged server reuse through an mea-
surements of the inheritance graph; we can find the number
of indirect clients and calculate the average distance of in-
direct leveraged reuses. A count of the number of paths in
the inheritance graph between a particular server and its
clients is a measure of the instances of indirect reuse. With
an extended inheritance graph abstraction we can examine
and categorize each instance or reuse. A client can reuse the
server either by extension, adding methods to the server, or
by overload, redefining methods.

4.4 OO Client Reusing Profile

The client reusing profile characterizes how a new class A
reuses existing library classes. This reuse can be verba-
tim reuse within A, and measures include the number of
instance creations of library objects, the number of instance
references of library objects, and the percentage of objects
created or referenced by A which are from the library. These
verbatim reuses can also be modeled and measured using the
call multigraph abstraction. Potential indirect client reuse
measures include the number of servers which are indirectly
reused, the number of paths to indirect servers, and the
lengths of these paths.

The client can leverage its reuse of library class(es) via in-
heritance. Again, the inheritance hierarchy graph is an ap-
propriate abstraction. We can count the number of servers,
the number of indirect servers, the number of paths to indi-
rect servers, and the average lengths of such paths.

Some potential client reuse attributes require an ex-
tended inheritance hierarchy graph to distinguish between
the classes of reuse. Measures of such attributes include

Class Student

Class Person

Class, Employee

Class Undergrad Class Grad (549 Faculty Class Staff

Figure 3: Inheritance hierarchy graph abstraction

the percentage of server methods changed or unchanged,
measures of the the kinds of modifications made (whether
extension or overloading).

4.5 OO System Reuse Profile

The system profile characterizes overall reuse of library
classes in the new system.
Measurable system reuse attributes include

o Percentage of the new system source text imported from
the library. This requires information not contained in
the call multigraph, information related to class lengths.

o Percentage of new system classes imported verbatim
from library.

o Percentage of the new system classes derived (leveraged
reuse) from library classes, and the average percentage
of these leveraged classes that are imported.

e The average number of verbatim and leveraged clients
for servers, and, conversely, the average number of
servers for clients.

e The average number of verbatim and leveraged indirect
clients for servers, and the average number of indirect
servers for clients.

e The average length and number of paths between indi-
rect servers and clients for both verbatim and leveraged
reuse.

I am interested in both the reuse of library classes and reuse
within the new system. That is, classes developed for the
new system that may be completely new or derived from
library classes may be reused within the new system. They
may be reused verbatim or leveraged. The “shape” of the
class/superclass hierarchy is an attribute of the system reuse
profile.

Connections between verbatim and leveraged reuse are
also part of the system reuse profile. Leveraged server B of
client C may have made verbatim use of module A. Thus,
there is a reuse chain connecting module A to module C.
This chain can be analyzed by examining the two abstrac-
tions. Any appropriate measures will make use of both
graphs.

4.6 Observations

The process of identifying meaningful and measurable at-
tributes of reuse in object oriented software has not provided
just one or two appropriate measures. Rather, I find that
there are many reuse properties to examine and to poten-
tially measure. The specific questions that one is trying to
answer will help determine which reuse properties to mea-
sure. Reuse attributes also depend on the particular per-
spective of the observer. One can use the point of view of
the server, client , or system.

Two abstractions seem especially appropriate for deriving
object oriented reuse measures: the call multigraph and the
inheritance hierarchy graph. The call multigraph is used to
derive measures of verbatim reuse, while the inheritance hi-
erarchy graph is used to derive measures of leveraged reuse.
Table 1 shows several measures derived from the two ab-
stractions and three perspectives. Additional abstractions
will be necessary to derive reuse measures that are sensitive
to the kind of modifications made in leveraged reuse.

The analysis (and measurement) of leveraged reuse is
clearly eased by the support of inheritance in object ori-
ented software. With reuse supported by inheritance, we
can identify exactly the library source(s) of leveraged reuse
and the kind of modifications made to the server(s). This
analysis can be made by examining the software documents
directly. With ad hoc leveraged reuse, either the program-
mers must supply the information or we need an elaborate
system to track access to the library and editing changes
made to library components.

We can still speculate about the relationship between the
quantity of reuse and “reusability,” assuming that reusabil-
ity is an internal property of a software document. The level
of reuse may be related to internal software properties such
as

e Class size: A large class may be harder to understand,
and thus more difficult to reuse. Leveraged reuse of a
larger sized class may be especially difficult.

e Nature and “complexity” of control flow: A class with
a complicated decision structure in the implementation
of a class method may also be more difficult to reuse,
especially if modifications are necessary.

reuse class abstraction perspective candidate measures

verbatim call multigraph server # direct clients

(CMG) # client invocations of server
indirect clients
paths to indirect clients
lengths of indirect paths

client # direct servers
server instance creations
distinct server instance creations
indirect servers
paths to indirect servers
lengths of indirect paths

system “size” & “shape” of CMG:
r(CMG)=e—n+1
nodes/edges in CMG
paths in CMG
connected node pairs
average indirect distance

leveraged inheritance hierarchy | server # direct clients
graph (IHG) # direct client uses
indirect clients
paths to indirect clients
lengths of indirect paths

client # direct servers
server uses
indirect servers
paths to indirect servers
lengths of indirect paths

system “size” & “shape” of IHG:
rlHG)=e—n+1
edges in [HG
paths in [HG
connected node pairs
average indirect distance

Table 1: Object oriented reuse measures from two abstractions

e Nature and “complexity” of data flow: Many data de-
pendencies may also make reuse more difficult.

e Size and “complexity of interfaces: Many speculate that
a large and complicated interface makes reuse more dif-
ficult. I suspect that interface complexity will affect
direct reuse of a server entity more than the above in-
ternal attributes.

The foregoing are all attributes from the server perspective,
the perspective of the entity being reused.

The amount of reuse of a particular class is also related
to external properties such as the “usefulness” of a class in
particular application domains. If the particular function-
ality of a class is often needed, then the class is more likely
to be reused often. Another external attribute is related
to the nature of the software development process. If reuse
is encouraged by management and/or if reuse is supported
by good browsers and information retrieval systems; then
reuse 1s more likely. Thus, the quantity of reuse is not a di-
rect function of the internal properties or internal “reusabil-
ity” of a class. Because of the numerous external factors,
“reusability” is not an attribute of a software document.

Measuring external attributes is generally more difficult
than measuring internal attributes. Often needed are mea-
sures related to the “ability” of the personnel, the “quality”
of the environment, and the “usefulness” of a particular
potentially reusable software entity. Yet these are gener-
ally subjective attributes, and are not amenable to scientific
measurement.

5 Conclusions

In this paper, [introduce the problem of deriving measures
of software reuse from a measurement theory perspective. [
define several reuse terms including verbatim, leveraged, di-
rect, and indirect reuse. I describe three important perspec-
tives of reuse: the server perspective, the client perspective,
and the system perspective. One needs to use well defined
perspectives to ensure that reuse measures are taken of the
desired attribute.

Using the measurement theory approach, I derive reuse
metrics applicable to object oriented systems. T'wo abstrac-
tions are used: a call multigraph and an inheritance hier-
archy graph. The call multigraph can be used to define
measures of verbatim reuse in both traditional and object
oriented systems. The inheritance hierarchy graph is appro-
priate for defining measures of leveraged reuse when leverage
is supported by inheritance. Several candidate measures of
object oriented software reuse are proposed. The inheri-
tance hierarch graph abstraction can be extended to allow
the definitions of measures of leveraged reuse that take into
account the nature of the modifications.

A long term goal of this research is to determine what
makes software reusable. Before we can satisfy this ambi-
tious goal, we need to be able to measure both the quantity
of reuse and many “independent” variables. These variables
include structural attributes of the software entities, and
external attributes of the software process. The internal
attributes can be readily defined and measured, while mea-
suring the external attributes is problematic. Assuming that
we can measure the independent variables, we must derive

theories relating the quantity of reuse to the independent
variables, and then conduct empirical investigations to sup-
port or refute the theories.

This work directed towards measuring the quantity of
reuse allows us to monitor reuse levels and is a first step to-
wards our ultimate aim. Determining what makes software
reusable remains a long term goal. Measures of the quan-
tity of reuse have immediate, practical applications. Current
levels of reuse can be measured and improvements can be
monitored.

References

[BB3&1] J.W. Bailey and V.R. Basili. A meta-model
for software development resource expenditures.
Proc. Fifth Int. Conf. Software FEngineering,

pages 107-116, 1981.

[BBFT90] A.L. Baker, J.M. Bieman, N. E. Fenton, A. C.
Melton, and R.W. Whitty. A philosophy for
software measurement. Journal of Systems and
Software, 12(3):277-281, July 1990.

[Boes1] B. W. Boehm. Software Engineering Economics.

Prenntice-Hall, Englewood Cliffs, NJ, 1981.

[Boo91] G. Booch. Object Oriented Design with Appli-

cations. Benjamin/Cummings, 1991.

S.D. Conte, H.E. Dunsmore, and V.Y. Shen.
Software Fngineering Metrics and Models.
Benjamin/Cummings, Menlo Park, California,
1986.

[CDS86]

[Fen91] Norman Fenton. Software Metrics A Rigorous

Approach. Chapman & Hall, London, 1991.

[FM90] N. Fenton and A. Melton. Deriving structurally
based software measures. Journal of Systems

and Software, 12(3):177-187, July 1990.

R.B. Grady and D.L. Caswell. Software Metrics:
Establishing a Company-wide Program. Prentice
Hall, NJ, 1987.

[GC8T]

[Mey87] B. Meyer. Reusability: The case for object-
oriented design. [EEE Software, 4(2):50-64,

March 1987.

[Mey88] B. Meyer. Object-oriented Software Construc-

tion. Prentice Hall, Englewood Cliffs, NJ, 1988.

[MGBB90] A.C. Melton, D.A. Gustafson, J.M. Bieman, and
A.L. Baker. A mathematical perspective for
software measures research. IEE Software Fn-
gineering Journal, 5(5):246-254, 1990.

Richard W. Selby. Quantitative studies of
software reuse. In Ted J. Biggerstaff and
Alan J. Perlis, editors, Software Reusability Vol.
1T Applications and Experiences, pages 213-233.
Addison-Wesley, 1989.

[Sel89]

[Weg84]

P. Wegner. Capital-intensive software technol-
ogy. IEEFE Software, 1(3):7-45, July 1984.

